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Sum of a Random Number of Independent 
Random Variables (1/4)Random Variables (1/4)
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• If we know thatIf we know that
– is a random variable taking positive integer values
– are independent, identically distributed (i.i.d.) 
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random variables (with common mean      and variance        )
• A subset of           (                          ) are independent as well sX i ' NXXX ,,, 21 L

μ 2σ

• What are the formulas for the mean, variance, and the 
transform of ?Y
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Sum of a Random Number of Independent 
Random Variables (2/4)Random Variables (2/4)

• If we fix some number    , the random variable                     n ,
is independent of random variablenXXX +++ L21 N
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– can be viewed as a function of random variable
• is a random variable  
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[ ]• The mean of               (i.e.         ) can be calculated by using 
the law of iterated expectations
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Sum of a Random Number of Independent 
Random Variables (3/4)Random Variables (3/4)

• Similarly,                        can be expressed as( )nNY =vary, p( )
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– can be viewed as a function of random variable
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• is a random variable  
– The variance of        can be calculated using the law of total 
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Sum of a Random Number of Independent 
Random Variables (4/4)Random Variables (4/4)

• Similarly,                    can be expressed as [ ]nNe sY =Ey, p
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– can be viewed as a function of random variable  
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• is a random variable  
• The mean of                 (i.e. the transform of       ,                 ) 
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Properties of the Sum of a Random Number of 
Independent Random VariablesIndependent Random Variables
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Illustrative Examples (1/5)
• Example 4.21. A remote village has three gas stations, 

and each one of them is open on any given day with a d eac o e o t e s ope o a y g e day t
probability 1/2, independently of the others. The amount 
of gas available in each gas station is unknown and is 
uniformly distributed between 0 and 1000 gallons.
– We wish to characterize the distribution (    ) of the total amount 

of gas available at the gas stations that are open
Y

of gas available at the gas stations that are open
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Illustrative Examples (2/5)

• Example 4.22. Sum of a Geometric Number of 
Independent Exponential Random Variables. depe de t po e t a a do a ab es
– Jane visits a number of bookstores, looking for Great 

Expectations. Any given bookstore carries the book with 
probability independently of the others In a typicalpprobability , independently of the others. In a typical 
bookstore visited, Jane spends a random amount of time, 
exponentially distributed with parameter , until she either finds 

p

λ
the book or she decides that the bookstore does not carry it. 
Assuming that Jane will keep visiting bookstores until she buys 
the book and that the time spent in each is independent of 
everything else

– We wish to determine the mean, variance, and PDF of the total 
time spent in bookstorestime spent in bookstores.
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Illustrative Examples (3/5)
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Illustrative Examples (4/5)
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Illustrative Examples (5/5)

• Example 4.23. Sum of a Geometric Number of 
Independent Geometric Random VariablesIndependent Geometric Random Variables.
– This example is a discrete counterpart of the preceding one.
– We let be geometrically distributed with parameter . WepNWe let be geometrically distributed with parameter . We 

also let each random variable be geometrically distributed 
with parameter . We assume that all of these random 
variables are independent

p
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variables are independent.
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Covariance (1/2)
• The covariance of two random variables     and      is 

denoted by
X Y

y

( ) [ ]( ) [ ]( )[ ]YYXXYX EEE −−=,cov

– An alternative formula is

( ) [ ] [ ] [ ]YXXYYX EEE=cov

• Note that if      and      are independent

( ) [ ] [ ] [ ]YXXYYX EEE −=,cov

X Y

– Therefore

[ ] [ ] [ ]YXXY EEE =

• Note still that knowing                       does not indicate 
( ) 0,cov =YX

( ) 0,cov =YX
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Covariance (2/2)

• Example 4.24. The pair of random variables (X, Y ) takes the 
values (1, 0), (0, 1), (−1, 0), and (0,−1), each with probability ( , ), ( , ), ( , ), ( , ), p y
¼ Thus, the marginal pmfs of X and Y are symmetric around 
0, and E[X] = E[Y ] = 0

F th f ll ibl l i ( ) ith i– Furthermore, for all possible value pairs (x, y), either x or y is 
equal to 0, which implies that XY = 0 and E[XY ] = 0. Therefore, 
cov(X, Y ) = E[(X − E[X] )(Y − E[Y ])] = E[XY ] = 0, and 
X and Y are uncorrelated

– However, X and Y are not independent since, for example, a 
nonzero value of X fixes the value of Y to zerononzero value of X fixes the value of Y to zero
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Correlation (1/2)

• Also denoted as “Correlation Coefficient”
• The correlation coefficient of two random variables     

and     is defined as
X

Y
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– It can be shown that 
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• : positively correlated

• : negatively correlated

0>ρ

0<ρ
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• : uncorrelated      0=ρ ( )( )  0,cov  =⇒ YX



Correlation (2/2)

• Figure 4.7: Examples of positively (b) and negatively (c) g p p y ( ) g y ( )
correlated random variables

( ) 0,cov <YX ( ) 0,cov >YX
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