Discrete Random Variables: Expectation, Mean and Variance

Berlin Chen
Department of Computer Science \& Information Engineering
National Taiwan Normal University

Reference:

- D. P. Bertsekas, J. N. Tsitsiklis, Introduction to Probability, Sections 2.3-2.4

Motivation (1/2)

- An Illustrative Example: Suppose that you spin the wheel k times, and that k_{i} is the number of times that the outcome (money) is m_{i} (there are n distinct outcomes, $m_{1}, m_{2}, \ldots, m_{n}$)
- What is the amount of money that you "expect" to get "per spin"?
- The total amount received is

$$
m_{1} k_{1}+m_{2} k_{2}+\cdots+m_{n} k_{n}
$$

- The amount received per spin is

$$
M=\frac{m_{1} k_{1}+m_{2} k_{2}+\cdots+m_{n} k_{n}}{k}
$$

Motivation (2/2)

- If the number of spins k is very large, and if we are willing to interpret probabilities as relative frequencies, it is reasonable to anticipate that m_{i} comes up a fraction of times that is roughly equal to p_{i}

$$
p_{i} \approx \frac{k_{i}}{k}
$$

- Therefore, the amount received per spin can be also represented as

$$
\begin{aligned}
M & =\frac{m_{1} k_{1}+m_{2} k_{2}+\cdots+m_{n} k_{n}}{k} \\
& =m_{1} p_{1}+m_{2} p_{2}+\cdots+m_{n} p_{n}
\end{aligned}
$$

Expectation

- The expected value (also called the expectation or the mean) of a random variable X, with PMF p_{X}, is defined by

$$
\mathbf{E}[X]=\sum_{x} x p_{X}(x)
$$

- Can be interpreted as the center of gravity of the PMF (Or a weighted average, in proportion to probabilities, of the possible values of X)
- The expectation is well-defined if

$$
\sum_{x}|x| p_{X}(x)<\infty
$$

- That is, $\sum_{x} x p_{X}(x)$ converges to a finite value $\quad \begin{gathered}\sum_{x}(x-c) p_{X}(x)=0 \\ \Rightarrow c=\sum_{x} x \cdot p_{X}(x)\end{gathered}$

Moments

- The \boldsymbol{n}-th moment of a random variable X is the expected value of a random variable X^{n} (or the random variable $Y, Y=g(X)=X^{n}$)

$$
\mathbf{E}\left[X^{n}\right]=\sum_{x} x^{n} p_{X}(x)
$$

- The 1st moment of a random variable X is just its mean (or expectation)

Expectations for Functions of Random Variables

- Let X be a random variable with PMF p_{X}, and let $g(X)$ be a function of X. Then, the expected value of the random variable $g(X)$ is given by

$$
\mathbf{E}[g(X)]=\sum_{x} g(x) p_{X}(x)
$$

- To verify the above rule
- Let $Y=g(X)$, and therefore $p_{Y}(y)=\sum_{\{x \mid g(x)=y\}} p_{X}(x)$

$$
\begin{aligned}
& \mathbf{E}[g(X)]=\mathbf{E}[Y]=\sum_{y} y p_{Y}(y) \\
& =\sum_{y} y \sum_{\{x \mid g(x)=y\}} p_{X}(x)=\sum_{y} \sum_{\{x \mid g(x)=y\}} g(x) p_{X}(x) \\
& =\sum_{x} g(x) p_{X}(x)
\end{aligned}
$$

Variance

- The variance of a random variable X is the expected value of a random variable $(X-\mathbf{E}(X))^{2}$

$$
\begin{aligned}
\operatorname{var}(X) & =\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right] \\
& =\sum(x-\mathbf{E}[X])^{2} p_{X}(x)
\end{aligned}
$$

- The variance is ${ }^{x}$ lways nonnegative (why?)
- The variance provides a measure of dispersion of X around its mean
- The standard derivation is another measure of dispersion, which is defined as (a square root of variance)

$$
\sigma_{X}=\sqrt{\operatorname{var}(X)}
$$

- Easier to interpret, because it has the same units as X

An Example

- Example 2.3: For the random variable X with PMF

$$
\begin{aligned}
& p_{X}(x)= \begin{cases}1 / 9, & \text { if } \mathrm{x} \text { is an integer in the range }[-4,4], \\
0, & \text { otherwise } \quad \text { Discrete Uniform Random Variable }\end{cases} \\
& \mathbf{E}[X]=\sum_{x} x p_{X}(x)=\frac{1}{9} \sum_{x=-4}^{4} x=0 \\
& \operatorname{var}(X)=\mathbf{E}\left[(x-\mathbf{E}[X])^{2}\right]=\sum_{x}(x-\mathbf{E}[X])^{2} p_{X}(x)=\frac{1}{9} \sum_{x=-4}^{4} x^{2}=\frac{60}{9} \\
& \text { Or, let } Z=(X-\mathbf{E}[X])^{2}=X^{2}
\end{aligned} \quad \begin{aligned}
& \Rightarrow p_{Z}(\mathrm{z})= \begin{cases}2 / 9, & \text { if } z=1,4,9,16 \\
1 / 9, & \text { if } z=0 \\
0, \text { otherwise }\end{cases} \\
& \operatorname{var}(X)=\mathbf{E}[Z]=\sum_{Z} z p_{Z}(\mathrm{z})=\frac{60}{9}
\end{aligned}
$$

Properties of Mean and Variance (1/2)

- Let X be a random variable and let

$$
Y=a X+b \quad \text { a linear function of } X
$$

where a and b are given scalars
Then,

$$
\begin{aligned}
& \mathbf{E}[Y]=a \mathbf{E}[X]+b \\
& \operatorname{var}(Y)=a^{2} \operatorname{var}(X)
\end{aligned}
$$

- If $g(X)$ is a linear function of X, then

$$
\mathbf{E}[g(X)]=g(\mathbf{E}[X]) \quad \text { How to verify it? }
$$

Properties of Mean and Variance (2/2)

$$
\begin{aligned}
\mathbf{E}[Y] & =\sum_{x}(a x+b) p_{X}(x)=\left[a \sum_{x} x p_{X}(x)\right]+[\underbrace{}_{x} \sum_{x} p_{X}(x)]=a \mathbf{E}[X]+b \\
\operatorname{var}(Y) & =\sum_{x}(a x+b-\mathbf{E}[a X+b])^{2} p_{X}(x) \\
& =\sum_{x}(a x+b-a \mathbf{E}[X]-b)^{2} p_{X}(x) \\
& =a^{2} \sum_{x}(x-\mathbf{E}[X])^{2} p_{X}(x) \\
& =a^{2} \operatorname{var}(X)
\end{aligned}
$$

Variance in Terms of Moments Expression

- We can also express variance of a random variable X as

$$
\begin{aligned}
\operatorname{var}(X) & =\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2} \\
\operatorname{var}(X) & =\sum_{x}(x-\mathbf{E}[X])^{2} p_{X}(x) \\
& =\sum_{x}\left(x^{2}-2 x \mathbf{E}[X]+(\mathbf{E}[X])^{2}\right) p_{X}(x) \\
& =\left[\sum_{x} x^{2} p_{X}(x)\right]+2 \mathbf{E}[X]\left[\sum_{x} x p_{X}(x)\right]+(\mathbf{E}[X])^{2}\left[\sum_{x} p_{X}(x)\right] \\
& =\mathbf{E}\left[X^{2}\right]-2(\mathbf{E}[X])^{2}+(\mathbf{E}[X])^{2} \\
& =\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}
\end{aligned}
$$

An Example

- Example 2.4: Average Speech Versus Average Time. If the weather is good (with probability 0.6), Alice walks the 2 miles to class at a speed of $V=5$ miles per hour, and otherwise rides her motorcycle at a speech of $V=30$ miles per hour. What is the expected time $\mathrm{E}[T]$ to get to the class ?

$$
\left.\begin{array}{l}
p_{V}(v)=\left\{\begin{array}{lll}
0.6, & \text { if } v=5 \\
0.4, & \text { if } v=30 & \mathbf{E}[V]=0.6 \times 5+0.4 \times 30=15
\end{array}\right. \\
T=g(V)=\frac{2}{V}
\end{array} \begin{array}{lll}
& \mathbf{E}[T]=0.6 \times \frac{2}{5}+0.4 \times \frac{2}{30}=\frac{4}{15}
\end{array}\right\} \begin{array}{ll}
0.6, & \text { if } t=\frac{2}{5} \\
\Rightarrow p_{T}(t)= \begin{cases}\text { However, } \mathbf{E}[T]=\mathbf{E}[g(V)] \neq g(\mathbf{E}[V])=\frac{2}{15} \\
0.4, & \text { if } t=\frac{2}{30}\end{cases}
\end{array}
$$

Mean and Variance of the Bernoulli

- Example 2.5. Consider the experiment of tossing a biased coin, which comes up a head with probability p and a tail with probability $1-p$, and the Bernoulli random variable with PMF

$$
\begin{aligned}
& p_{X}(x)= \begin{cases}p, & \text { if } x=1 \\
1-p, & \text { if } x=0\end{cases} \\
& \mathbf{E}[X]=\sum_{x} x p_{X}(x)=1 \cdot p+0 \cdot(1-p)=p \\
& \mathbf{E}\left[X^{2}\right]=\sum_{x} x^{2} p_{X}(x)=1^{2} \cdot p+0^{2} \cdot(1-p)=p \\
& \operatorname{var}(X)=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}=p-p^{2}=p(1-p)
\end{aligned}
$$

Mean and Variance of the Discrete Uniform

- Consider a discrete uniform random variable with a nonzero PMF in the range [a, b]

$$
p_{X}(x)= \begin{cases}\frac{1}{b-a+1}, & \text { if } x=a, a+1, \ldots, b \\ 0, & \text { otherwise }\end{cases}
$$

$$
\mathbf{E}[X]=\sum_{x} x p_{X}(x)=\frac{1}{b-a+1} \sum_{x=a}^{b} x=\frac{a+b}{2}
$$

$$
\mathbf{E}\left[X^{2}\right]=\frac{1}{b-a+1} \sum_{x=a}^{b} x^{2}=\frac{1}{b-a+1} \cdot\left(\frac{b(b+1)(2 b+1)}{6}-\frac{(a-1)(a)(2 a-1)}{6}\right)
$$

$$
\operatorname{var}(X)=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}=\frac{1}{b-a+1} \cdot\left(\frac{b(b+1)(2 b+1)}{6}-\frac{(a-1)(a)(2 a-1)}{6}\right)-\left(\frac{a+b}{2}\right)^{2}
$$

$$
=\frac{1}{b-a+1} \cdot \frac{(b-a)(b-a+1)(b-a+2)}{12}=\frac{(b-a)(b-a+2)}{12}
$$

Mean and Variance of the Poisson

- Consider a Poisson random variable with a PMF

$$
\begin{gathered}
p_{X}(x)=e^{-\lambda} \frac{\lambda^{x}}{x!}, \quad x=0,1,2, \ldots, \\
\begin{array}{l}
\mathbf{E}[X]=\sum_{x} x p_{X}(x)=\sum_{x=0}^{\infty} x e^{-\lambda} \frac{\lambda^{x}}{x!}=\lambda \sum_{x=1}^{\infty} e^{-\lambda} \frac{\lambda^{x-1}}{(x-1)!}=\lambda \sum_{x^{\prime}=0}^{\infty} e^{-\lambda} \frac{\lambda^{x^{\prime}}}{x^{\prime}!} \\
1
\end{array} \lambda \\
\mathbf{E}\left[X^{2}\right]=\sum_{x} x^{2} p_{X}(x)=\sum_{x=0}^{\infty} x^{2} e^{-\lambda} \frac{\lambda^{x}}{x!}=\lambda \sum_{x=1}^{\infty} x \frac{\lambda^{x-1}}{(x-1)!} \\
=\lambda \sum_{x^{\prime}=0}^{\infty}\left(x^{\prime}+1\right) e^{-\lambda} \frac{\lambda^{x^{\prime}}}{x^{\prime}!}=\lambda\left[\left(\sum_{x^{\prime}=0}^{\infty} x^{\prime} e^{-\lambda} \frac{x^{x^{\prime}}}{x^{\prime}!}\right)+\left(\frac{\sum_{x^{\prime}=0}^{\infty} e^{-\lambda} \frac{\lambda^{x^{\prime}}}{x^{\prime}!}}{1}\right]=\lambda(\mathbf{E}[X]+1)=\lambda^{2}+\lambda\right. \\
\operatorname{var}(X)=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}=\lambda^{2}+\lambda-\lambda^{2}=\lambda
\end{gathered}
$$

Mean and Variance of the Binomial

- Consider a binomial random variable with a PMF

$$
\begin{gathered}
p_{X}(x)=\binom{n}{x} p^{x}(1-p)^{n-x}, \quad x=0,1, \ldots, n \\
\begin{aligned}
& \mathbf{E}[X]= \sum_{x} x p_{X}(x)=\sum_{x=0}^{n} x\binom{n}{x} p^{x}(1-p)^{n-x}=\sum_{x=1}^{n} x\binom{n}{x} p^{x}(1-p)^{n-x}=\sum_{x=1}^{n} x \frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x} \\
&=n p \sum_{x=1}^{n} \frac{(n-1)!}{(x-1)!(n-x)!} p^{x-1}(1-p)^{n-x}=n p \sum_{x^{\prime}=0}^{n-1} \frac{(n-1)!}{x^{\prime}!\left(n-1-x^{\prime}\right)!} p^{x^{\prime}(1-p)^{n-1-x^{\prime}}=n p} \\
& \begin{aligned}
& \mathbf{E}\left[X^{2}\right]= \mathbf{E}\left[X^{2}-X\right]+\mathbf{E}[X] \text { (tobe verifiedlateron!) } \\
& \begin{array}{r}
\mathbf{E}\left[X^{2}-X\right]
\end{array} \\
&=\mathbf{E}[X(X-1)]=\sum_{x=0}^{n} x(x-1)\binom{n}{x} p^{x}(1-p)^{n-x}=\sum_{x=2}^{n} x(x-1) \frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x} \\
&=n(n-1) p^{2} \sum_{x=2}^{n} \frac{(n-2)!}{(x-2)!(n-x)!} p^{x-2}(1-p)^{n-x}=n(n-1) p^{2} \\
& \operatorname{var}(X)= \mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}=\mathbf{E}\left[X^{2}-X\right]+\mathbf{E}[X]-(\mathbf{E}[X])^{2} \\
&= n(n-1) p^{2}+n p-n^{2} p^{2}=n p(1-p)
\end{aligned}
\end{aligned} . l
\end{gathered}
$$

Mean and Variance of the Geometric

- Consider a geometric random variable with a PMF

$$
\begin{aligned}
& p_{X}(x)=(1-p)^{x-1} p, \quad x=1,2, \ldots, \\
& \begin{aligned}
& \mathbf{E}[X]=\sum_{x} x p_{X}(x)=\sum_{x=0}^{\infty} x(1-p)^{x-1} p=p \sum_{x=1}^{\infty} x q^{x-1} \quad(\text { let } q=1-p<1) \\
&= p \frac{d\left(\sum_{x=1}^{\infty} q^{x}\right)}{d q}=p \frac{d\left(\frac{1}{1-q}\right)}{d q}=p \frac{1}{(1-q)^{2}}=\frac{1}{p} \\
& \mathbf{E}\left[X^{2}\right]=\mathbf{E}\left[X^{2}-X\right]+\mathbf{E}[X](\text { to be verified later on!) } \\
& \begin{array}{r}
\mathbf{E}\left[X^{2}-X\right]=\mathbf{E}[X(X-1)]=\sum_{x=0}^{\infty} x(x-1)(1-p)^{x-1} p=p q \sum_{x=2}^{\infty} x(x-1) q^{x-2} \quad(\text { let } q=1-p<1)
\end{array} \\
& \quad=p q \sum_{x=2}^{\infty} x(x-1) q^{x-2}=p q \frac{d^{2}\left(\frac{1}{1-q}\right)}{d^{2} q}=p q \frac{2}{(1-q)^{3}}=\frac{2(1-p)}{p^{2}} \\
& \operatorname{var}(X)=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}=\mathbf{E}\left[X^{2}-X\right]+\mathbf{E}[X]-(\mathbf{E}[X])^{2} \\
&= \frac{2(1-p)}{p^{2}}+\frac{1}{p}-\frac{1}{p^{2}}=\frac{(1-p)}{p^{2}} \quad
\end{aligned}
\end{aligned}
$$

An Example

- Example 2.3: The Quiz Problem. Consider a game where a person is given two questions and must decide which question to answer first
- Question 1 will be answered correctly with probability 0.8 , and the person will then receive as prize $\$ 100$
- While question 2 will be answered correctly with probability 0.5 , and the person will then receive as prize $\$ 200$
- If the first question attempted is answered incorrectly, the quiz terminates
- Which question should be answered first to maximize the expected

Recitation

- SECTION 2.4 Expectation, Mean, Variance
- Problems 18, 19, 21, 24

