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Random Variables

• Given an experiment and the corresponding set of p p g
possible outcomes (the sample space), a random 
variable associates a particular number with each 

toutcome
– This number is referred to as the (numerical) value of the 

random variablerandom variable
– We can say a random variable is a real-valued function of the 

experimental outcome

ww
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xwX →:



Random Variables: Example

• An experiment consists of two rolls of a 4-sided die, and 
th d i bl i th i f th t llthe random variable is the maximum of the two rolls
– If the outcome of the experiment is (4, 2), the value of this 

random variable is 4random variable is 4
– If the outcome of the experiment is (3, 3), the value of this 

random variable is 3
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– Can be one-to-one or many-to-one mapping



Main Concepts Related to Random Variables

• For a probabilistic model of an experiment
– A random variable is a real-valued function of the outcome of the 

experiment
xwX →:

– A function of a random variable defines another random variable
( )XgY =

– We can associate with each random variable certain  “averages” of 
interest such the mean and the variance

– A random variable can be conditioned on an event or on another 
random variable

– There is a notion of independence of a random variable from an 
event or from another random variable
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event or from another random variable



Discrete/Continuous Random Variables

• A random variable is called discrete if its range (the set g (
of values that it can take) is finite or at most countably 
infinite

{ } { }i fi iblfi i

• A random variable is called continuous (not discrete) if

{ } { }L,2,1:infinitecountably ,4,3,2,1:finite

• A random variable is called continuous (not discrete) if 
its range (the set of values that it can take) is uncountably 
infinite
– E.g., the experiment of choosing a point from the interval 

[−1, 1]
A d i bl th t i t th i l l t

a

2a• A random variable that associates the numerical value         to 
the outcome       is not discrete a

a
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• In this chapter, we focus exclusively on discrete random 
variables



Concepts Related to Discrete Random Variables

• For a probabilistic model of an experimentp p
– A discrete random variable is a real-valued function of the 

outcome of the experiment that can take a finite or countably 
infinite number of valuesinfinite number of values

– A (discrete) random variable has an associated probability ( ) p y
mass function (PMF), which gives the probability of each 
numerical value that the random variable can take

– A function of a random variable defines another random 
variable, whose PMF can be obtained from the PMF of the 
original random variable
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Probability Mass Functions

• A (discrete) random variable       is characterized through 
the probabilities of the values that it can take which is

X
the probabilities of the values that it can take, which is 
captured by the probability mass function (PMF) of         , 
denoted

X
( )xpX ( )pX
( ) { }( ) ( ) ( ) or   xXxpxXxp XX ==== PP

– The sum of probabilities of all outcomes that give rise to a value 
of        equal to   

U h t ( ) d t d i bl

X x

– Upper case characters (e.g.,      ) denote random variables, 
while lower case ones (e.g.,      )  denote the numerical values 
of a random variable

X
x

• The summation of the outputs of the PMF function of a 
random variable over all it possible numerical values is 

( )
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equal to one ( ) 1=∑
x

X xp are disjoint and form 
a partition of the sample space 
{ } sxX '=



Calculation of the PMF

• For each possible value of a random variable :
1 C ll t ll th ibl t th t i i t th t

Xx
{ }X1. Collect all the possible outcomes that give rise to the event 

2. Add their probabilities to obtain
{ }xX =

( )xpX

• An example: the PMF          of the random variable = 
maximum roll in two independent rolls of a fair 4-sided 

( )xpX X
p

die
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Bernoulli Random Variable

• A Bernoulli random variable      takes  two values 1 and X
0 with probabilities      and           , respectively
– PMF

p p−1

( )
⎩
⎨
⎧

=−
=

=
0 if         ,1
1 if                ,

xp
xp

xpX

• The Bernoulli random variable is often used to model

⎩ ,p

The Bernoulli random variable is often used to model 
generic probabilistic situations with just two outcomes

1. The toss of a coin (outcomes: head and tail)
2. A trial (outcomes: success and failure) 
3. the state of a telephone (outcomes: free and busy)
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…



Binomial Random Variable (1/2)

• A binomial random variable      has parameters       andX pnp
– PMF

( ) ( ) ( ) nkpp
n

kXkp knk 101 =−⎟⎟
⎞

⎜⎜
⎛

=== −P

• The Bernoulli random variable can be used to model e g

( ) ( ) ( ) ,n,,kpp
k

kXkpX K10   ,1 =−⎟⎟
⎠

⎜⎜
⎝

=== P

The Bernoulli random variable can be used to model, e.g.
1. The number of heads in n independent tosses of a coin 

(outcomes: 1, 2, …,n), each toss has probability       to be a head p
2. The number of successes in n independent trials (outcomes: 1, 

2, …,n ), each trial has probability       to be successfulp
⎞⎛n n• Normalization Property

⎞⎛nn n
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Binomial Random Variable (2/2)
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Geometric Random Variable

• A geometric random variable      has parameterX ( )10  << ppg p
– PMF

( )

( ) ( ) ,,21   ,1 1 K,kppkp k
X =−= −

• The geometric random variable can be used to model, 
e g

( ) ( ) ,,, ,pppX

e.g.
– The number of independent tosses of a coin needed for a head 

to come up for the first time, each toss has probability       to be a pp , p y
head 

– The number of independent trials until (and including) the first 
“success” each trial has probability to be successfulpsuccess , each trial has probability       to be successful

• Normalization Property
p

( ) ( ) ( ) 11 ∞∞∞ kk
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Poisson Random Variable (1/2)

• A Poisson random variable      has parameterX λp
– PMF

( ) 210kekp
k

X == − λλ

The Poisson random variable can be used to model e g

( ) ,,21,0   ,
!

K,k
k

ekpX ==

• The Poisson random variable can be used to model, e.g.
– The number of typos in a book
– The numbers of cars involved in an accidents in a city on a givenThe numbers of cars involved in an accidents in a city on a given 

day

• Normalization Property McLaurin series• Normalization Property

( ) 11
32
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McLaurin series
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Poisson Random Variable (2/2)
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Relationship between Binomial and Poisson

• The Poisson PMF with parameter       is a good 
approximation for a binomial PMF with parameters

λ
napproximation for a binomial PMF with parameters       

and      , provided that               ,       is very large and      
is very small

n
p n pnpλ =

is very small
( ) knk

n
pp

k
n −

∞→
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
1lim

( ) ( )

( ) ( ) knk

knk

n

λλknnn

n
λpnpλpp

kkn
n

−

−

∞→

⎟
⎞

⎜
⎛

⎟
⎞

⎜
⎛+−−

=⇒=−
−

=

11

)(              1
!!

!lim

L

Q

( ) ( )

( ) ( ) knk

n

λknnnλ

n
λ

n
λ

k
knnn

−

∞→

⎟
⎞

⎜
⎛ −

+−−
=

⎟
⎠

⎞
⎜
⎝

⎛ −⎟
⎠

⎞
⎜
⎝

⎛+
=

111lim

 1
!

11lim

L

x
nknk

kn

exλknnn
k
λ

nnk
−

∞→

=⎟
⎠

⎞
⎜
⎝

⎛ +⎟
⎠

⎞
⎜
⎝

⎛ −⎟
⎠

⎞
⎜
⎝

⎛ +−
⎟
⎠

⎞
⎜
⎝

⎛ −
⎟
⎠

⎞
⎜
⎝

⎛=

⎟
⎠

⎜
⎝
−=

)1lim(         111
!

lim

 1
!

lim

QL

Probability-Berlin Chen 15

λ
k

n

nn

e
k
λ

nnnnnk

−

∞→

∞→∞→

=

⎠⎝⎠⎝⎠⎝⎠⎝⎠⎝

!
lim

!



Functions of Random Variables (1/2)

• Given a random variable     , other random variables can 
be generated by applying various transformations on

X
Xbe generated by applying various transformations on 

– Linear
X

( ) baXXgY +==
Daily temperatureDaily temperature

– Nonlinear  ( ) XXgY log==

Daily temperature 
in degree Celsius

Daily temperature 
in degree Fahrenheit

( )xpX ( )ypY

Sample Space

Ω

( )xpX ( )ypY

Ω
x y
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one-to-one
or many to one

one-to-one
or many to one



Functions of Random Variables (2/2)

• That is, if      is an function of      (              ) , then      is XY Y( )XgY =, ( ) ,
also a random variable

( )

( )g

– If      is discrete  with PMF                , then        is also discrete 
and its PMF can be calculated using  
X ( )xp X Y

( ) ( )
( ){ }
∑=

= yxgx
XY xpyp

( ){ }
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Functions of Random Variables: An Example
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Recitation

• SECTION 2.2 Probability Mass Functionsy
– Problems 3, 8, 10

• SECTION 2.3 Functions of Random Variables
– Problems 13, 14
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