Experiments, Outcomes, Events and Random Variables: A Revisit

Berlin Chen
Department of Computer Science \& Information Engineering
National Taiwan Normal University

Reference:

- D. P. Bertsekas, J. N. Tsitsiklis, Introduction to Probability

Experiments, Outcomes and Event

- An experiment
- Produces exactly one out of several possible outcomes
- The set of all possible outcomes is called the sample space of the experiment, denoted by
- A subset of the sample space (a collection of possible outcomes) is called an event
- Examples of the experiment
- A single toss of a coin (finite outcomes)
- Three tosses of two dice (finite outcomes)
- An infinite sequences of tosses of a coin (infinite outcomes)
- Throwing a dart on a square (infinite outcomes), etc.

Probabilistic Models

- A probabilistic model is a mathematical description of an uncertainty situation or an experiment
- Elements of a probabilistic model
- The sample space
- The set of all possible outcomes of an experiment
- The probability law
- Assign to a set A of possible outcomes (also called an event) a nonnegative number $\mathbf{P}(A)$ (called the probability of A) that encodes our knowledge or belief about the collective "likelihood" of the elements of A

Three Probability Axioms

- Nonnegativity
- $\mathbf{P}(A) \geq 0$, for every event A
- Additivity
- If A and B are two disjoint events, then the probability of their union satisfies

$$
\mathbf{P}(A \cup B)=\mathbf{P}(A)+\mathbf{P}(B)
$$

- Normalization
- The probability of the entire sample space Ω is equal to 1 , that is, $\quad \mathbf{P}(\Omega)=1$

Random Variables

- Given an experiment and the corresponding set of possible outcomes (the sample space), a random variable associates a particular number with each outcome
- This number is referred to as the (numerical) value of the random variable
- We can say a random variable is a real-valued function of the experimental outcome

Discrete/Continuous Random Variables (1/2)

- A random variable is called discrete if its range (the set of values that it can take) is finite or at most countably infinite

$$
\text { finite : }\{1,2,3,4\} \text {, countably infinite : }\{1,2, \cdots\}
$$

- A random variable is called continuous (not discrete) if its range (the set of values that it can take) is uncountably infinite
- E.g., the experiment of choosing a point a from the interval [-1, 1]
- A random variable that associates the numerical value a^{2} to the outcome a is not discrete

Discrete/Continuous Random Variables (2/2)

- A discrete random variable X has an associated probability mass function (PMF), $p_{X}(x)$, which gives the probability of each numerical value that the random variable can take
- A continuous random variable X can be described in terms of a nonnegative function $f_{X}(x) \quad\left(f_{X}(x) \geq 0\right)$, called the probability density function (PDF) of X, which satisfies

$$
\mathbf{P}(X \in B)=\int_{B} f_{X}(x) d x
$$

for every subset B of the real line

Cumulative Distribution Functions (1/4)

- The cumulative distribution function (CDF) of a random variable X is denoted by $F_{X}(x)$ and provides the probability $\mathbf{P}(X \leq x)$

$$
F_{X}(x)=\mathbf{P}(X \leq x)= \begin{cases}\sum_{k \leq x} p_{X}(k), & \text { if } X \text { is discrete } \\ \int_{-\infty}^{x} f_{X}(t) d t, & \text { if } X \text { is continuous }\end{cases}
$$

- The CDF $F_{X}(x)$ accumulates probability up to x
- The CDF $F_{X}(x)$ provides a unified way to describe all kinds of random variables mathematically

Cumulative Distribution Functions (2/4)

- The CDF $F_{X}(x)$ is monotonically non-decreasing

$$
\text { if } x_{i} \leq x_{j} \text {, then } F_{X}\left(x_{i}\right) \leq F_{X}\left(x_{j}\right)
$$

- The CDF $F_{X}(x)$ tends to 0 as $x \rightarrow-\infty$, and to 1 as $x \rightarrow \infty$
- If X is discrete, then $F_{X}(x)$ is a piecewise constant function of x

Cumulative Distribution Functions (3/4)

- If X is continuous, then $F_{X}(x)$ is a continuous function of x

$f_{X}(x)=\frac{1}{b-a}, \quad$ for $a \leq x \leq b$
$F_{x}(X \leq x)=\int_{a}^{x} f_{X}(t) d t=\int_{a}^{x} \frac{1}{b-a} d t$

$=\frac{x-a}{b-a}$

$$
\begin{aligned}
& f_{X}(x)=c(x-a), \quad \text { for } a \leq x \leq b \\
& \Rightarrow \int_{a}^{b} c(x-a) d x=\left.\frac{c}{2}(x-a)^{2}\right|_{a} ^{b}=1 \\
& \Rightarrow c=\frac{2}{(b-a)^{2}} \\
& \Rightarrow f_{X}(b)=\frac{2(b-a)}{(b-a)^{2}}=\frac{2}{b-a}
\end{aligned}
$$

$$
F_{x}(X \leq x)=\int_{a}^{x} f_{X}(t) d t=\int_{a}^{x} \frac{2(t-a)}{(b-a)^{2}} d t
$$

$$
=\frac{(x-a)^{2}}{(b-a)^{2}}
$$

Cumulative Distribution Functions (4/4)

- If X is discrete and takes integer values, the PMF and the CDF can be obtained from each other by summing or differencing

$$
\begin{aligned}
& F_{X}(k)=\mathbf{P}(X \leq k)=\sum_{i=-\infty}^{k} p_{X}(i), \\
& p_{X}(k)=\mathbf{P}(X \leq k)-\mathbf{P}(X \leq k-1)=F_{X}(k)-F_{X}(k-1)
\end{aligned}
$$

- If X is continuous, the PDF and the CDF can be obtained from each other by integration or differentiation

$$
\begin{aligned}
& F_{X}(x)=\mathbf{P}(X \leq x)=\int_{-\infty}^{x} f_{X}(t) d t, \\
& p_{X}(x)=\frac{d F_{X}(x)}{d x}
\end{aligned}
$$

- The second equality is valid for those x for which the CDF has a derivative (e.g., the piecewise constant random variable)

Conditioning

- Let X and Y be two random variables associated with the same experiment
- If X and Y are discrete, the conditional PMF of X is defined as (where $p_{Y}(y)$)

$$
p_{X \mid Y}(x \mid y)=\mathbf{P}(X=x \mid Y=y)=\frac{\mathbf{P}(\{X=x\} \cap\{Y=y\})}{\mathbf{P}(Y=y)}=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}
$$

- If X and Y are continuous, the conditional PDF of X is defined as (where $f_{Y}(y)>0$)

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}
$$

Independence

- Two random variables X and Y are independent if

$$
\begin{aligned}
& p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y), \text { for all } x, y \quad \text { (If } X \text { and } Y \text { are discrete) } \\
& f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y), \text { for all } x, y \quad \text { (If } X \text { and } Y \text { are continuous) }
\end{aligned}
$$

- If two random variables X and Y are independent

$$
\begin{array}{ll}
p_{X \mid Y}(x \mid y)=p_{X}(x), \text { for all } x, y & \text { (If } X \text { and } Y \text { are discrete) } \\
f_{X \mid Y}(x \mid y)=f_{X}(x), \text { for all } x, y & \text { (If } X \text { and } Y \text { are continuous) }
\end{array}
$$

Expectation and Moments

- The expectation of a random variable X is defined by

$$
\mathbf{E}[X]=\sum_{r} x p_{X}(x) \quad(\text { (f } X \text { is discrete })
$$

or

$$
\mathbf{E}[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x \quad \text { (If } X \text { is continuous) }
$$

- The \boldsymbol{n}-th moment of a random variable X is the expected value of a random variable X^{n} (or the random variable

$$
\mathbf{E}\left[X^{n}\right]=\sum_{x} x^{n} p_{X}(x)
$$

$$
\text { (If } X \text { is discrete) }
$$

Or

$$
\mathbf{E}\left[X^{n}\right]=\int_{-\infty}^{\infty} x^{n} f_{X}(x) d x \quad \text { (If } X \text { is continuous) }
$$

- The 1st moment of a random variable is just its mean

Variance

- The variance of a random variable X is the expected value of a random variable $(X-\mathbf{E}(X))^{2}$

$$
\begin{aligned}
\operatorname{var}(X) & =\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right] \\
& =\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}
\end{aligned}
$$

- The standard derivation is another measure of dispersion, which is defined as (a square root of variance)

$$
\sigma_{X}=\sqrt{\operatorname{var}(X)}
$$

- Easier to interpret, because it has the same units as X

More Factors about Mean and Variance

- Let X be a random variable and let $Y=a X+b$

$$
\begin{aligned}
& \mathbf{E}[Y]=a \mathbf{E}[X]+b \\
& \operatorname{var}(Y)=a^{2} \operatorname{var}(X)
\end{aligned}
$$

- If X and Y are independent random variables

$$
\begin{aligned}
& \mathbf{E}[X Y]=\mathbf{E}[X] \mathbf{E}[Y] \\
& \operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)
\end{aligned}
$$

$$
\mathbf{E}[g(X) h(Y)]=\mathbf{E}[g(X)] \mathbf{E}[h(Y)] \underset{\text { of } X \text { and } Y, \text { respectively }}{g \text { and } h \text { are functions }}
$$

