Further Topics on Random Variables: Covariance and Correlation

Berlin Chen
Department of Computer Science \& Information Engineering
National Taiwan Normal University

Reference:

- D. P. Bertsekas, J. N. Tsitsiklis, Introduction to Probability, Sections4.2

Covariance (1/3)

- The covariance of two random variables X and Y is defined by

$$
\operatorname{cov}(X, Y)=\mathbf{E}[(X-\mathbf{E}[X])(Y-\mathbf{E}[Y])]
$$

- An alternative formula is

$$
\operatorname{cov}(X, Y)=\mathbf{E}[X Y]-\mathbf{E}[X] \mathbf{E}[Y]
$$

- A positive or negative covariance indicates that the values of $X-\mathbf{E}[X]$ and $Y-\mathbf{E}[Y]$ tends to have the same or opposite sign, respectively
- A few other properties

$$
\begin{aligned}
& \operatorname{cov}(X, X)=\operatorname{var}(X) \\
& \operatorname{cov}(X, a Y+b)=a \operatorname{cov}(X, Y) \\
& \operatorname{cov}(X, Y+Z)=\operatorname{cov}(X, Y)+\operatorname{cov}(X, Z)
\end{aligned}
$$

Covariance (2/3)

- Note that if X and Y are independent

$$
\mathbf{E}[X Y]=\mathbf{E}[X] \mathbf{E}[Y]
$$

- Therefore

$$
\operatorname{cov}(X, Y)=0
$$

- Thus, if X and Y are independent, they are also uncorrelated
- However, the converse is generally not true! (See Example 4.13)

Covariance (3/3)

- Example 4.13. The pair of random variables (X, Y) takes the values $(1,0),(0,1),(-1,0)$, and $(0,-1)$, each with probability $1 / 4$ Thus, the marginal pmfs of X and Y are symmetric around 0 , and $E[X]=E[Y]=0$
- Furthermore, for all possible value pairs (x, y), either x or y is equal to 0 , which implies that $X Y=0$ and $\mathrm{E}[X Y]=0$. Therefore, $\operatorname{cov}(X, Y)=\mathrm{E}[(X-\mathrm{E}[X])(Y-\mathrm{E}[Y])]=\mathrm{E}[X Y]=0$, and X and Y are uncorrelated
- However, X and Y are not independent since, for example, a nonzero value of X fixes the value of Y to zero

$$
\begin{aligned}
& P(X=0)=\frac{1}{2} \\
& P(X=1)=P(X=-1)=\frac{1}{4} \\
& P(Y=0)=\frac{1}{2} \\
& P(Y=1)=P(Y=-1)=\frac{1}{4}
\end{aligned}
$$

For example :

$$
\begin{aligned}
& P(X=1, Y=1)=\frac{1}{4} \\
& \neq P(X=1) P(Y=1)=\frac{1}{16}
\end{aligned}
$$

Correlation (1/3)

- Also denoted as "Correlation Coefficient"
- The correlation coefficient of two random variables X and Y is defined as

$$
\rho(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}}
$$

- It can be shown that (see the end-of-chapter problems)

$$
-1 \leq \rho \leq 1
$$

Note that
the sign of ρ only depends on $\operatorname{cov}(X, Y)$

- $\quad \rho>0$: positively correlated
- $\rho<0$: negatively correlated
- $\rho=0$: uncorrelated $(\Rightarrow \operatorname{cov}(X, Y)=0)$

Correlation (2/3)

- It can be shown that $\rho=1$ (or $\rho=-1$) if and only if there exists a positive (or negative, respectively) constant c such that

$$
Y-\mathbf{E}[Y]=c(X-\mathbf{E}[X])
$$

Correlation (3/3)

- Figure 4.11: Examples of positively (a) and negatively (b) correlated random variables

(a)
$\operatorname{cov}(X, Y)>0$

(b)
$\operatorname{cov}(X, Y)<0$

An Example

- Consider n independent tosses of a coin with probability of a head to p. Let X and Y be the numbers of heads and tails, respectively, and let us look at the correlation coefficient of X and Y.

$$
\begin{aligned}
& \quad X+Y=n \\
& \Rightarrow \quad \mathbf{E}[X]+\mathbf{E}[Y]=n \\
& \Rightarrow \\
& \\
& \quad \begin{aligned}
& X-\mathbf{E}[X]=-(Y-\mathbf{E}[Y]) \\
& =-\mathbf{E}(X, Y)= \\
& =\mathbf{E}[(X-\mathbf{E}[X])(Y-\mathbf{E}[Y])] \\
& =-\operatorname{var}(X) \\
\rho(X, Y)= & \frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}}=\frac{-\operatorname{var}(X)}{\sqrt{\operatorname{var}(X) \operatorname{var}(X)}}=-1
\end{aligned}
\end{aligned}
$$

Variance of the Sum of Random Variables

- If $X_{1}, X_{2}, \ldots, X_{n}$ are random variables with finite variance, we have

$$
\operatorname{var}\left(X_{1}+X_{2}\right)=\operatorname{var}\left(X_{1}\right)+\operatorname{var}\left(X_{2}\right)+2 \operatorname{cov}\left(X_{1}, X_{2}\right)
$$

- More generally,

$$
\left.\operatorname{var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{var}\left(X_{i}\right)+\sum_{\{(i, j)} \operatorname{cov} i \neq j\right\}\left(X_{i}, X_{j}\right)
$$

- See the textbook for the proof of the above formula and see also Example 4.15 for the illustration of this formula

An Example

- Example 4.15. Consider the hat problem discussed in Section 2.5, where n people throw their hats in a box and then pick a hat at random. Let us find the variance of X, the number of people who pick their own hat.

$$
X=X_{1}+X_{2}+\cdots+X_{n}
$$

(Note that all X_{i} are Bernoulli with parameter $p=\mathbf{P}\left(X_{i}=1\right)=\frac{1}{n}$;
X_{i} are not independen t of each other!)
$\mathbf{E}\left[X_{i}\right]=\frac{1}{n} ; \operatorname{var}\left(X_{i}\right)=\frac{1}{n}\left(1-\frac{1}{n}\right)$

For $i \neq j$, we have

$$
\begin{aligned}
& \operatorname{cov}\left(X_{i}, X_{j}\right)=\left[\begin{array}{lll}
\\
& X_{i} X_{j}
\end{array}\right] \mathbf{E}\left[X_{i}\right] \mathbf{E}\left[X_{j}\right]=\mathbf{P}\left(X_{i}=1 \text { and } X_{j}=1\right)-\mathbf{E}\left[X_{i}\right] \mathbf{E}\left[X_{j}\right] \\
& =\mathbf{P}\left(X_{i}=1\right) \mathbf{P}\left(X_{j}=1 \mid X_{i}=1\right)-\frac{1}{n^{2}}=\frac{1}{n} \cdot \frac{1}{n-1}-\frac{1}{n^{2}}=\frac{1}{n^{2}(n-1)} \\
& \text { Therefore, }
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{var}(X) & =\operatorname{var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{var}\left(X_{i}\right)-\sum_{\{(i, j) \mid i \neq j\}} \operatorname{cov}\left(X_{i}, X_{j}\right) \\
& =n \cdot \frac{1}{n}\left(1-\frac{1}{n}\right)+n(n-1) \frac{1}{n^{2}(n-1)}=1
\end{aligned}
$$

