Further Topics on Random Variables: Transforms (Moment Generating Functions)

Berlin Chen
Department of Computer Science \& Information Engineering
National Taiwan Normal University

Reference:

- D. P. Bertsekas, J. N. Tsitsiklis, Introduction to Probability, Section 4.1

Aims of This Chapter

- Introduce methods that are useful in
- Dealing with the sum of independent random variables, including the case where the number of random variables is itself random
- Addressing problems of estimation or prediction of an unknown random variable on the basis of observed values of other random variables

Transforms

- Also called moment generating functions of random variables
- The transform of the distribution of a random variable X is a function $M_{X}(s)$ of a free parameter s, defined by

$$
M_{X}(s)=\mathbf{E}\left[e^{s X}\right]
$$

- If X is discrete

$$
M_{X}(s)=\sum_{x} e^{s x} p_{X}(x)
$$

- If X is continuous

$$
M_{X}(s)=\int_{-\infty}^{\infty} e^{s x} f_{X}(x) d x
$$

Illustrative Examples (1/5)

- Example 4.1. Let

$$
p_{X}(x)= \begin{cases}1 / 2, & \text { if } x=2, \\ 1 / 6, & \text { if } x=3, \\ 1 / 3, & \text { if } x=5\end{cases}
$$

$$
\therefore M_{X}(s)=\mathbf{E}\left[e^{s X}\right]=\sum_{x} e^{s x} p_{X}(x)
$$

$$
=\frac{1}{2} e^{2 s}+\frac{1}{6} e^{3 s}+\frac{1}{3} e^{5 s}
$$

Notice that:

$$
\begin{aligned}
M_{X}(0) & =\mathbf{E}\left[e^{0 X}\right]=\sum_{x} e^{0 x} p_{X}(x) \\
& =\sum_{x} p_{X}(x)=1
\end{aligned}
$$

Illustrative Examples (2/5)

- Example 4.2. The Transform of a Poisson Random Variable. Consider a Poisson random variable X with parameter λ :

$$
\begin{aligned}
p_{X}(x) & =\frac{\lambda^{x} e^{-\lambda}}{x!}, \quad x=0,1,2, \ldots \\
M_{X}(s) & =\sum_{x=0}^{\infty} e^{s x} \frac{\lambda^{x} e^{-\lambda}}{x!} \\
& =e^{-\lambda} \sum_{x=0}^{\infty} \frac{a^{x}}{x!} \quad\left(\operatorname{Let} a=e^{s} \lambda\right) \\
& =e^{-\lambda} e^{a} \quad\left(\because \text { McLaurin series }\left(1+a+\frac{a^{2}}{2!}+\frac{a^{3}}{3!}+\cdots\right)=e^{a}\right) \\
& =e^{a-\lambda} \quad \\
& =e^{\lambda\left(e^{s}-1\right)}
\end{aligned}
$$

Illustrative Examples (3/5)

- Example 4.3. The Transform of an Exponential Random Variable. Let X be an exponential random variable with parameter λ :

$$
\begin{aligned}
f_{X}(x) & =\lambda e^{-\lambda x}, \quad x \geq 0 \\
M_{X}(s) & =\int_{0}^{\infty} e^{s x} \lambda e^{-\lambda x} d x \\
& =\lambda \int_{0}^{\infty} e^{(s-\lambda) x} d x \\
& =\left.\lambda \frac{e^{(s-\lambda) x}}{(s-\lambda)}\right|_{0} ^{\infty} \quad(\text { if } s-\lambda<0) \\
& =\frac{\lambda}{\lambda-s} \quad \text { Notice that : }
\end{aligned}
$$

Illustrative Examples (4/5)

- Example 4.4. The Transform of a Linear Function of a Random Variable. Let $M_{X}(s)$ be the transform associated with a random variable X. Consider a new random variable $Y=a X+b$. We then have

$$
M_{Y}(s)=\mathbf{E}\left[e^{s(a X+b)}\right]=e^{s b} \mathbf{E}\left[e^{s a X}\right]=e^{s b} M_{X}(s a)
$$

- For example, if X is exponential with parameter $\lambda=1$ and $Y=2 X+3$, then

$$
\begin{aligned}
& M_{X}(s)=\frac{\lambda}{\lambda-s}=\frac{1}{1-s} \\
& M_{Y}(s)=e^{3 s} M_{X}(2 s)=e^{3 s} \frac{1}{1-2 s}
\end{aligned}
$$

Illustrative Examples (5/5)

- Example 4.5. The Transform of a Normal Random Variable. Let X be normal with mean μ and variance σ^{2}.

We first calculate the transform of a standard normal random variable Y

$$
\begin{aligned}
& f_{Y}(y)=\frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} \\
& M_{Y}(s)=\int_{-\infty}^{\infty} e^{s y} \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} d y \\
& =e^{s^{2} / 2} \cdot \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\left[\left(y^{2} / 2\right)-s y+\left(s^{2} / 2\right)\right]} d y \\
& =e^{s^{2} / 2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-(y-s)^{2} / 2} d y \\
& =e^{s^{2} / 2} \\
& \text { Since we also know that } Y=\frac{X-\mu}{\sigma} \text {, } \\
& \text { we can have } X=\sigma Y+\mu \\
& \therefore M_{X}(s)=e^{s \mu} M_{Y}(s \sigma) \\
& =e^{s \mu} \cdot e^{s^{2} \sigma^{2} / 2} \\
& =e^{s \mu+\left(s^{2} \sigma^{2} / 2\right)}
\end{aligned}
$$

From Transforms to Moments (1/2)

- Given a random variable X, we have

$$
M_{X}(s)=\mathbf{E}\left[e^{s x}\right]=\int_{-\infty}^{\infty} e^{s x} f_{X}(x) d x \quad \text { (If } X \text { is continuous) }
$$

Or

$$
\left.M_{X}(s)=\mathbf{E}\left[e^{s x}\right]=\sum_{x} e^{s x} p_{X}(x) \quad \text { (If } X \text { is discrete }\right)
$$

- When taking the derivative of the above functions with respect to S (for example, the continuous case)

$$
\frac{d M_{X}(s)}{d s}=\frac{d \int_{-\infty}^{\infty} e^{s x} f_{X}(x) d x}{d s}=\int_{-\infty}^{\infty} x e^{s x} f_{X}(x) d x
$$

- If we evaluate it at $s=0$, we can further have

$$
\left.\frac{d M_{X}(s)}{d s}\right|_{s=0}=\left.\int_{-\infty}^{\infty} x e^{s x} f_{X}(x) d x\right|_{s=0}=\int_{-\infty}^{\infty} x f_{X}(x) d x=\mathbf{E}[x]
$$

From Transforms to Moments (2/2)

- More generally, the differentiation of $M_{X}(s) \quad n$ times with respect to S will yield

$$
\left.\frac{d^{n} M_{X}(s)}{d^{n} s}\right|_{s=0}=\left.\int_{-\infty}^{\infty} x^{n} e^{s x} f_{X}(x) d x\right|_{s=0}=\int_{-\infty}^{\infty} x^{n} f_{X}(x) d x=\mathbf{E}\left[x^{n}\right]
$$

the n-th moment of X

Illustrative Examples (1/2)

- Example 4.6a. Given a random variable X with PMF:

$$
\Rightarrow \mathbf{E}[X]=\left.\frac{d M(s)}{d s}\right|_{s=0}
$$

$$
=\frac{1}{2} \cdot 2 \cdot e^{2 s}+\frac{1}{6} \cdot 3 \cdot e^{3 s}+\left.\frac{1}{3} \cdot 5 \cdot e^{5 s}\right|_{s=0}
$$

$$
=1+\frac{3}{6}+\frac{5}{3}=\frac{19}{6}
$$

$$
\begin{aligned}
& p_{X}(x)=\left\{\begin{array}{l}
1 / 2, \quad \text { if } x=2 \\
1 / 6, \quad \text { if } x=3 \\
1 / 3, \quad \text { if } x=5
\end{array}\right. \\
& \begin{aligned}
M_{X}(s)=\mathbf{E}\left[e^{s X}\right]=\sum_{x} e^{s x} p_{X}(x)
\end{aligned} \\
& =\frac{1}{2} e^{2 s}+\frac{1}{6} e^{3 s}+\frac{1}{3} e^{5 s} \\
& \Rightarrow \mathbf{E}\left[X^{2}\right]=\left.\frac{d^{2} M(s)}{d^{2} s}\right|_{s=0} \\
& \\
& =\frac{1}{2} \cdot 4 \cdot e^{2 s}+\frac{1}{6} \cdot 9 \cdot e^{3 s}+\left.\frac{1}{3} \cdot 25 \cdot e^{5 s}\right|_{s=0} \\
& \\
& =2+\frac{9}{6}+\frac{25}{3}=\frac{71}{6}
\end{aligned}
$$

Illustrative Examples (2/2)

- Example 4.6b. Given an exponential random variable X with PMF:

$$
\begin{aligned}
f_{X}(x) & =\lambda e^{-\lambda x}, \quad x \geq 0 . \\
M_{X}(s) & =\int_{0}^{\infty} e^{s x} \lambda e^{-\lambda x} d x \\
& =\lambda \int_{0}^{\infty} e^{(s-\lambda) x} d x \\
& =\left.\lambda \frac{e^{(s-\lambda) x}}{(s-\lambda)}\right|^{\infty} \quad(\text { if } s-\lambda<0) \\
& =\frac{\lambda}{\lambda-s}
\end{aligned}
$$

$$
\left.\begin{array}{rlrl}
\Rightarrow \mathbf{E}[X] & =\left.\frac{d M_{X}(s)}{d s}\right|_{s=0} & & \Rightarrow \mathbf{E}\left[X^{2}\right]
\end{array}\right)=\left.\frac{d^{2} M_{X}(s)}{d^{2} s}\right|_{s=0}
$$

Two Properties of Transforms

- For any random variable X, we have

$$
M_{X}(0)=\mathbf{E}\left[e^{0 X}\right]=\mathbf{E}[1]=1
$$

- If random variable X only takes nonnegative integer values ($x=0,1,2, \cdots$)

$$
\begin{aligned}
& \lim _{s \rightarrow-\infty} M_{X}(s)=\mathbf{P}(X=0) \\
& \lim _{s \rightarrow-\infty} M_{X}(s)=\lim _{s \rightarrow-\infty} \sum_{k=0}^{\infty} \mathbf{P}(X=k) e^{s k}=\mathbf{P}(X=0)
\end{aligned}
$$

Inversion of Transforms

- Inversion Property
- The transform $M_{X}(s)$ associated with a random variable X uniquely determines the probability law of X, assuming that $M_{X}(s)$ is finite for all s in an interval $[-a, a], a \geq 0$
- The determination of the probability law of a random variable => The PDF and CDF
- In particular, if $M_{X}(s)=M_{Y}(s)$ for all s in $[-a, a]$, then the random variables X and Y have the same probability law

Illustrative Examples (1/2)

- Example 4.7. We are told that the transform associated with a random variable X is

$$
M_{X}(s)=\frac{1}{4} e^{-s}+\frac{1}{2}+\frac{1}{8} e^{4 s}+\frac{1}{8} e^{5 s}
$$

If we compare the formula $M_{X}(s)=\sum_{x} e^{s x} p_{X}(x), \quad$ (if X is discrete)
we will have $p_{X}(-1)=\mathbf{P}(X=-1)=\frac{1}{4}$,
$p_{X}(0)=\mathbf{P}(X=0)=\frac{1}{2}$,
$p_{X}(4)=\mathbf{P}(X=4)=\frac{1}{8}$,
$p_{X}(5)=\mathbf{P}(X=5)=\frac{1}{8}$.

Illustrative Examples (2/2)

- Example 4.8. The Transform of a Geometric Random Variable. We are told that the transform associated with random variable X is of the form

$$
M_{X}(s)=\frac{p e^{s}}{1-(1-p) e^{s}}
$$

- Where $0<p \leq 1$

If $(1-p) e^{s}<1$, we can set $\alpha=(1-p) e^{s}$.

- Based on the property that

$$
\frac{1}{1-\alpha}=1+\alpha+\alpha^{2}+\ldots, \quad(\alpha<1)
$$

$$
=\left.\frac{d\left(\frac{p e^{s}}{1-(1-p) e^{s}}\right)}{d s}\right|_{s=0}
$$

$-M_{X}(s)$ is then expressed as

$$
M_{X}(s)=p e^{s}\left(1+(1-p) e^{s}+(1-p)^{2} e^{2 s}+(1-p)^{3} e^{3 s}+\ldots\right)
$$

$$
=\left.\left[\frac{p e^{s}}{1-(1-p) e^{s}}+\frac{(1-p) p e^{s}}{\left(1-(1-p) e^{s}\right)^{2}}\right]\right|_{s=0}
$$

- It can be infered that X is a discrete random variable with PDF

$$
\mathbf{E}[X]=\left.\frac{d M_{X}(s)}{d s}\right|_{\mathrm{s}=0}
$$

$$
=1+\frac{(1-p) p}{p^{2}}
$$

$$
p_{X}(x)=p(1-p)^{x-1}, \quad x=1,2, \ldots
$$

$\therefore X$ is a geometric random variable

$$
=\frac{1}{p}
$$

Mixture of Distributions of Random Variables (1/3)

- Let X_{1}, \ldots, X_{n} be continuous random variables with PDFs $f_{X_{1}}, \ldots, f_{X_{n}}$, and let Y be a random variable, which is equal to X_{i} with probability $p_{i}\left(\sum_{i=1}^{n} p_{i}=1\right)$. Then,

$$
f_{Y}(y)=p_{1} f_{X_{1}}(y)+\cdots+p_{n} f_{X_{n}}(y)
$$

(Note that this is quite different from : $Y=p_{1} X_{1}+\cdots+p_{n} X_{n}$)
and

$$
M_{Y}(s)=p_{1} M_{X_{1}}(s)+\cdots+p_{n} M_{X_{n}}(s)
$$

Mixture of Distributions of Random Variables (2/3)

$$
\begin{aligned}
f_{Y}(y) & =p_{1} f_{X_{1}}(y)+\cdots+p_{n} f_{X_{n}}(y), \quad \sum_{i=1}^{n} p_{i}=1 \\
M_{Y}(s) & =\mathbf{E}\left[e^{s y}\right]=\int_{-\infty}^{\infty} e^{s y} f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty} e^{s y}\left(p_{1} f_{X_{1}}(y)+\cdots+p_{n} f_{X_{n}}(y)\right) d y \\
& =\left[\int_{-\infty}^{\infty} e^{s y} p_{1} f_{X_{1}}(y) d y\right]+\cdots+\left[\int_{-\infty}^{\infty} e^{s y} p_{n} f_{X_{n}}(y) d y\right] \\
& =\left[p_{1} \int_{-\infty}^{\infty} e^{s x_{1}} f_{X_{1}}\left(x_{1}\right) d x_{1}\right]+\cdots+\left[p_{n} \int_{-\infty}^{\infty} e^{s x_{n}} f_{X_{n}}\left(x_{n}\right) d x_{n}\right] \\
& =p_{1} M_{X_{1}}(s)+\cdots+p_{n} M_{X_{n}}(s)
\end{aligned}
$$

Mixture of Distributions of Random Variables (3/3)

- Mixture of Gaussian Distributions
- More complex distributions with multiple local maxima can be approximated by Gaussian (a unimodal distribution) mixture

$$
f_{Y}(y)=\sum_{i=1}^{n} p_{i} N_{i}\left(y ; \mu_{i}, \sigma_{i}^{2}\right), \quad \sum_{i=1}^{n} p_{i}=1
$$

- Gaussian mixtures with enough mixture components can approximate any distribution

An Illustrative Example (1/2)

- Example 4.9. The Transform of a Mixture of Two Distributions. The neighborhood bank has three tellers, two of them fast, one slow. The time to assist a customer is exponentially distributed with parameter $\lambda=6$ at the fast tellers, and $\lambda=4$ at the slow teller. Jane enters the bank and chooses a teller at random, each one with probability $1 / 3$. Find the PDF of the time it takes to assist Jane and the associated transform

An Illustrative Example (2/2)

- The service time of each teller is exponentially distributed

$$
\begin{array}{lll}
f_{X_{1}}(x)=6 e^{-6 x}, & x \geq 0 . & \text { the faster teller } \\
f_{X_{2}}(x)=4 e^{-4 x}, & x \geq 0 . & \text { the slower teller }
\end{array}
$$

- The distribution of the time that a customer spends in the bank

$$
f_{Y}(y)=\frac{2}{3} \cdot 6 e^{-6 y}+\frac{1}{3} \cdot 4 e^{-4 y}, \quad y \geq 0
$$

- The associated transform

$$
\begin{aligned}
M_{Y}(s) & =\mathbf{E}\left[e^{s y}\right]=\int_{0}^{\infty} e^{s y}\left(\frac{2}{3} \cdot 6 e^{-6 y}+\frac{1}{3} \cdot 4 e^{-4 y}\right) d y \\
& =\frac{2}{3} \int_{0}^{\infty} e^{s y} \cdot 6 e^{-6 y} d y+\frac{1}{3} \int_{0}^{\infty} e^{s y} \cdot 4 e^{-4 y} d y \\
& =\frac{2}{3} \cdot \frac{6}{6-s}+\frac{1}{3} \cdot \frac{4}{4-s} \quad(\text { for } s<4) \quad \text { cf. p. } 12
\end{aligned}
$$

Sum of Independent Random Variables

- Addition of independent random variables corresponds to multiplication of their transforms
- Let X and Y be independent random variables, and let $W=X+Y$. The transform associated with W is,

$$
M_{W}(s)=\mathbf{E}\left[e^{s W}\right]=\mathbf{E}\left[e^{s(X+Y)}\right]=\mathbf{E}\left[e^{s X} e^{s Y}\right]=\mathbf{E}\left[e^{s X}\right] \mathbf{E}\left[e^{s Y}\right]=M_{X}(s) M_{Y}(s)
$$

- Since X and Y are independent, and $e^{s X}$ and $e^{s Y}$ are functions of X and Y, respectively
- More generally, if X_{1}, \ldots, X_{n} is a collection of independent random variables, and $W=X_{1}+\cdots+X_{n}$

$$
M_{W}(s)=M_{X_{1}}(s) \cdots M_{X_{n}}(s)
$$

Illustrative Examples (1/3)

- Example 4.10. The Transform of the Binomial.

Let X_{1}, \ldots, X_{n} be independent Bernoulli random variables with a common parameter p. Then,

$$
M_{X_{i}}(s)=(1-p) e^{s \cdot 0}+p e^{s \cdot 1}=1-p+p e^{s}, \text { for } i=1, \ldots, n
$$

- If $Y=X_{1}+\cdots+X_{n}, Y$ can be thought of as a binomial random variable with parameters n and p, and its corresponding transform is given by

$$
M_{Y}(s)=\prod_{i=1}^{n} M_{X_{i}}(s)=\left(1-p+p e^{s}\right)^{n}
$$

Illustrative Examples (2/3)

- Example 4.11. The Sum of Independent Poisson Random Variables is Poisson.
- Let X and Y be independent Poisson random variables with means λ and μ, respectively
- The transforms of X and Y will be the following, respectively

$$
M_{X}(s)=e^{\lambda\left(e^{s}-1\right)}, M_{Y}(s)=e^{\mu\left(e^{s}-1\right)} \quad \text { cf. p. } 5
$$

- If $W=X+Y$, then the transform of the random variable W is

$$
\begin{aligned}
M_{W}(s) & =M_{X}(s) M_{Y}(s) \\
& =e^{\lambda\left(e^{s}-1\right)} e^{\mu\left(e^{s}-1\right)} \\
& =e^{(\lambda+\mu)\left(e^{s}-1\right)}
\end{aligned}
$$

- From the transform of W, we can conclude that W is also a Poisson random variable with mean $\lambda+\mu$

Illustrative Examples (3/3)

- Example 4.12. The Sum of Independent Normal Random Variables is Normal.
- Let X and Y be independent normal random variables with means μ_{x}, μ_{y}, and variances $\sigma_{x}^{2}, \sigma_{y}^{2}$, respectively
- The transforms of X and Y will be the following, respectively

$$
M_{X}(s)=e^{\frac{\sigma_{x}^{2} s^{2}}{2}+\mu_{x} s}, M_{Y}(s)=e^{\frac{\sigma_{y}^{2} s^{2}}{2}+\mu_{y} s} \quad \text { cf. p. } 8
$$

- If $W=X+Y$, then the transform of the random variable W is

$$
\begin{aligned}
M_{W}(s) & =M_{X}(s) M_{Y}(s) \\
& =e^{\frac{\left(\sigma_{x}^{2}+\sigma_{y}^{2}\right) s^{2}}{2}+\left(\mu_{x}+\mu_{y}\right) s}
\end{aligned}
$$

- From the transform of W, we can conclude that W also is normal with mean $\mu_{x}+\mu_{y}$ and variance $\sigma_{x}^{2}+\sigma_{y}^{2}$

Tables of Transforms (1/2)

Transforms for Common Discrete Random Variables
Bernoulli (p)

$$
p_{X}(k)=\left\{\begin{array}{ll}
p, & \text { if } k=1, \\
1-p, & \text { if } k=0
\end{array} \quad \quad M_{X}(s)=1-p+p e^{s}\right.
$$

$\operatorname{Binomial}(n, p)$

$$
\begin{aligned}
p_{X}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \ldots, n & \\
& M_{X}(s)=\left(1-p+p e^{s}\right)^{n}
\end{aligned}
$$

Geometric (p)

$$
p_{X}(k)=p(1-p)^{k-1}, \quad k=1,2, \ldots \quad \quad M_{X}(s)=\frac{p e^{s}}{1-(1-p) e^{s}}
$$

Poisson(λ)

$$
p_{X}(k)=\frac{e^{-\lambda} \lambda^{k}}{k!}, \quad k=0,1, \ldots \quad M_{X}(s)=e^{\lambda\left(e^{s}-1\right)}
$$

Uniform (a, b)

$$
\begin{aligned}
& p_{X}(k)=\frac{1}{b-a+1}, \quad k=a, a+1, \ldots, b . \\
& \qquad M_{X}(s)=\frac{e^{a s}}{b-a+1} \frac{e^{(b-a+1) s}-1}{e^{s}-1} .
\end{aligned}
$$

Tables of Transforms (2/2)

Transforms for Common Continuous Random Variables
Uniform (a, b)

$$
f_{X}(x)=\frac{1}{b-a}, \quad a \leq x \leq b . \quad M_{X}(s)=\frac{1}{b-a} \frac{e^{s b}-e^{s a}}{s}
$$

Exponential (λ)

$$
f_{X}(x)=\lambda e^{-\lambda x}, \quad x \geq 0 . \quad M_{X}(s)=\frac{\lambda}{\lambda-s}, \quad(s>\lambda)
$$

$\operatorname{Normal}\left(\mu, \sigma^{2}\right)$

$$
f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}, \quad-\infty<x<\infty . \quad M_{X}(s)=e^{\frac{\sigma^{2} s^{2}}{2}+\mu s}
$$

Recitation

- SECTION 4.1 Transforms
- Problems 2, 4, 5, 7, 8

