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Motivation

• Given an experiment, e.g., a medical diagnosisp , g , g
– The results of blood test is modeled as numerical values of a 

random variable  
Th lt f ti i i (MRI 核磁共振攝影)

X
– The results of magnetic resonance imaging (MRI,核磁共振攝影) 

is also modeled as numerical values of a random variable  Y

We would like to consider probabilities of events involving 
simultaneously the numerical values of these two variables and 
to investigate their mutual couplingsto investigate their mutual couplings 

{ } { }( )?yYxX == IP { } { }y
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Joint PMF of Random Variables

• Let and be random variables associated with X Y
the same experiment (also the same sample space and 
probability laws), the joint PMF of and is defined 
b

X Y
by

( ) { } { }( ) ( )yYxXyYxXyxp ====== PP I

• if event is the set of all pairs that have a

( ) { } { }( ) ( )yYxXyYxXyxp YX ====== ,,, PP I

( )yxA• if event is the set of all pairs             that have a 
certain property, then the probability of       can be 
calculated by 

( )yx ,
A
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– Namely,      can be specified in terms of       and A X Y



Marginal PMFs of Random Variables (1/2)

• The PMFs of random variables       and        can be X Y
calculated from their joint PMF

( ) ( ) ( ) ( )∑∑( ) ( ) ( ) ( )∑=∑=
x

YXYy
YXX yxpypyxpxp ,        ,, ,,

( ) ( )– and              are often referred to as the marginal PMFs

Th b i b ifi d b

( )xp X ( )ypY

– The above two equations can be verified by 

( ) ( )==X xXxp P
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y

yYxX ,             P
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Marginal PMFs of Random Variables (2/2)

• Tabular Method: Given the joint PMF of random 
variables and is specified in a two dimensionalX Yvariables         and        is specified in a two-dimensional 
table, the marginal PMF of or at a given value 
is obtained by adding the table entries along a 

X Y
X Y

y g g
corresponding column or row, respectively
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Functions of Multiple Random Variables (1/2)

• A function                     of the random variables       and     X Y( )YXgZ ,=
defines another random variable. Its PMF can be 
calculated from the joint PMF

( )g ,

yXp ,

( ) ( )
( ) ( ){ }

∑=
=zyxgyx

YXZ yxpzp
,,

, ,

• The expectation for a function of several random 

( ) ( ){ }zyxgyx ,,

variables
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y
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x
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Functions of Multiple Random Variables (2/2)

• If the function of several random variables is linear and 
( )of the form ( ) cbYaXYXgZ ++== ,

[ ] [ ] [ ][ ] [ ] [ ] cYbXaZ ++= EEE

– How can we verify the above equation ?  
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An Illustrative Example

• Given the random variables     and      whose joint is 
given in the following figure and a new random

YX
given in the following figure, and a new random 
variable     is defined by                   , calculate
– Method 1: 
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– Method 2:
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More than Two Random Variables (1/2)

• The joint PMF of three random variables      , and YX Zj ,
is defined in analogy with the above as

( ) ( )zZyYxXzyxp ZYX ==== P

– The corresponding marginal PMFs

( ) ( )zZyYxXzyxp ZYX ==== ,,,,,, P

( ) ( )∑=
z

ZYXYX zyxpyxp ,,, ,,,

and

z
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y z

ZYXX zyxpxp ,,,,
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More than Two Random Variables (2/2)

• The expectation for the function of random variables      , Xp ,
andY Z

( )[ ] ( ) ( )∑∑∑= ZYX zyxpzyxgZYXg ,,,,,,E

– If the function is linear and has the form

( )[ ] ( ) ( )∑∑∑
x y z

ZYX ypygg ,,,,,, ,,

dcZbYaX +++

[ ] [ ] [ ] [ ] dZcEYbEXaEdcZbYaX +++=+++E

• A generalization to more than three random variables  
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An Illustrative Example

• Example 2.10. Mean of the Binomial. Your probability 
class has 300 students and each student has probabilityclass has 300 students and each student has probability 
1/3 of getting an A, independently of any other student.
– What is the mean of , the number of students that get an A?XWhat is the mean of , the number of students that get an A?

Aan  getsstudent th   theif   ,1
Let 

⎨
⎧

=
i

X

X

1/3mean common  with  variablesrandom bernoulli are ,,,
otherwise  ,0

30021 =⇒
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Conditioning 

• Recall that conditional probability provides us with a way p y p y
to reason about the outcome of an experiment, based on 
partial information

• In the same spirit, we can define conditional PMFs, 
fgiven the occurrence of a certain event or given the 

value of another random variable
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Conditioning a Random Variable on an Event (1/2)

• The conditional PMF of a random variable , 
diti d ti l t ith i

X
A ( ) 0APconditioned on a particular event with , is 

defined by (where       and        are associated with the same experiment)

A ( ) 0>AP

( ) ( ) { }( )AxXP I=
X A

• Normalization Property

( ) ( ) { }( )
( )A

AxXAxXxP AX P
PP I=

===

p y
– Note that the events are disjoint for different 

values of      , their union is 
{ }( )AxX I=P

X A

( ) { }( )∑ ==
x

AxXA IPP

{ }( )I

Total probability theorem
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Conditioning a Random Variable on an Event (2/2)

• A graphical illustration g p

( )P I bt i d b ddi th b biliti f th t
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( )xP AX Is obtained by adding the probabilities of the outcomes
that give rise to             and be long to the conditioning eventxX = A



Illustrative Examples (1/2)

• Example 2.12. Let       be the roll of a fair six-sided die Xp
and      be the event that the roll is an even number A

( ) ( )
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Illustrative Examples (2/2)

• Example 2.14. A student will take a certain test 
repeatedly, up to a maximum of times, each time withnrepeatedly, up to a maximum of      times, each time with 
a probability      of passing, independently of the number 
of previous attempts.

p

– What is the PMF of the number of attempts given that the 
student passes the test ?

parameterwithvariablerandomgeometricabeLet pX
( )xpX

up comes successfist           
  theuntil attempts ofnumber   thengrepresenti          
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p
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Conditioning a Random Variable on Another (1/2)

• Let and be two random variables associated with 
th i t Th diti l PMF f

X Y
Xthe same experiment. The conditional PMF           of        

given      is defined as
X

Y
( ) ( ) ( )yYxXYX , ==PP

YXp

( ) ( ) ( )
( )

( )yxp
yY
yyYxXyxp

YX

YX

,
=

====
P

P

N li ti P t

( )
( )yp
yp

Y

YX ,
                 ,=

( ) 1=∑ yxp

yY valuesomeon fixedis

• Normalization Property

Th diti l PMF i ft i t f th

( ) 1=∑
x

YX yxp

• The conditional PMF is often convenient for the 
calculation of the joint PMF

multiplication (chain) rule
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Conditioning a Random Variable on Another (2/2)

• The conditional PMF can also be used to calculate the 
marginal PMFs

( ) ( ) ( ) ( )∑=∑= YXYYXX yxpypyxpxp ,

• Visualization of the conditional PMF

( ) ( ) ( ) ( )∑∑
y

YXY
y

YXX ypypypp ,,

YXp

( ) ( )yxp( ) ( )
( )

( )
( )∑

=

=

YX

Y

YX
YX

yxp
yp
yxp

yxp

,
          

,
 

,

,

( )∑
x

YX yxp ,,

Probability-Berlin Chen 18



An Illustrative Example (1/2)

• Example 2.14. Professor May B. Right often has her 
facts wrong and answers each of her students’facts wrong, and answers each of her students  
questions incorrectly with probability 1/4, independently 
of other questions. In each lecture May is asked 0, 1, or 
2 questions with equal probability 1/3. 
– What is the probability that she gives at least one wrong answer ?

 wronganswered questions ofnumber   thebe       
asked, questions ofnumber   thebe Let 
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An Illustrative Example (2/2)

• Calculation of the joint PMF                   in Example 2.14.( )yxp YX ,j p( )yp YX ,,
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Conditional Expectation

• Recall that a conditional PMF can be thought of as an g
ordinary PMF over a new universe determined by the 
conditioning event

• In the same spirit, a conditional expectation is the same 
fas an ordinary expectation, except that it refers to the 

new universe, and all probabilities and PMFs are 
replaced by their conditional counterpartsreplaced by their conditional counterparts
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Summary of Facts About Conditional Expectations

• Let and be two random variables associated with 
the same experiment

X Y
the same experiment
– The conditional expectation of given an event 

with , is defined by
A

( ) 0>AP
X

[ ] ( )xxpAX
x

AX∑=E

• For a function , it is given by( )Xg

( )[ ] ( ) ( )xpxgAXg
x

AX∑=E
x
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Total Expectation Theorem (1/2)

• The conditional expectation of given a value of X Yyp g
is defined by

y

[ ] ( )yxxpyYX YX∑==E

– We have

[ ] ( )yxxpyYX
x

YX∑E

[ ] ( ) ( )yxxpypX
x

YX
y

Y ∑∑=E

• Let be disjoint events that form a partition of the 
sample space and assume that for all

nAA ,,1 L

( ) 0>AP isample space, and assume that                  , for all . 
Then, 

( ) 0>iAP i

[ ] ( ) [ ]n
AXAX EPE ∑=
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Total Expectation Theorem (2/2)

• Let be disjoint events that form a partition of an nAA ,,1 L j p
event       , and assume that                  , for all . Then,

n1

B ( ) 0>BAP iI i

[ ] ( ) [ ]n[ ] ( ) [ ]BAXBABX i
n

i
i IEPE ∑=

=1

• Verification of total expectation theorem
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An Illustrative Example (1/2)

• Example 2.17. Mean and Variance of the Geometric 
Random VariableRandom Variable
– A geometric random variable      has PMFX ( ) ( ) K,21    ,1 1 ,xppxp x
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An Illustrative Example (2/2)
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Independence of a Random Variable from an Event

• A random variable is independent of an event ifX Ap

( ) ( ) ( ) xAxXAxX  allfor    , and PPP ===

– Require two events               and         be independent for all               

• If a random variable is independent of an eventX A
{ }xX = A x

If a random variable is independent of an event
and 

X

( ) ( )AxX and=P
( ) 0>AP

( ) ( )
( )

( ) ( )AxX
A

AxXxp AX
and

=

=

PP
P

P

( ) ( )
( )

( )X
A

AxX              =
=

P
P

PP

Probability-Berlin Chen 27

( )
( ) xxp

xX

X  allfor    ,               
              

=
== P



An Illustrative Example

• Example 2.19. Consider two independent tosses of a fair coin.
– Let random variable      be the number of heads
– Let random variable      be 0 if the first toss is head, and 1 if the first 

toss is tail

X
Y

toss is tail
– Let      be the event that the number of head is evenA
• Possible outcomes (T,T), (T,H), (H,T), (H,H)  ( , ), ( , ), ( , ), ( , )
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⎨
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Independence of a Random Variables (1/2)

• Two random variables and are independent ifX Y p

( ) ( ) ( ) yxypxpyxp YXYX , allfor    ,,     , =

If d i bl i i d d t f d

( ) ( ) ( ) yxyYxXyYxX , allfor    ,,or  ===== PPP

X• If a random variable is independent of an random 
variable

( ) ( ) ( ) ll0i hllf

X
Y

( ) ( ) ( ) all0 with allfor   ,    xypyxpyxp YXYX >=

( ) ( )yxp YX ,,( ) ( )
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Y
YX    ,

=
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Independence of a Random Variables (2/2)p ( )

• Random variables and are said to be conditionally X Y y
independent, given a positive probability event , ifA

( ) ( ) ( ) yxypxpyxp AYAXAYX , allfor    ,,  =

– Or equivalently, 

( ) ( ) ( )AYAXAYX ,

( ) ( ) ( ) xypyxpyxp AYAXAYX  all and 0 with  allfor    ,  , >=

• Note here that, as in the case of events, conditional 
independence may not imply unconditional 
independence and vice versa
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An Illustrative Example (1/2)

• Figure 2.15: Example illustrating that conditional 
i d d t i l diti l i d dindependence may not imply unconditional independence
– For the PMF shown, the random variables and are not 

independent
X Y

p
• To show       and      are not independent, we only have to find 

a pair of values            of      and       thatX Y( )yx,
X Y

( )
– For example and are not

( ) ( )xpyxp XYX ≠

X YFor example,      and      are not 
independent

( ) ( ) 31011

X Y

( ) ( )
20
31011 =≠= XYX pp
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An Illustrative Example (2/2)

• To show       and      are not dependent, we only have to find 
( )

X Y
all pair of values            of      and       thatX Y( )yx,

( ) ( )xpyxp XYX =

– For example,       and        are independent, conditioned 
on the event 

X Y
{ }3,2 ≥≤= YXA { }

( ) ( ) ( )
( )

//

    ,
20
9

, =
==

== AYX AyY
AyYxXyxpA

I

II

P
PP

( ) ( )

( ) 120/141

3/1
20/9
20/31    ,

3
1

20/6
20/231, ==== AXAYX pp

( )

( ) ( ) 3/2
20/9
20/62    ,

3
2

20/6
20/432

320/3
41

,

,

====

==

AXAYX

AYX

pp

p
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Functions of Two Independent Random Variables

• Given       and       be two independent random variables, X Y p ,
let          and           be two functions of        and          , 
respectively. Show that           and           are independent.   

( )Xg ( )Yh X Y
( )Xg ( )Yh

( ) ( )

( ) ( )
then, and Let   YhVXgU

∑

==

( ) ( )
( ) ( ) ( ){ }

( ) ( )

,,
  ,,

,, yxpvup
vyhuxgyx

YXVU

∑

∑=
==

( )
( ) ( ) ( ){ }

( )

( ) ( )

                
  ,,

ypxp

ypxp Y
vyhuxgyx

X

∑∑

∑=
==

( )
( ){ }

( )
( ){ }

( ) ( )

                

vpup

ypxp
vyhy
Y

uxgx
X

=

∑∑=
==
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More Factors about Independent Random Variables (1/2)

• If       and       are independent random variables, thenX Y

A h b th f ll i l l ti

[ ] [ ] [ ]YXXY EEE =

– As shown by the following calculation
[ ] ( )yxxypXY

x y
YXE ∑∑= ,,

by independence
( ) ( )ypxxyp

x y
YX

⎤⎡

∑∑=           
by independence

( ) ( )

[ ] [ ]YX

yypxxp
x y

YX

EE

∑ ⎥
⎦

⎤
⎢
⎣

⎡
∑=          

• Similarly, if       and       are independent random variables, 
then

[ ] [ ]YX EE=         

X Y
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More Factors about Independent Random Variables (2/2)

• If       and       are independent random variables, thenX Y

( ) ( ) ( )YXYX varvarvar +=+

– As shown by the following calculation

( ) ( ) [ ]( )[ ]
( ) ( ) [ ] [ ]( ) [ ] [ ]( )[ ]

YXYXYXvar
22

2+−+=+ EE

( ) ( ) [ ] [ ]( ) [ ] [ ]( )[ ]
( ) ( ) [ ] [ ]( ) [ ] [ ] [ ]( ) [ ]YYXXYXyxpyx

YXYXYXYX

YX 22,

2

,
2

22

++−+−⎥
⎦

⎤
⎢
⎣

⎡
∑ +=

++++−+=

EEEEEE

EEEEE

( ) ( ) [ ] [ ]( ) [ ] [ ] [ ]( ) [ ]

[ ]( ) [ ] [ ] [ ]( )YYXX

yx
YX

2   22

,
,

⎤⎡⎤⎡⎤⎡

+⋅++

⎥
⎦

⎢
⎣

EEEE

( ) ( ) ( )

[ ]( ) [ ]( ) [ ] [ ]YXYX

yxxypyxpyyxpx
yx

YX
yx

YX
yx

YX

2

,2,,

22

,
,

,
,

2

,
,

2
⎥
⎦

⎤
⎢
⎣

⎡
∑+⎥

⎦

⎤
⎢
⎣

⎡
∑+⎥

⎦

⎤
⎢
⎣

⎡
∑=

EEEE
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2222
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More than Two Random Variables

• Independence of several random variablesp
– Three random variable       ,        and       are independent if

( ) ( ) ( ) ( ) xyxzpypxpzyxp ZYXZYX ,,allfor   ,, =

ZYX
( ) ( ) ( ) ( ) ypyppyp ZYXZYX ,,,,,,

? Compared to the conditions to be satisfied for three independent 
events A1, A2 and A3 (in P.39 of the textbook)

• Any three random variables of the form          ,           and        
are also independent 

( )Xf ( )Xg ( )Xh

• Variance of the sum of independent random variables
– If                          are independent random variables, thennXXX ,,, 21 K

( ) ( ) ( ) ( )nn XXXXXX varvarvarvar 2121 +++=+++ LL
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Illustrative Examples (1/3)

• Example 2.20. Variance of the Binomial. We consider p
independent coin tosses, with each toss having 

probability of coming up a head. For each i , we let     
b th B lli d i bl hi h i l t 1 if

n
p

iX
be the Bernoulli random variable which is equal to 1 if 
the i-th toss comes up a head, and is 0 otherwise. 

Then is a binomial random variableXXXX +++=– Then, is a binomial random variable.nXXXX +++= L21

( ) ( ) llf1 iX( ) ( )

( ) ( ) ( ) )t!independen are s' that (Note      1varvar

allfor   ,1var

1 i

n

i
i

i

XpnpXX

ippX

∑ −==∴

−=Q

1i=
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Illustrative Examples (2/3)

• Example 2.21. Mean and Variance of the Sample Mean. We wish 
to estimate the approval rating of a president, to be called B. To this pp g p
end, we ask    persons drawn at random from the voter population, 
and we let be a random variable that encodes the response of 
the i-th person:

n
iX

the i th person:

⎩
⎨
⎧

=
eperformancsB'sdisapprovepersonth-theif,0

  eperformanc sB' approvesperson th -  theif    ,1
i
i

X i

– Assume that          independent, and are the same random variable
(Bernoulli) with the common parameter ( for Bernoulli), which is

⎩    eperformancsB sdisapproveperson th theif    ,0 i

iX
p(Bernoulli) with the common parameter (     for Bernoulli), which is 

unknown to us 
• are independent, and identically distributed (i.i.d.)

p

iX
pX parameterwith

– If the sample mean         (is a random variable) is defined as  nS

n
XXXS n

n
+++

=
L21

pX parameter with 

1X 2X nX1−nX

n

Probability-Berlin Chen 38



Illustrative Examples (3/3)

– The expectation of       will be the true mean of iXnS

[ ] 21
n

XXXS n
n ⎥⎦

⎤
⎢⎣
⎡ +++

= EE L

[ ]

[ ] here)assumedweBernoullifor the(

1          
1

pX

X
n
n

i
i

==

∑=
=

E

E

– The variance of         will approximate 0 if       is large enough

[ ] here)assumedweBernoullifor the(           pX i == E

nS n

( ) varvarlim 21 ⎟
⎠
⎞

⎜
⎝
⎛ +++

=
∞→ n

XXXS

n

n
n

n

L

( ) ( ) ( ) 01lim1lim
var

lim          22
1 =

−
=

−
=

∑
=

∞→∞→
=

∞→ n
pp

n
pnp

n

X

nn

n

i
i

n
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• Which means that       will be a good estimate of            if       
is large enough 

nS n[ ]iXE



Recitation

• SECTION 2.5 Joint PMFs of Multiple Random Variablesp
– Problems 27, 28, 30

• SECTION 2.6 Conditioning
– Problems 33, 34, 35, 37

• SECTION 2.6 Independence
– Problems 42, 43, 45, 46
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