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Covariance (1/3)
• The covariance of two random variables     and      is 

defined by
X Y

y

A lt ti f l i

( ) [ ]( ) [ ]( )[ ]YYXXYX EEE −−=,cov
– An alternative formula is

( ) [ ] [ ] [ ]YXXYYX EEE −=,cov

• A positive or negative covariance indicates that the 
values of                     and                   tends to have the [ ]XX E− [ ]YY E−
same or opposite sign, respectively 

• A few other properties
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( ) ( ) ( )ZXYXZYX ,cov,cov,cov +=+



Covariance (2/3)

• Note that if      and      are independentX Y p

Th f

[ ] [ ] [ ]YXXY EEE =

– Therefore
( ) 0,cov =YX

• Thus, if     and       are independent, they are also 
uncorrelated

X Y
uncorrelated 
– However, the converse is generally not true! (See Example 4.13)
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Covariance (3/3)

• Example 4.13. The pair of random variables (X, Y ) takes the 
values (1, 0), (0, 1), (−1, 0), and (0,−1), each with probability ( , ), ( , ), ( , ), ( , ), p y
¼ Thus, the marginal pmfs of X and Y are symmetric around 
0, and E[X] = E[Y ] = 0

F th f ll ibl l i ( ) ith i– Furthermore, for all possible value pairs (x, y), either x or y is 
equal to 0, which implies that XY = 0 and E[XY ] = 0. Therefore, 
cov(X, Y ) = E[(X − E[X] )(Y − E[Y ])] = E[XY ] = 0, and 
X and Y are uncorrelated

– However, X and Y are not independent since, for example, a 
nonzero value of X fixes the value of Y to zerononzero value of X fixes the value of Y to zero
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Correlation (1/3)

• Also denoted as “Correlation Coefficient”
• The correlation coefficient of two random variables     

and     is defined as
X

Y

( ) ( )
( ) ( )YX

YXYX
varvar
,cov, =ρ

– It can be shown that  (see the end-of-chapter problems)

( ) ( )YX varvar

11 ≤≤− ρ
( )YX ,covon  dependsonly   ofsign  the

 thatNote
ρ

• : positively correlated

• : negatively correlated

0>ρ

0<ρ
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• : uncorrelated      0=ρ ( )( )  0,cov  =⇒ YX



Correlation (2/3)

• It can be shown that                                if and only if ( )1or 1 −== ρρ y
there exists a positive (or negative, respectively) 
constant        such that 

( )ρρ

c

[ ] [ ]( )XXcYY EE −=−
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Correlation (3/3)

• Figure 4.11: Examples of positively (a) and negatively (b) g p p y ( ) g y ( )
correlated random variables

( ) 0cov <YX( ) 0cov >YX

(a) (b)

( ) 0,cov <YX( ) 0,cov >YX
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An Example

• Consider       independent tosses of a coin with 
probability of a head to Let and be theX Y

n
pprobability of a head to       .  Let        and       be the 

numbers of heads and tails, respectively, and let us look 
at the correlation coefficient of       and         .            

X Yp

X Y

[ ] [ ] nYX
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EE =+⇒
=+     
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Variance of the Sum of Random Variables

• If                              are random variables with finite nXXX ,,, 21 K
variance, we have 

n21

( ) ( ) ( ) ( )212121 ,cov2varvarvar XXXXXX ++=+

– More generally, 

( ) ( ) ( ) ( )212121 ,cov2varvarvar XXXXXX +++
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• See the textbook for the proof of the above formula and see 

( ){ }jijiii ,11 ⎠⎝ ≠

also Example 4.15 for the illustration of this formula
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An Example
• Example 4.15. Consider the hat problem discussed in 

Section 2.5, where     people throw their hats in a box n
and then pick a hat at random. Let us find the variance of     

, the number of people who pick their own hat.X
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