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Revisit: Conditional Expectation and Variance

• Goal: To introduce two useful probability lawsp y

– Law of Iterated Expectations

[ ][ ] [ ]XYX EEE =

– Law of Total Variance

( ) ( )[ ] [ ]( )( ) ( )[ ] [ ]( )YXYXX EE varvarvar +=
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More on Conditional Expectation

• Recall that the conditional expectation is 
defined by

[ ]yYX =E
defined by
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x

YX∑ ⋅==E (If         is discrete)X

and
x

[ ] ( ) .∫ ⋅== ∞
∞− dxyxfxyYX YXE (If         is continuous)X

• in fact can be viewed as a function of , 
because its value depends on the value of

Y
Yy

[ ]yYX =E
because its value depends on the value      of 
– Is               a random variable ? 

Wh t i th t d l f ?

Yy
[ ]YXE

[ ]YXE– What is the expected value of               ?
• Note also that the expectation of a function         of 
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An Illustrative Example (1/2)
• Example. Let the random variables      and     have 

a joint PDF which is equal to 2 for           belonging to the 
X Y

( )yx,j g g
triangle indicated below and zero everywhere else.
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An Illustrative Example (2/2)

– We saw that                                        . Hence, is the [ ] ( ) 2/1 yyYX −==E [ ]YXE
( )random variable                   :( ) 2/1 Y−

[ ] ( )
2

1 YYX −
=E

– The expectation of 
2

[ ]YXE

[ ][ ] [ ] ( ) [ ]XdfYXYX EEEE ∫
∞[ ][ ] [ ] ( ) [ ]XdyyfyYXYX Y EEEE =∫ == ∞
∞−

Total Expectation TheoremTotal Expectation Theorem

[ ] [ ][ ] ( )[ ] [ ]( ) 2/12/1   
 havethusweproblem,For this

YYYXX EEEEE −=−==[ ] [ ][ ] ( )[ ] [ ]( )
[ ] ( )

( )12          1
0

1
0

∫ −⋅=

∫ ⋅=

dyyy

dyyfyY YE [ ] [ ]( ) 3/12/1 =−=∴ YX EE

Probability-Berlin Chen 5

( )
3/1          

3/2          1
0

32

=

−= yy



Law of Iterated Expectations

[ ][ ] [ ]XYX EEE =

[ ] ( )⎧∑ YXE (If is discrete)Y
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An Illustrative Example (1/2)

• Example 4.17. We start with a stick of length      . We lp g
break it at a point which is chosen randomly and 
uniformly over its length, and keep the piece that 

t i th l ft d f th ti k W th t thcontains the left end of the stick. We then repeat the 
same process on the stick that we were left with. 

What is the expected length of the stick that we are left with– What is the expected length of the stick that we are left with, 
after breaking twice?

Let be the length of the stick after we break for the first timeYLet      be the length of the stick after we break for the first time. 
Let      be the length after the second time.X

Y
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An Illustrative Example (2/2)

– By the Law of Iterated Expectations, we haveBy the Law of Iterated Expectations, we have
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Averaging by Section (1/3)

• Averaging by section can be viewed as a special case of g g y p
the law of iterated expectations

• Example 4.18. Averaging Quiz Scores by Section. 
– A class has students and the quiz score of student is . 
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Averaging by Section (2/3)

• Example 4.18. (cont.)p ( )
– The average score of over the whole class can be computed by 

taking a weighted average of the average score       of each 
class while the weight given to section is proportional to

sm
s sclass       , while the weight given to section     is proportional to 
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Averaging by Section (3/3)

• Example 4.18. (cont.)p ( )
– Its relationship with the law of iterated expectations

• Two random variable defined
– : quiz score of a student (or outcome)

» Each student (or outcome) is uniformly distributed
: section of a student
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More on Conditional Variance

• Recall that the conditional variance of       , given           , X yY =, g ,
is defined by

y

[ ]( ) [ ]( )[ ]yYyYXXyYX ==−== 2var EE

• in fact can be viewed as a function of , 
because its value                        depends on the value      

( )YXvar
( )yYX =var y

Y

of 
– Is                      a random variable ? 

Y
( )YXvar

– What is the expected value of                     ?( )YXvar
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Law of Total Variance

• The expectation of the conditional variance                  is ( )YXvarp
related to the unconditional variance  
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Illustrative Examples (1/4)

• Example 4.17. (continued) Consider again the problem 
where we break twice a stick of length at randomlywhere we break twice a stick of length , at randomly 
chosen points, with being the length of the stick after 
the first break and being the length after the second X

Y
g g

break
– Calculate                using the law of total variance( )Xvar
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Illustrative Examples (2/4)
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Illustrative Examples (3/4)
• Example 4.21. Computing Variances by Conditioning. 

– Consider a continuous random variable       with the PDF given X g
in the following figure. We define an auxiliary (discrete) random 
variable      as follows:
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Illustrative Examples (4/4)
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Averaging by Section

• For a two-section (or two-cluster) problemFor a two section (or two cluster) problem

[ ]1=YXE [ ]2=YXE
1section : ∈ix
2section : ∈ix
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widely used for linear discriminant 
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variability of                (the outcome means 
of individual sections)
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Also called “within cluster” variation Also called “between cluster” variation



Properties of Conditional Expectation and Variancep p
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