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Motivation

• Given an experiment, e.g., a medical diagnosis
– The results of blood test is modeled as numerical values of a 

random variable  
– The results of magnetic resonance imaging (MRI,核磁共振攝影) 

is also modeled as numerical values of a random variable  

We would like to consider probabilities involving simultaneously
the numerical values of these two variables and to investigate 
their mutual couplings 
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Joint PMF of Random Variables

• Let and be random variables associated with 
the same experiment, the joint PMF of and is 
defined by

• if event is the set of all pairs             that have a 
certain property, then the probability of       can be 
calculated by 
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Marginal PMFs of Random Variables (1/2)

• The PMFs of random variables       and        can be 
calculated from their joint PMF

– and              are often referred to as the marginal PMFs

– The above two equations can be verified by 
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Marginal PMFs of Random Variables (2/2)

• Tabular Method: Given the joint PMF of random 
variables         and        is specified in a two-dimensional 
table, the marginal PMF of or at a given value 
is obtained by adding the table entries along a 
corresponding column or row, respectively

X Y
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Functions of Multiple Random Variables (1/2)

• A function                     of the random variables       and
defines another random variable. Its PMF can be 
calculated from the joint PMF

• The expectation for a function of several random 
variables
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Functions of Multiple Random Variables (2/2)

• If the function of several random variables is linear and 
of the form

– How can we verify the above equation ?  

( ) cbYaXYXgZ ++== ,
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An Illustrative Example

• Given the random variables     and      whose joint is 
given in the following figure, and a new random 
variable     is defined by                   , calculate
– Method 1: 

– Method 2:
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More than Two Random Variables (1/2)

• The joint PMF of three random variables      , and 
is defined in analogy with the above as

– The corresponding marginal PMFs

and
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More than Two Random Variables (2/2)

• The expectation for the function of random variables      , 
and

– If the function is linear and has the form

• A generalization to more than three random variables  
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An Illustrative Example

• Example 2.10. Mean of the Binomial. Your probability 
class has 300 students and each student has probability 
1/3 of getting an A, independently of any other student.
– What is the mean of , the number of students that get an A?
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Conditioning 

• Recall that conditional probability provides us with a way 
to reason about the outcome of an experiment, based on 
partial information

• In the same spirit, we can define conditional PMFs, 
given the occurrence of a certain event or given the 
value of another random variable
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Conditioning a Random Variable on an Event (1/2)

• The conditional PMF of a random variable , 
conditioned on a particular event with , is 
defined by (where       and        are associated with the same experiment)

• Normalization Property
– Note that the events are disjoint for different 

values of      , their union is 
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Conditioning a Random Variable on an Event (2/2)

• A graphical illustration 
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Illustrative Examples (1/2)

• Example 2.12. Let       be the roll of a fair six-sided die 
and      be the event that the roll is an even number 

X
A

( ) ( )
( )

( )

⎩
⎨
⎧ =

=

=
=

==

otherwise       ,0
6,4,2 if   ,3/1

             

even is 
even is  and              

even is roll

x
X

XxX

xXxP AX

P
P

P



Probability-Berlin Chen 16

Illustrative Examples (2/2)

• Example 2.14. A student will take a certain test 
repeatedly, up to a maximum of      times, each time with 
a probability      of passing, independently of the number 
of previous attempts.
– What is the PMF of the number of attempts given that the 

student passes the test ?
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Conditioning a Random Variable on Another (1/2)

• Let and be two random variables associated with 
the same experiment. The conditional PMF           of        
given      is defined as

• Normalization Property

• The conditional PMF is often convenient for the 
calculation of the joint PMF
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Conditioning a Random Variable on Another (2/2)

• The conditional PMF can also be used to calculate the 
marginal PMFs

• Visualization of the conditional PMF
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An Illustrative Example (1/2)

• Example 2.14. Professor May B. Right often has her 
facts wrong, and answers each of her students’
questions incorrectly with probability 1/4, independently 
of other questions. In each lecture May is asked 0, 1, or 
2 questions with equal probability 1/3. 
– What is the probability that she gives at least one wrong answer ?
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An Illustrative Example (2/2)

• Calculation of the joint PMF                   in Example 2.14.( )yxp YX ,,
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Conditional Expectation

• Recall that a conditional PMF can be thought of as an 
ordinary PMF over a new universe determined by the 
conditioning event

• In the same spirit, a conditional expectation is the same 
as an ordinary expectation, except that it refers to the 
new universe, and all probabilities and PMFs are 
replaced by their conditional counterparts
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Summary of Facts About Conditional Expectations

• Let and be two random variables associated with 
the same experiment
– The conditional expectation of given an event 

with , is defined by

• For a function , it is given by
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Total Expectation Theorem (1/2)

• The conditional expectation of given a value of 
is defined by

– We have

• Let be disjoint events that form a partition of the 
sample space, and assume that                  , for all . 
Then, 
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Total Expectation Theorem (2/2)

• Let be disjoint events that form a partition of an 
event       , and assume that                  , for all . Then,

• Verification of total expectation theorem
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An Illustrative Example (1/2)

• Example 2.17. Mean and Variance of the Geometric 
Random Variable
– A geometric random variable      has PMFX ( ) ( ) K,21    ,1 1 ,xppxp x
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An Illustrative Example (2/2)

[ ] ( ) [ ] ( ) [ ]
[ ]
[ ] ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

[ ] ( ) ( ) ( )

[ ] [ ]
[ ] ( ) [ ] [ ]( )
[ ] ( ) [ ] [ ]

[ ]

( ) [ ] [ ]( ) 22
22

2
2

2

22

2
1

1

1

12

2

2

2

2

2

2

1

12

2

2

2

2

2

22

2

2

22
2

2

2

22
1

2

2
2

21
2

1
2

111var

12     

1  shown that have we  121     

1211

12                 

1set         112                 

1121121                 

11211                 

 101

1011

p
p

pp
XXX

pp
X

p
X

p
XpX

XXppX

XX

xxppppxX

ppppppxppx

ppppxppx

ppxAX

xAX

AXAAXAX

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

−
=−=−=∴

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−+
=

++−+⋅=⇒

++=

−=′⎥⎦
⎤

⎢⎣
⎡
∑ −+⎥⎦

⎤
⎢⎣
⎡
∑ −⋅′+=

⎥⎦
⎤

⎢⎣
⎡
∑ −−⎥⎦

⎤
⎢⎣
⎡
∑ −+⎥⎦

⎤
⎢⎣
⎡
∑ −⋅−+⎥⎦

⎤
⎢⎣
⎡
∑ −⋅′=

⎥⎦
⎤

⎢⎣
⎡
∑ −−⎥⎦

⎤
⎢⎣
⎡
∑ −⋅+⎥⎦

⎤
⎢⎣
⎡
∑ −⋅−=

−⋅∑+⋅=

=⋅∑+⋅=

+=

∞

=′

−′∞

=′

−′

∞

=

−∞

=

−∞

=

−∞

=′

−′

∞

=

−∞

=

−∞

=

−

−∞

=

∞

=

EE

E

EEE

EEE

EE

E

E

E

EPEPE

( )( )121 22 −+−= xxxQ



Probability-Berlin Chen 27

Independence of a Random Variable from an Event

• A random variable is independent of an event if

• If a random variable is independent of an event
and 
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An Illustrative Example

• Example 2.19. Consider two independent tosses of a fair coin.
– Let random variable      be the number of heads
– Let random variable      be 0 if the first toss is head, and 1 if the first 

toss is tail
– Let      be the event that the number of head is even
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Independence of Random Variables (1/2)

• Two random variables and are independent if

• If a random variable is independent of an random 
variable
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Independence of Random Variables (2/2)

• Random variables and are said to be conditionally 
independent, given a positive probability event , if

– Or equivalently, 

• Note here that, as in the case of events, conditional 
independence may not imply unconditional 
independence and vice versa
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An Illustrative Example (1/2)

• Figure 2.15: Example illustrating that conditional 
independence may not imply unconditional independence
– For the PMF shown, the random variables and are not 

independent
• To show       and      are not independent, we only have to find

a pair of values            of      and       that

– For example,      and      are not 
independent
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An Illustrative Example (2/2)

• To show       and      are not dependent, we only have to find 
all pair of values            of      and       that

– For example,       and        are independent, conditioned 
on the event 

X Y( )yx,
X Y

( ) ( )xpyxp XYX =

X Y
{ }3,2 ≥≤= YXA

( ) ( ) ( )
( )

( ) ( )

( )

( ) ( )

( )
3
2

20/3
20/242

3/2
20/9
20/62    ,

3
2

20/6
20/432

3
1

20/3
20/141

3/1
20/9
20/31    ,

3
1

20/6
20/231

    ,
20
9

,

,

,

,

,

==

====

==

====

=
==

==

AYX

AXAYX

AYX

AXAYX

AYX

p

pp

p

pp

AyY
AyYxXyxpA

I

II

P
PP



Probability-Berlin Chen 33

Functions of Two Independent Random Variables

• Given       and       be two independent random variables, 
let          and           be two functions of        and       , 
respectively. Show that           and           are independent.
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More Factors about Independent Random Variables (1/2)

• If       and       are independent random variables, then

– As shown by the following calculation

• Similarly, if       and       are independent random variables, 
then
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• If       and       are independent random variables, then

– As shown by the following calculation

More Factors about Independent Random Variables (2/2)
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More than Two Random Variables

• Independence of several random variables
– Three random variable       ,        and       are independent if

• Any three random variables of the form          ,           and 
are also independent 

• Variance of the sum of independent random variables
– If                          are independent random variables, then

( ) ( ) ( ) ( )zpypxpzyxp ZYXZYX =,,,,

ZYX

( )Xf ( )Xg ( )Xh

nXXX ,,, 21 K

( ) ( ) ( ) ( )nn XXXXXX varvarvarvar 2121 +++=+++ LL
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Illustrative Examples (1/3)

• Example 2.20. Variance of the Binomial. We consider 
independent coin tosses, with each toss having 

probability of coming up a head. For each i , we let     
be the Bernoulli random variable which is equal to 1 if 
the i-th toss comes up a head, and is 0 otherwise. 
– Then, is a binomial random variable.nXXXX +++= L21
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Illustrative Examples (2/3)

• Example 2.21. Mean and Variance of the Sample Mean. We wish 
to estimate the approval rating of a president, to be called B. To this 
end, we ask    persons drawn at random from the voter population, 
and we let be a random variable that encodes the response of 
the i-th person:

– Assume that          independent, and are the same random variable
(Bernoulli) with the common parameter (     for Bernoulli), which is 
unknown to us 

• are independent, and identically distributed (i.i.d.)

– If the sample mean         (is a random variable) is defined as 

n
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Illustrative Examples (3/3)

– The expectation of       will be the true mean of

– The variance of         will approximate 0 if       is large enough

• Which means that       will be a good estimate of            if 
is large enough 
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Recitation

• SECTION 2.5 Joint PMFs of Multiple Random Variables
– Problems 27, 28, 30

• SECTION 2.6 Conditioning
– Problems 33, 34, 35, 37

• SECTION 2.6 Independence
– Problems 42, 43, 45, 46


