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Conditioning PDF Given an Event (1/3)

• The conditional PDF of a continuous random variable     , 
given an event
– If       cannot be described in terms of        , the conditional PDF 

is defined as a nonnegative function                    satisfying

• Normalization property
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Conditioning PDF Given an Event (2/3)

– If       can be described in terms of       (     is a subset of the real 
line with                         ), the conditional PDF is defined as a 
nonnegative function                    satisfying

• The conditional PDF is zero outside the 
conditioning event

and for any subset 

– Normalization Property
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Conditioning PDF Given an Event (3/3)

• If are disjoint events with for 
each , that form a partition of the sample space, then

– Verification of the above total probability theorem
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An Illustrative Example

• Example 3.9. The exponential random variable is 
memoryless.
– The time T until a new light bulb burns out is exponential 

distribution. John turns the light on, leave the room, and when he 
returns, t time units later, find that the light bulb is still on, which 
corresponds to the event A={T>t}   

– Let X be the additional time until the light bulb burns out. What is 
the conditional PDF of X given A ?
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Conditional Expectation Given an Event

• The conditional expectation of a continuous random 
variable     , given an event        (             ), is defined by 

– The conditional expectation of a function              also has the 
form

– Total Expectation Theorem

and

• Where                     are disjoint events with for 
each , that form a partition of the sample space
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Illustrative Examples (1/2)
• Example 3.10. Mean and Variance of a Piecewise Constant PDF. 

Suppose that the random variable has the piecewise constant 
PDF
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Illustrative Examples (2/2)

• Example 3.11. The metro train arrives at the station near your home 
every quarter hour starting at 6:00 AM. You walk into the station 
every morning between 7:10 and 7:30 AM, with the time in this 
interval being a uniform random variable. What is the PDF of the 
time you have to wait for the first train to arrive?
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Multiple Continuous Random Variables (1/2)

• Two continuous random variables      and      associated 
with a common experiment are jointly continuous and can 
be described in terms of a joint PDF          satisfying

– is a nonnegative function

– Normalization Probability

• Similarly,                    can be viewed as the “probability per 
unit area” in the vicinity of

– Where      is a small positive number       
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Multiple Continuous Random Variables (2/2)

• Marginal Probability

– We have already defined that

• We thus have the marginal PDF
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An Illustrative Example

• Example 3.13. Two-Dimensional Uniform PDF. We are told that 
the joint PDF of the random variables and is a constant 
on an area          and is zero outside. Find the value of and the 
marginal PDFs of and .
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Conditioning one Random Variable on Another 

• Two continuous random variables      and     have a joint 
PDF. For any      with               , the conditional PDF of   
given that            is defined by

– Normalization Property 

• The marginal, joint and conditional PDFs are related to 
each other by the following formulas
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Illustrative Examples (1/2)

• Notice that the conditional PDF                has the same 
shape as the joint PDF                , because the 
normalizing factor           does not depend on

Figure 3.17: Visualization of the conditional PDF                 . 
Let ,        have a joint PDF which is uniform on the set . For 
each fixed , we consider the joint PDF along the slice 
and normalize it so that it integrates to 1
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Illustrative Examples (2/2)

• Example 3.15. Circular Uniform PDF. Ben throws a dart at a 
circular target of radius . We assume that he always hits the target, 
and that all points of impact             are equally likely, so that the 
joint PDF                 of the random variables and    is uniform
– What is the marginal PDF 
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Expectation of a Function of Random Variables

• If and are jointly continuous random variables, 
and is some function, then is also a 
random variable (can be continuous or discrete)
– The expectation of        can be calculated by

– If      is a linear function of       and      , e.g.,          , then 

• Where         and        are scalars
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Conditional Expectation

• The properties of unconditional expectation carry though, 
with the obvious modifications, to conditional expectation
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Total Probability/Expectation Theorems

• Total Probability Theorem
– For any event      and a continuous random variable 

• Total Expectation Theorem
– For any continuous random variables      and 
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Independence

• Two continuous random variables      and        are 
independent if

– Since that

• We  therefore have

• Or
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More Factors about Independence (1/2)

• If two continuous random variables      and        are 
independent, then
– Any two events of the forms                 and                 are 

independent

– The converse statement is also true (See the end-of-chapter 
problem 28)
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More Factors about Independence (2/2)

• If two continuous random variables      and        are 
independent, then
–

–

– The random variables          and          are independent for any 
functions     and             

• Therefore,
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Joint CDFs

• If      and     are two (either continuous or discrete) 
random variables, their joint cumulative distribution 
function (CDF) is defined by

– If      and      further have a joint PDF             , then

And

If               can be differentiated at the point
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An Illustrative Example

• Example 3.20. Verify that if X and Y are described by a 
uniform PDF on the unit square, then the joint CDF is 
given by
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Recall: the Discrete Bayes’ Rule

• Let                    be disjoint events that form a partition of 
the sample space, and assume that             , for all     . 
Then, for any event       such that               we have
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Inference and the Continuous Bayes’ Rule (1/2)

• As we have a model of an underlying but unobserved 
phenomenon, represented by a random variable with 
PDF      , and we make a noisy measurement      , which 
is modeled in terms of a conditional PDF         . Once the 
experimental value of is measured, what information 
does this provide on the unknown value of    ?
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Inference and the Continuous Bayes’ Rule (2/2)

• If the unobserved phenomenon is inherently discrete
– Let      is a discrete random variable of the form              that 

represents the different discrete probabilities for the unobserved 
phenomenon of interest, and       be the PMF of  
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Illustrative Examples (1/2)
• Example 3.18. A lightbulb produced by the General Illumination 

Company is known to have an exponentially distributed lifetime . 
However, the company has been experiencing quality control 
problems. On any given day, the parameter of the PDF of 
is actually a random variable, uniformly distributed in the interval

. 
– If we test a lightbulb and record its lifetime (           ),  what can 

we say about the underlying parameter ?
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Illustrative Examples (2/2)

• Example 3.19. Signal Detection. A binary signal is transmitted,  
and we are given that and                             . 
– The received signal is , where       normal noise with 

zero mean and unit variance , independent of .
– What is the probability that , as a function of the observed value 

of ?

( ) pS == 1P
S

( ) pS −=−= 11P
NSY += N

S

( ) ( )  y--sesyf sy
SY ∞≤≤∞== −−   and ,1 and 1for ,

2
1 2/2

σπ
Conditioned on            ,      has a normal distribution with mean      and unit varianceYsS = s

1=S
Yy

( )
( ) ( )

( )
( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( )

( )
( ) ( ) ( ) ( ) yy

y

yyyy

yy

yy

y

SYSSYS

SYS

Y

SYS

eppe
pe

epepee

pee

epep

ep

yfpyfp

yfp

yf

yfp
yYS

−−+−+−

+−

+−−−

−−

−+
=

−⋅+⋅

⋅
=

−+
=

−−+
====

11
                      

2
11

2
1

2
1

                       

1111

1111
1

2/12/1

2/1

2/12/1

2/1

22

2

22

2

ππ

π

P



Probability-Berlin Chen 28

Recitation

• SECTION 3.4 Conditioning on an Event
– Problems 14, 17, 18

• SECTION 3.5 Multiple Continuous Random Variables
– Problems 19, 24, 25, 26, 28


