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Experiments, Outcomes and Event 

• An experiment
– Produces exactly one out of several possible outcomes
– The set of all possible outcomes is called the sample space of 

the experiment, denoted by
– A subset of the sample space (a collection of possible outcomes)

is called an event 

• Examples of the experiment
– A single toss of a coin  (finite outcomes)
– Three tosses of two dice (finite outcomes)
– An infinite sequences of tosses of a coin (infinite outcomes)
– Throwing a dart on a square (infinite outcomes), etc.
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Probabilistic Models

• A probabilistic model is a mathematical description of an 
uncertainty situation or an experiment

• Elements of a probabilistic model
– The sample space     

• The set of all possible outcomes of an experiment
– The probability law

• Assign to a set of possible outcomes (also called an event) 
a nonnegative number          (called the probability of ) that 
encodes our knowledge or belief about the collective 
“likelihood” of the elements of
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Three Probability Axioms

• Nonnegativity
– , for every event

• Additivity
– If and are two disjoint events, then the probability of their 

union satisfies 

• Normalization
– The probability of the entire sample space        is equal to 1, that 

is, 
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Random Variables

• Given an experiment and the corresponding set of 
possible outcomes (the sample space), a random 
variable associates a particular number with each 
outcome
– This number is referred to as the (numerical) value of the 

random variable
– We can say a random variable is a real-valued function of the 

experimental outcome
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Discrete/Continuous Random Variables (1/2)

• A random variable is called discrete if its range (the set 
of values that it can take) is finite or at most countably
infinite

• A random variable is called continuous (not discrete) if 
its range (the set of values that it can take) is uncountably
infinite
– E.g., the experiment of choosing a point from the interval 

[−1, 1]
• A random variable that associates the numerical value         to

the outcome       is not discrete 
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Discrete/Continuous Random Variables (2/2)

• A discrete random variable        has an associated 
probability mass function (PMF),           , which gives 
the probability of each numerical value that the random 
variable can take

• A continuous random variable can be described in 
terms of a nonnegative function , 
called the probability density function (PDF) of , 
which satisfies

for every subset B of the real line
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Cumulative Distribution Functions (1/4)

• The cumulative distribution function (CDF) of a random 
variable is denoted by and provides the 
probability

– The CDF                 accumulates probability up to
– The CDF                 provides a unified way to describe all kinds 

of random variables mathematically 
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Cumulative Distribution Functions (2/4)

• The CDF            is monotonically non-decreasing

• The CDF            tends to 0 as               , and to 1 as

• If      is discrete, then            is a piecewise constant 
function of   

( )xFX

( ) ( )jXiXji xFxFxx ≤≤  then ,  if

( )xFX −∞→x ∞→x

X ( )xFX
x



Probability-Berlin Chen 10

Cumulative Distribution Functions (3/4)

• If      is continuous, then            is a continuous function 
of   
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Cumulative Distribution Functions (4/4)

• If is discrete and takes integer values, the PMF and 
the CDF can be obtained from each other by summing or 
differencing

• If        is continuous, the PDF and the CDF can be 
obtained from each other by integration or differentiation

– The second equality is valid for those      for which the CDF has 
a derivative (e.g., the piecewise constant random variable)
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Conditioning

• Let and be two random variables associated with 
the same experiment
– If       and        are discrete, the conditional PMF  of       is 

defined as  ( where                )

– If       and        are continuous, the conditional PDF  of     is 
defined as  ( where               )
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Independence

• Two random variables and are independent if

• If two random variables and are independent
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Expectation and Moments

• The expectation of a random variable is defined by

or

• The n-th moment of a random variable       is the 
expected value of a random variable         (or the random 
variable

or

– The 1st moment of a random variable is just its mean
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Variance

• The variance of a random variable       is the expected 
value of a random variable

• The standard derivation is another measure of 
dispersion, which is defined as  (a square root of 
variance)

– Easier to interpret,  because it has the same units as
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More Factors about Mean and Variance

• Let be a random variable and let 

• If         and       are independent random variables
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