Discrete Random Variables: Basics

Berlin Chen
Department of Computer Science \& Information Engineering
National Taiwan Normal University

Reference:

- D. P. Bertsekas, J. N. Tsitsiklis, Introduction to Probability, Sections 2.1-2.3

Random Variables

- Given an experiment and the corresponding set of possible outcomes (the sample space), a random variable associates a particular number with each outcome
- This number is referred to as the (numerical) value of the random variable
- We can say a random variable is a real-valued function of the experimental outcome

Random Variables: Example

- An experiment consists of two rolls of a 4 -sided die, and the random variable is the maximum of the two rolls
- If the outcome of the experiment is $(4,2)$, the value of this random variable is 4
- If the outcome of the experiment is $(3,3)$, the value of this random variable is 3

- Can be one-to-one or many-to-one mapping

Main Concepts Related to Random Variables

- For a probabilistic model of an experiment
- A random variable is a real-valued function of the outcome of the experiment

$$
X: w \rightarrow x
$$

- A function of a random variable defines another random variable

$$
Y=g(X)
$$

- We can associate with each random variable certain "averages" of interest such the mean and the variance
- A random variable can be conditioned on an event or on another random variable
- There is a notion of independence of a random variable from an event or from another random variable

Discrete/Continuous Random Variables

- A random variable is called discrete if its range (the set of values that it can take) is finite or at most countably infinite

$$
\text { finite : }\{1,2,3,4\} \text {, countably infinite : }\{1,2, \cdots\}
$$

- A random variable is called continuous (not discrete) if its range (the set of values that it can take) is uncountably infinite
- E.g., the experiment of choosing a point a from the interval [-1, 1]
- A random variable that associates the numerical value a^{2} to the outcome a is not discrete
- In this chapter, we focus exclusively on discrete random variables

Concepts Related to Discrete Random Variables

- For a probabilistic model of an experiment
- A discrete random variable is a real-valued function of the outcome of the experiment that can take a finite or countably infinite number of values
- A (discrete) random variable has an associated probability mass function (PMF), which gives the probability of each numerical value that the random variable can take
- A function of a random variable defines another random variable, whose PMF can be obtained from the PMF of the original random variable

Probability Mass Functions

- A (discrete) random variable X is characterized through the probabilities of the values that it can take, which is captured by the probability mass function (PMF) of X, denoted $p_{X}(x)$

$$
p_{X}(x)=\mathbf{P}(\{X=x\}) \text { or } p_{X}(x)=\mathbf{P}(X=x)
$$

- The sum of probabilities of all outcomes that give rise to a value of X equal to x
- Upper case characters (e.g., X) denote random variables, while lower case ones (e.g., x) denote the numerical values of a random variable
- The summation of the outputs of the PMF function of a random variable over all it possible numerical values is equal to one $\quad \sum_{x} p_{X}(x)=1 \quad \begin{gathered}\{X=x\} ' s \text { are disjoint and form } \\ \text { a partition of the sample space }\end{gathered}$

Calculation of the PMF

- For each possible value x of a random variable X :

1. Collect all the possible outcomes that give rise to the event $\{X=x\}$
2. Add their probabilities to obtain $p_{X}(x)$

- An example: the PMF $p_{X}(x)$ of the random variable $X=$ maximum roll in two independent rolls of a fair 4 -sided die

Bernoulli Random Variable

- A Bernoulli random variable X takes two values 1 and 0 with probabilities p and $1-p$, respectively
- PMF

$$
p_{X}(x)= \begin{cases}p, & \text { if } x=1 \\ 1-p, & \text { if } x=0\end{cases}
$$

- The Bernoulli random variable is often used to model generic probabilistic situations with just two outcomes

1. The toss of a coin (outcomes: head and tail)
2. A trial (outcomes: success and failure)
3. the state of a telephone (outcomes: free and busy)

Binomial Random Variable (1/2)

- A binomial random variable X has parameters n and p
- PMF

$$
p_{X}(k)=\mathbf{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \ldots, n
$$

- The Bernoulli random variable can be used to model, e.g.

1. The number of heads in n independent tosses of a coin (outcomes: $1,2, \ldots, n$), each toss has probability p to be a head
2. The number of successes in n independent trials (outcomes: 1, $2, \ldots, n$), each trial has probability p to be successful

- Normalization Property

$$
\text { Note that : }(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

$$
\sum_{k=0}^{n} p_{X}(k)=\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}=1
$$

Binomial Random Variable (2/2)

Figure 2.3: The PMF of a binomial random variable. If $p=1 / 2$, the PMF is symmetric around $n / 2$. Otherwise, the PMF is skewed towards 0 if $p<1 / 2$, and towards n if $p>1 / 2$.

Geometric Random Variable

- A geometric random variable X has parameter $p(0<p<1)$
- PMF

$$
p_{X}(k)=(1-p)^{k-1} p, \quad k=1,2, \ldots
$$

- The geometric random variable can be used to model, e.g.
- The number of independent tosses of a coin needed for a head to come up for the first time, each toss has probability p to be a head
- The number of independent trials until (and including) the first "success", each trial has probability p to be successful
- Normalization Property

$$
\sum_{k=1}^{\infty} p_{X}(k)=\sum_{k=1}^{\infty}(1-p)^{k-1} p=p \sum_{k=0}^{\infty}(1-p)^{k}=p \frac{1}{1-(1-p)}=1
$$

Poisson Random Variable (1/2)

- A Poisson random variable X has parameter λ
- PMF

$$
p_{X}(k)=e^{-\lambda} \frac{\lambda^{k}}{k!}, \quad k=0,1,2, \ldots,
$$

- The Poisson random variable can be used to model, e.g.
- The number of typos in a book
- The numbers of cars involved in an accidents in a city on a given day
- Normalization Property

McLaurin series

$$
\sum_{k=0}^{\infty} p_{X}(k)=\sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^{k}}{k!}=e^{-\lambda}(\underbrace{1+\lambda+\frac{\lambda^{2}}{2!}+\frac{\lambda^{3}}{3!}+\cdots}_{e^{\lambda}})=1
$$

Poisson Random Variable (2/2)

Figure 2.5: The PMF $e^{-\lambda} \frac{\lambda^{k}}{k!}$ of the Poisson random variable for different values of λ. Note that if $\lambda<1$, then the PMF is monotonically decreasing, while if $\lambda>1$, the PMF first increases and then decreases as the value of k increases (this is shown in the end-of-chapter problems).

Relationship between Binomial and Poisson

- The Poisson PMF with parameter λ is a good approximation for a binomial PMF with parameters n and p, provided that $\lambda=n p, n$ is very large and p is very small

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\lim _{n \rightarrow \infty} \frac{n!}{(n-k)!k!} p^{k}(1-p)^{n-k} \quad\left(\because \lambda=n p \Rightarrow p=\frac{\lambda}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{n(n-1) \cdots(n-k+1)}{k!}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k} \\
& =\lim _{n \rightarrow \infty} \frac{\lambda^{k}}{k!} \frac{n(n-1) \cdots(n-k+1)}{n^{k}}\left(1-\frac{\lambda}{n}\right)^{n-k} \\
& =\lim _{n \rightarrow \infty} \frac{\lambda^{k}}{k!}\left(\frac{n}{n}\right)\left(\frac{n-1}{n}\right) \cdots\left(\frac{n-k+1}{n}\right)\left(1-\frac{\lambda}{n}\right)^{n-k} \quad\left(\because \lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}\right) \\
& =\lim _{n \rightarrow \infty} \frac{\lambda^{k}}{k!} e^{-\lambda}
\end{aligned} \quad \text { Probability-Berlin Chen 15 } 15
$$

Functions of Random Variables (1/2)

- Given a random variable X, other random variables can be generated by applying various transformations on X
- Linear

- Nonlinear $\quad Y=g(X)=\log X$

Functions of Random Variables (2/2)

- That is, if Y is an function of $X(Y=g(X))$, then Y is also a random variable
- If X is discrete with PMF $p_{X}(x)$, then Y is also discrete and its PMF can be calculated using

$$
p_{Y}(y)=\sum_{\{x \mid g(x)=y\}} p_{X}(x)
$$

Functions of Random Variables: An Example

Example 2.1. Let $Y=|X|$ and let us apply the preceding formula for the PMF p_{Y} to the case where

$$
p_{X}(x)= \begin{cases}1 / 9 & \text { if } x \text { is an integer in the range }[-4,4] \\ 0 & \text { otherwise. }\end{cases}
$$

The possible values of Y are $y=0,1,2,3,4$. To compute $p_{Y}(y)$ for some given value y from this range, we must add $p_{X}(x)$ over all values x such that $|x|=y$. In particular, there is only one value of X that corresponds to $y=0$, namely $x=0$. Thus,

$$
p_{Y}(0)=p_{X}(0)=\frac{1}{9}
$$

Also, there are two values of X that correspond to each $y=1,2,3,4$, so for example,

$$
p_{Y}(1)=p_{X}(-1)+p_{X}(1)=\frac{2}{9}
$$

Thus, the PMF of Y is

$$
p_{Y}(y)= \begin{cases}2 / 9 & \text { if } y=1,2,3,4 \\ 1 / 9 & \text { if } y=0 \\ 0 & \text { otherwise }\end{cases}
$$

Recitation

- SECTION 2.2 Probability Mass Functions
- Problems 3, 8, 10
- SECTION 2.3 Functions of Random Variables
- Problems 13, 14

