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Motivation (1/2)

• An Illustrative Example: Suppose that you spin the p pp y p
wheel       times, and that       is the number of times that 
the outcome (money) is          (there are     distinct 

t )

ikk
im n

outcomes,                       )  

• What is the amount of money that you “expect” to get 

nmmm ,,, 21 K

y y p g
“per spin”?
– The total amount received is

The amount received per spin is

nnkmkmkm +++ L2211

– The amount received per spin is

kmkmkmM nn+++
=

L2211

Probability-Berlin Chen 2

k
M



Motivation (2/2)

– If the number of spins        is very large, and if we are willing to k
interpret probabilities as relative frequencies, it is reasonable to 
anticipate that          comes up a fraction of times that is roughly 
equal to

im
ipq

k
kp i

i ≈

i

– Therefore, the amount received per spin can be also 
represented asrepresented as

nn

k
kmkmkmM +++

=
L2211

nn pmpmpm
k

+++= L2211     
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Expectation

• The expected value (also called the expectation or the p ( p
mean) of a random variable , with PMF , is 
defined by

X Xp

[ ] ( )

Can be interpreted as the center of gravity of the PMF

[ ] ( )∑=
x

X xxpXE

– Can be interpreted as the center of gravity of the PMF
(Or a weighted average, in proportion to probabilities, of the 
possible values of        )X

• The expectation is well-defined if  

( )∑ ( ) ∞<∑
x

X xpx

( )
( ) ( ) =∑ − X xpcx 0    
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– That is,                        converges to a finite value ( )∑
x

X xxp ( )∑ ⋅=⇒
x

X

x

xpxc



Moments

• The n-th moment of a random variable       is the X
expected value of a random variable         (or the random 
variable        ,                           )

nX
( ) nXXgY ==Y

[ ] ( )∑= X
nn xpxXE

– The 1st moment of a random variable        is just its mean (or 
expectation)

[ ] ( )∑
x

Xp

X
expectation) 

nX is termed as X raised to the power of n (or the nth power),
or the nth power of X
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or the nth power of X. 



Expectations for Functions of Random Variables

• Let be a random variable with PMF  , and let 
b f ti f Th th t d l f th

X Xp ( )Xg
Xbe a function of       . Then, the expected value of the 

random variable            is given by( )Xg
X

1x 2x 3x 4x 5x 6x 7x

( )[ ] ( ) ( )∑=
x

X xpxgXgE

• To verify the above rule 
– Let                       , and therefore ( )XgY = ( ) ( )

( ){ }
∑= XY xpyp

1y 2y 3y 4y

,( )g ( ){ }= yxgx

( )[ ] [ ] ( )∑== Y
y

ypyYXg EE

( )
( ){ }

( ) ( )
( ){ }

∑ ∑=∑∑=
== y yxgx

X
yxgx

X
y

y

xpxgxpy
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Variance

• The variance of a random variable       is the expected X p
value of a random variable ( )( )2XX E−

( ) [ ]( )[ ]= XXX 2var EE( ) [ ]( )[ ]
[ ]( ) ( )∑ −=

−=

x
X xpXx

XXX
2            

var

E

EE

– The variance is always nonnegative  (why?)
– The variance provides a measure of dispersion of         around its 

mean

x

X
mean 

– The standard derivation is another measure of dispersion, which 
is defined as  (a square root of variance)

E i t i t t b it h th it

( )XX var=σ

X
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• Easier to interpret,  because it has the same units as  X



An Example

• Example 2.3: For the random variable with PMFXp

( )
⎩
⎨
⎧

=
otherwise     ,0

4], [-4, range in theinteger an  is x if   ,9/1
xpX

Discrete Uniform Random Variable⎩ ,

[ ] ( ) 0
9
1 4

4
=∑=∑=

−=x
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Discrete Uniform Random Variable

[ ]( ) 22
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let  Or, 22

⎪
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( )
otherwise ,0
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⎪
⎩

⎪
⎨ ==⇒ Z zp
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Properties of Mean and Variance (1/2)

• Let be a random variable and letX

baXY += a linear function of X

where      and       are given scalarsa b

Then, [ ] [ ]
( ) ( )

bXaY
2

+= EE

( ) ( )XaY varvar 2=

• If             is a linear function of         , then X( )Xg
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Properties of Mean and Variance (2/2)

[ ] ( ) ( ) ( ) ( ) [ ] bXbbY +⎥
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Variance in Terms of Moments Expression

• We can also express variance of a random variable       Xp
as 

( ) [ ] [ ]( )22var XXX EE −=( ) [ ] [ ]( )var XXX EE
( ) [ ]( ) ( )2var xpXxX X
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An Example 

• Example 2.4: Average Speech Versus Average Time. 
If the weather is good (with probability 0.6), Alice walks the 2 miles 
to class at a speed of V=5 miles per hour, and otherwise rides her 
motorcycle at a speech of V=30 miles per hour. What is the y p p
expected time E[T] to get to the class ?

( ) ⎨
⎧ = 5 if             ,6.0 v

153040560][VE( )
⎩
⎨ =

=
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vpV

( ) 2 422
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Mean and Variance of the Bernoulli

• Example 2.5. Consider the experiment of tossing a p p g
biased coin, which comes up a head with probability 
and a tail with probability                , and the Bernoulli

d i bl ith PMF

p
p−1

random variable with PMF
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Mean and Variance of the Discrete Uniform

• Consider a discrete uniform random variable with a 
nonzero PMF in the range [a, b]
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Mean and Variance of the Poisson

• Consider a Poisson random variable with a PMF
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Mean and Variance of the Binomial

• Consider a binomial random variable with a PMF
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Mean and Variance of the Geometric
• Consider a geometric random variable with a PMF
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An Example
• Example 2.3: The Quiz Problem. Consider a game where a 

person is given two questions and must decide which question to 
fi tanswer first

– Question 1 will be answered correctly with probability 0.8, and the 
person will then receive as prize $100

– While question 2 will be answered correctly with probability 0.5, and the 
person will then receive as prize $200

– If the first question attempted is answered incorrectly, the quiz q p y, q
terminates

– Which question should be answered first to maximize the expected 
value of the total prize money received?value of the total prize money received?
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Recitation

• SECTION 2.4 Expectation, Mean, Variancep , ,
– Problems 18, 19, 21, 24
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