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Transforms

• Also called moment generating functions of random g g
variables

Th t f f th di t ib ti f d i bl X• The transform of the distribution of a random variable 
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Illustrative Examples (1/5)

• Example 4.22. Letp
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Illustrative Examples (2/5)

• Example 4.23. The Transform of a Poisson Random 
Variable Consider a Poisson random variable withXVariable. Consider a Poisson random variable with 
parameter    :
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Illustrative Examples (3/5)

• Example 4.24. The Transform of an Exponential p p
Random Variable.  Let be an exponential random 
variable with parameter :
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Illustrative Examples (4/5)

• Example 4.25. The Transform of a Linear Function of p
a Random Variable. Let be the transform 
associated with a random variable . Consider a new 

d i bl W th h
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Illustrative Examples (5/5)

• Example 4.26. The Transform of a Normal Random p
Variable. Let be normal with mean and variance     .X  2
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From Transforms to Moments (1/2)

• Given a random variable      , we have X ,

     dxxfeesM X
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• When taking the derivative of the above functions with 
respect to (for example the continuous case)
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– If we evaluate it at         , we can further have
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From Transforms to Moments (2/2)

• More generally, taking the differentiation of              sMXg y, g
n times with respect to      will yield  
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Illustrative Examples (1/2)

• Example 4.27. Given a random variable      with PMF: Xp
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Illustrative Examples (2/2)

• Example. Given an exponential random variable      with Xp p
PMF:   .0          ,   xexf x
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Two Properties of Transforms 

• For any random variable       , we haveXy ,

      110 0  EE X
X eM

• If random variable      only takes nonnegative integer 
values (                   )
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Inversion of Transforms

• Inversion Propertyp y
– The transform associated with a random variable       

uniquely determines the probability law of        , assuming that          
is finite for all in an interval

 sMX X
X

 sM s   0aaais finite for all     in an interval  

• The determination of the probability law of a random variable 

 sMX s   0  , ,  aaa

p y
=> The PDF and CDF

I ti l if f ll i th th   MM  • In particular, if for all     in                 , then the 
random variables and have the same probability law

   sMsM YX  s  aa  ,
X Y

Probability-Berlin Chen 13



Illustrative Examples (1/2)

• Example 4.28. We are told that the transform associated p
with a random variable isX
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Illustrative Examples (2/2)

• Example 4.29. The Transform of a Geometric 
Random Variable We are told that the transformRandom Variable. We are told that the transform 
associated with random variable is of the formX
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Mixture of Distributions of Random Variables (1/3)

• Let be continuous random variables with nXX ,,1 
PDFs , and let   be a random variable, 
which is equal to with probability     (              ). Then,

Y
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Mixture of Distributions of Random Variables (2/3)
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Mixture of Distributions of Random Variables (3/3)

• Mixture of Gaussian Distributions
– More complex distributions with multiple local maxima can be 

approximated by Gaussian (a unimodal distribution) mixture

    1      ,,; 2 
n

i
n

iiiiY pyNpyf 

– Gaussian mixtures with enough mixture components can 
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approximate any distribution 
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An Illustrative Example (1/2)

• Example 4.30. The Transform of a Mixture of Two p
Distributions. The neighborhood bank has three tellers, 
two of them fast, one slow. The time to assist a customer 
i ti ll di t ib t d ith t λ 6 t this exponentially distributed with parameter λ = 6 at the 
fast tellers, and λ = 4 at the slow teller. Jane enters the 
bank and chooses a teller at random each one withbank and chooses a teller at random, each one with 
probability 1/3. Find the PDF of the time it takes to assist 
Jane and the associated transform

3/1   x
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An Illustrative Example (2/2)

– The service time of each teller is exponentially distributed
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– The distribution of the time that a customer spends in the bank
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Sum of Independent Random Variables

• Addition of independent random variables corresponds to p p
multiplication of their transforms
– Let and be independent random variables, and 

l t Th t f i t d ith i
X Y

YXW Wlet . The transform associated with is,YXW  W

                sMsMeeeeeesM YX
sYsXsYsXYXssW

W   EEEEE

• Since      and      are independent, and           and          are 
functions of        and      , respectively

X Y sXe sYe
X Y , p y

• More generally, if                  is a collection of independent 
random variables, and        
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Illustrative Examples (1/3)

• Example 4.10. The Transform of the Binomial. p
Let be independent Bernoulli random 
variables with a common parameter . Then,p

nXX ,,1 
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1for    ,11 10  

– If                                 ,      can be thought of as a binomial 
random variable with parameters        and       , and its 
corresponding transform is given by
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Illustrative Examples (2/3)

• Example 4.11. The Sum of Independent Poisson 
R d V i bl i P iRandom Variables is Poisson. 
– Let and be independent Poisson random variables with 

means and , respectively
X Y

 means and       , respectively
• The transforms of       and      will be the following, respectively

 
X Y

       11  ss ee esMesM  cf p 5 (in this lecture)

– If , then the transform of the random variable isYXW 
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• From the transform of        , we can conclude that       is also a 
Poisson random variable with mean 

W
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Illustrative Examples (3/3)

• Example 4.12. The Sum of Independent Normal 
R d V i bl i N lRandom Variables is Normal.
– Let and be independent normal random variables with 

means , and variances , respectively
X Y

yx  , 22 , yx means                 , and variances                , respectively
• The transforms of       and      will be the following, respectively
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• From the transform of        , we can conclude that        also is 
normal with mean               and variance           

W W
yx   22
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Tables of Transforms (1/2)
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Tables of Transforms (2/2)
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Exercise

• Given that      is an exponential random variable with parameter    :X 

(i) Show that the transform (moment generating function) of  can be expressed as:

  0   ,   xexf x
X



(ii) Find the expectation and variance of       based on its transform.
(ii) Given that random variable     can be expressed as       .         .  Find the transform    

f

X
53  XYY

of      . 
(iv) Given that      is also an exponential random variable with parameter    , and      

and      are independent. Find the transform of random variable                   .

Y
Z  X

Z ZXW 23 
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Sum of a Random Number of Independent 
Random Variables (1/4)Random Variables (1/4)

321 NXXXX

NXXXY  21

 ,,,,, 321 NXXXX

• If we know thatIf we know that
– is a random variable taking positive integer values
– are independent, identically distributed (i.i.d.) 

N ,2,1N
,, 21 XX

random variables (with common mean      and variance        )
• A subset of           (                          ) are independent as well sX i ' NXXX ,,, 21 

 2

• What are the formulas for the mean, variance, and the 
transform of ? (If , we let )Y 0N 0Y
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Sum of a Random Number of Independent 
Random Variables (2/4)Random Variables (2/4)

• If we fix some number    , the random variable                     n ,
is independent of random variablenXXX  21 N

 nNY E
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XXX
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E
E 21

?

– can be viewed as a function of random variable
• is a random variable  

N NYE
 NYE

 • The mean of               (i.e.         ) can be calculated by using 
the law of iterated expectations
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Sum of a Random Number of Independent 
Random Variables (3/4)Random Variables (3/4)

• Similarly,                        can be expressed as nNY vary, p 
 
 21var

var

nNXXX

nNY

N 



 
 
 21

21

21

var

var

va

XXX

nNXXX

nN

n

n

N









– can be viewed as a function of random variable

 
2

21

n
n


 NYvar N

• is a random variable  
– The variance of        can be calculated using the law of total 
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Sum of a Random Number of Independent 
Random Variables (4/4)Random Variables (4/4)

• Similarly,                    can be expressed as  nNe sY Ey, p

 
     XXXXXX

sY nNe 


E

 

     
    
  

sXsXsXXXXs

XXXsXXXs

eeee

nNenNe
nn

nN












2121

2121

EE

EE
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Properties of the Sum of a Random Number of 
Independent Random VariablesIndependent Random Variables

     iXNY EEE 

          NXXNY ii varvarvar    2EE 
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Illustrative Examples (1/5)
• Example 4.34. A remote village has three gas stations, 

and each one of them is open on any given day with a d eac o e o t e s ope o a y g e day t
probability 1/2, independently of the others. The amount 
of gas available in each gas station is unknown and is 
uniformly distributed between 0 and 1000 gallons.
– We wish to characterize the distribution (    ) of the total amount 

of gas available at the gas stations that are open
Y

of gas available at the gas stations that are open

 1XY
Total amount of gas available

2

1
 :is d)distribute

y (uniformll X of  transformThe i

Total amount of gas available The amount of gas provided by 
one gas station, out of three 
(        is uniformly distributed)
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Illustrative Examples (2/5)

• Example 4.35. Sum of a Geometric Number of 
Independent Exponential Random Variables. depe de t po e t a a do a ab es
– Jane visits a number of bookstores, looking for Great 

Expectations. Any given bookstore carries the book with 
probability independently of the others In a typicalpprobability , independently of the others. In a typical 
bookstore visited, Jane spends a random amount of time, 
exponentially distributed with parameter , until she either finds 

p


the book or she decides that the bookstore does not carry it. 
Assuming that Jane will keep visiting bookstores until she buys 
the book and that the time spent in each is independent of 
everything else

– We wish to determine the mean, variance, and PDF of the total 
time spent in bookstorestime spent in bookstores.
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Illustrative Examples (3/5)
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Illustrative Examples (4/5)
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Illustrative Examples (5/5)

• Example 4.36. Sum of a Geometric Number of 
Independent Geometric Random VariablesIndependent Geometric Random Variables.
– This example is a discrete counterpart of the preceding one.
– We let be geometrically distributed with parameter . WepNWe let be geometrically distributed with parameter . We 

also let each random variable be geometrically distributed 
with parameter . We assume that all of these random 
variables are independent

p
iX

q
variables are independent.
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Exercise

• A fair coin is flipped independently until the first head is pp p y
encountered. For each time of the coin flipping, you will 
get a score of 1 with probability 0.4 and a score of 0 with 

b bilit 0 6 L t th d i bl b d fi dYprobability 0.6. Let the random variable      be defined as 
the sum of all the scores obtained during the process of 
the coin flipping (including the last time of the coin

Y

the coin flipping (including the last time of the coin 
flipping). Find the following characteristics of     :
(i) mean

Y
(i) mean
(ii) variance
(iii) transform(iii) transform
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Probability versus Statistics
Population

(assumed to be a random variable
t f ll di t ib ti )

Sample
or to follow some distribution)

St ti ti

Inference

StatisticsParameters
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The Central Limit Theorem (1/2)

• The Central Limit Theorem
– Let X1,…,Xn be a sequence of independent, identically distributed 

random variables with common mean  and variance 2

– Let                              be an (sample) average of these random 
variables n

XXX n


1

– Let Sn = X1+…+Xn be the sum of these random variables

Then if n is sufficiently large:

• XNX
22

varianceandmeanwithnormalais~  







•

• And                                    approximately

n
X

n
NX varianceandmean  with normalais       ,~  








),(~ 2 nnNS n
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The Central Limit Theorem (2/2)

• Example

Solid lines: real distributions of 
sample mean

Dashed lines: normal distributions 

continuous

somewhat skewed to the rightdiscrete so e a s e ed o e gdiscrete

highly skewed to the rightcontinuous

• Rule of Thumb
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– For most populations, if the (sample) size n is greater than 30, 
the Central Limit Theorem approximation is good



Chebyshev Inequality

• If      is a random variable with mean        and variance     X 2
, then 
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