Further Topics on Random Variables: Derived Distributions

Berlin Chen
Department of Computer Science \& Information Engineering
National Taiwan Normal University

Reference:

- D. P. Bertsekas, J. N. Tsitsiklis, Introduction to Probability, Section 4.1

Two-step approach to Calculating Derived PDF

- Calculate the PDF of a Function $Y=g(X)$ of a continuous random variable X

1. Calculate the CDF F_{Y} of Y using the formula

$$
F_{Y}(y)=\mathbf{P}(g(X) \leq y)=\int_{\{x \mid g(x) \leq y\}} f_{X}(x) d x
$$

2. Differentiate to obtain the PDF (called the derived distribution) of Y

$$
f_{Y}(y)=\frac{d F_{Y}(y)}{d y}
$$

Illustrative Examples (1/2)

- Example 4.1. Let X be uniform on [0, 1]. Find the PDF of $Y=\sqrt{X}$. Note that Y takes values between 0 and 1 .

$$
\begin{aligned}
& F_{Y}(y)=\mathbf{P}(Y \leq y)=\mathbf{P}(\sqrt{X} \leq y)=\mathbf{P}\left(X \leq y^{2}\right)=y^{2} \\
& \therefore f_{Y}(y)=\frac{d F_{Y}(y)}{d y}=2 y, \quad 0 \leq y \leq 1
\end{aligned}
$$

Illustrative Examples (2/2)

- Example 4.3. Let $Y=X^{2}$, where X is a random variable with known PDF $f_{X}(x)$. Find the PDF of Y represented in terms of $f_{X}(x)$.

For any $y \geq 0$, we have

$$
\begin{aligned}
F_{Y}(y) & =\mathbf{P}(Y \leq y)=\mathbf{P}\left(X^{2} \leq y\right) \\
& =\mathbf{P}(-\sqrt{y} \leq X \leq \sqrt{y}) \\
& =F_{X}(\sqrt{y})-F_{X}(-\sqrt{y}) \\
f_{Y}(y) & =\frac{d F_{Y}(y)}{d y} \\
& =\left[\frac{d F_{X}(\sqrt{y})}{d \sqrt{y}} \cdot \frac{d \sqrt{y}}{d y}\right]-\left[\frac{d F_{X}(-\sqrt{y})}{d(-\sqrt{y})} \cdot \frac{d(-\sqrt{y})}{d y}\right] \\
& =\frac{1}{2 \sqrt{y}} f_{X}(\sqrt{y})+\frac{1}{2 \sqrt{y}} f_{X}(-\sqrt{y}) \\
& =\frac{1}{2 \sqrt{y}}\left[f_{X}(\sqrt{y})+f_{X}(-\sqrt{y})\right]
\end{aligned}
$$

The PDF of a Linear Function of a Random Variable

- Let X be a continuous random variable with PDF $f_{X}(x)$, and let

$$
Y=a X+b
$$

for some scalar $a \neq 0$ and b. Then,

$$
f_{Y}(y)=\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right)
$$

$$
a>0, b>0
$$

The PDF of a Linear Function of a Random Variable (1/2)

- Verification of the above formula

$$
\begin{array}{ll}
F_{Y}(y)=\mathbf{P}(Y \leq y)=\mathbf{P}(a X+b \leq y) & \text { (ii) For } a<0 \\
\text { (i) For } a>0 & F_{Y}(y)=\mathbf{P}\left(X \geq \frac{y-b}{a}\right)=1-F_{X}\left(\frac{y-b}{a}\right) \\
F_{Y}(y)=\mathbf{P}\left(X \leq \frac{y-b}{a}\right)=F_{X}\left(\frac{y-b}{a}\right) & \Rightarrow f_{Y}(y)=-\frac{d F_{X}\left(\frac{y-b}{a}\right)}{d\left(\frac{y-b}{a}\right)} \cdot \frac{d\left(\frac{y-b}{a}\right)}{d y}=-\frac{1}{a} f_{X}\left(\frac{y-b}{a}\right) \\
\Rightarrow f_{Y}(y)=\frac{d F_{X}\left(\frac{y-b}{a}\right)}{d\left(\frac{y-b}{a}\right)} \cdot \frac{d\left(\frac{y-b}{a}\right)}{d y}=\frac{1}{a} f_{X}\left(\frac{y-b}{a}\right) & \therefore f_{Y}(y)=\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right)
\end{array}
$$

Illustrative Examples (1/2)

- Example 4.4. A linear function of an exponential random variable.
- Suppose that X is an exponential random variable with PDF

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x}, & \text { if } x \geq 0 \\ 0, & \text { otherwise }\end{cases}
$$

- where λ is a positive parameter. Let $Y=a X+b$. Then,

$$
f_{Y}(y)=\left\{\begin{array}{lc}
\frac{1}{|a|} \lambda e^{-\lambda(y-b) / a}, & \text { if }(y-b) / a \geq 0 \\
0, & \text { otherwise }
\end{array}\right.
$$

Note that if $a>0$ and $b=0$, then Y is a exponential with parameter λ / a

Illustrative Examples (2/2)

- Example 4.5. A linear function of a normal random variable is normal.
- Suppose that X is a normal random variable with mean μ and variance σ^{2},

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}},-\infty \leq x \leq \infty
$$

- And let $Y=a X+b$, where a and b are some scalars. We have

$$
\begin{aligned}
f_{Y}(y) & =\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right) \\
& =\frac{1}{|a|} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(\frac{y-b}{a}-\mu\right)^{2}}{2 \sigma^{2}}} \quad \begin{array}{l}
\quad \therefore Y \text { is also a normal random variable } \\
\text { with mean } a \mu+b \text { and variance } a^{2} \sigma^{2}
\end{array} \\
& =\frac{1}{\sqrt{2 \pi}|a| \sigma} e^{-\frac{(y-(b+a \mu))^{2}}{2 a^{2} \sigma^{2}}},-\infty \leq y \leq \infty \quad \quad \text { Probability-Berlin Chen 8 }
\end{aligned}
$$

Monotonic Functions of a Random Variable (1/4)

- Let X be a continuous random variable and have values in a certain interval $I \quad\left(f_{X}(x)=0\right.$ for $\left.x \notin I\right)$. While random variable $Y=g(X)$ and we assume that g is strictly monotonic over the interval I. That is, either
(1) $g(x)<g\left(x^{\prime}\right)$ for all $x, x^{\prime} \in I$, satisfying $x<x^{\prime}$ (monotonically increasing case), or
(2) $g(x)>g\left(x^{\prime}\right)$ for all $x, x^{\prime} \in I$, satisfying $x<x^{\prime}$ (monotonically decreasing case)

Monotonic Functions of a Random Variable (2/4)

- Suppose that g is monotonic and that for some function h and all x in the range I of X we have

$$
y=g(x) \quad \text { if and only if } x=h(y)
$$

- For example,

$$
\begin{array}{lll}
y=g(x)=a x+b & \Rightarrow & x=h(y)=\frac{y-b}{a} \\
y=g(x)=e^{a x} & \Rightarrow & x=h(y)=\frac{\ln y}{a} \\
y=g(x)=-a x+b & \Rightarrow & x=h(y)=-\frac{y-b}{a}
\end{array}
$$

Monotonic Functions of a Random Variable (3/4)

- Assume that h has first derivative $\frac{d h(y)}{d y}$. Then the PDF of Y in the region where $f_{Y}(y)>0$ is given by

$$
f_{Y}(y)=f_{X}(h(y))\left|\frac{d h(y)}{d y}\right|
$$

- For the monotonically increasing case

$$
\begin{aligned}
& F_{Y}(y)=\mathbf{P}(g(X) \leq y)=\mathbf{P}(X \leq h(y))=F_{X}(h(y)) \\
& \begin{aligned}
\Rightarrow f_{Y}(y) & =\frac{d F_{Y}(y)}{d y} \\
& =\frac{d F_{X}(h(y))}{d y}=\frac{d F_{X}(h(y))}{d h(y)} \cdot \frac{d h(y)}{d y} \\
& =f_{X}(h(y)) \cdot \frac{d h(y)}{d y}
\end{aligned} \frac{d h(y)}{d y}>0
\end{aligned}
$$

Monotonic Functions of a Random Variable (4/4)

- For the monotonically decreasing case

$$
\begin{aligned}
& F_{Y}(y)=\mathbf{P}(g(X) \leq y)=\mathbf{P}(X \geq h(y))=1-F_{X}(h(y)) \\
& \begin{aligned}
\Rightarrow f_{Y}(y)= & \frac{d F_{Y}(y)}{d y} \\
= & -\frac{d F_{X}(h(y))}{d y}=-\frac{d F_{X}(h(y))}{d h(y)} \cdot \frac{d h(y)}{d y} \\
= & -f_{X}(h(y)) \cdot \frac{d h(y)}{d y} \\
=g(x) & \frac{d h(y)}{d y}<0
\end{aligned}
\end{aligned}
$$

Illustrative Examples (1/5)

- Example 4.6. Let $Y=g(X)=X^{2}$, where X is a continuous uniform random variable in the interval $(0,1]$.
- What is the PDF of y ?
- Within this interval, g is strictly monotonic, and its inverse is $h(y)=\sqrt{y}$

We have

$$
\begin{aligned}
& \quad f_{X}(x)=1 \text { for all } 0<x \leq 1 \\
& \text { and } g(X) \text { being strictly increasing } \\
& \Rightarrow \\
& \quad f_{X}(\sqrt{y})=1, \quad \text { for all } 0<y \leq 1 \\
& \therefore \quad f_{Y}(y)=\frac{d h(y)}{d y} f_{X}(\sqrt{y})= \begin{cases}\frac{1}{2 \sqrt{y}}, & \text { if } y \in(0,1] \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Illustrative Examples (2/5)

- Example 4.7. Let X and Y be independent random variables that are uniformly distributed on the interval [0, 1], respectively. What is the PDF of the random variable $Z=\max \{X, Y\}$

$$
\begin{aligned}
F_{Z}(z) & =\mathbf{P}(\max \{X, Y\} \leq z) \\
& =\mathbf{P}(X \leq z, Y \leq z) \\
& =\mathbf{P}(X \leq z) \mathbf{P}(Y \leq z) \\
& =z^{2} \\
\therefore f_{Z}(z) & = \begin{cases}2 z, & \text { if } 0 \leq z \leq 1 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Question

- Let X and Y be independent random variables that are uniformly distributed on the interval [0, 1], respectively. What is the PDF of the random variable $Z=\min \{X, Y\}$

Illustrative Examples (3/5)

- Example 4.8. Let X and Y be independent random variables that are uniformly distributed on the interval [0, 1]. What is the PDF of the random variable $Z=Y / X$
$\because X, Y$ are independent
$\therefore f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)=1$, for all $x, y, 0 \leq x, y \leq 1$

$$
F_{Z}(z)=\mathbf{P}(Y / X \leq z)
$$

$$
= \begin{cases}z / 2, & \text { if } 0 \leq z \leq 1 \\ 1-(1 / 2 z), & \text { if } z>1 \\ 0, & \text { otherwise }\end{cases}
$$

$$
\Rightarrow f_{Z}(z)=\left\{\begin{array}{lc}
1 / 2, & \text { if } 0 \leq z \leq 1 \\
1 /\left(2 z^{2}\right), & \text { if } z>1 \\
0, & \text { otherwise }
\end{array}\right.
$$

Illustrative Examples (4/5)

- Extra Example. Let X and Y be independent random variables that are uniformly distributed on the interval [0, 1], respectively. What is the PDF of the random variable

$$
Z=X Y
$$

$$
\begin{aligned}
& \text { for } 0<z \leq 1 \\
& F_{Z}(z)=P(X Y \leq z) \\
& =\int_{0}^{z} \int_{0}^{1} f_{X, Y}(x, y) d y d x+\int_{z}^{1} \int_{0}^{\frac{z}{x}} f_{X, Y}(x, y) d y d x \\
& =\int_{0}^{z} \int_{0}^{1} 1 d y d z+\int_{z}^{1} \frac{z}{x} d x \\
& =z+\left.z \ln x\right|_{z} ^{1} \\
& =z-z \ln z
\end{aligned}
$$

For example,

$$
\begin{aligned}
& F_{Z}(1 / 8)=P(X Y \leq 1 / 8) \\
& =\frac{1}{8}-\frac{1}{8} \ln \frac{1}{8}=\frac{1}{8}+\frac{3}{8} \ln 2
\end{aligned}
$$

Illustrative Examples (5/5)

- Example 4.9. Let X and Y be independent random variables that are exponential distributed with parameter λ. What is the PDF of the random variable $Z=X-Y$

$$
\begin{array}{ll}
\text { for } z \geq 0 \\
F_{Z}(z)=P(X-Y \leq z) \\
=\int_{0}^{\infty} \int_{0}^{y+z} f_{X, Y}(x, y) d x d y \\
=\int_{0}^{\infty} \int_{0}^{y+z} \lambda e^{-\lambda y} \lambda e^{-\lambda x} d x d y & \\
=\int_{0}^{\infty} \lambda e^{-\lambda y}\left(\int_{0}^{y+z} \lambda e^{-\lambda x} d x\right) d y & \text { for } z \geq 0, \\
=\int_{0}^{\infty} \lambda e^{-\lambda y}\left(-e^{-\lambda x \mid} y_{0}\right) d y \\
=\int_{0}^{\infty} \lambda e^{-\lambda y} d y-\int_{0}^{\infty} e^{-\lambda z} \lambda e^{-2 \lambda y} d y \\
=1-\frac{1}{2} e^{-\lambda z} e^{-\lambda z}
\end{array}
$$

An Extra Example

- Let X and Y be independent random variables that are uniformly distributed on the interval [0, 1], respectively. What is the PDF of the random variable $Z=\max \{2 X, Y\}$

```
Let }\mp@subsup{X}{}{\prime}=2X=>\mp@subsup{X}{}{\prime}\mathrm{ is uniformly distribute d on [0,2]
with PDF f}\mp@subsup{f}{\mp@subsup{X}{}{\prime}}{\prime}(\mp@subsup{x}{}{\prime})=1/
F}\mp@subsup{F}{Z}{\prime}(z)=\mathbf{P}(\operatorname{max}{2X,Y}\leqz)=\mathbf{P}(\operatorname{max}{\mp@subsup{X}{}{\prime},Y}\leqz
    = P}(\mp@subsup{X}{}{\prime}\leqz,Y\leqz
    = P(X'利价P(Y\leqz)
if 0\leqz\leq1
    =>F
if 1\leqz\leq2
    => F
```


Exercise

1. Let X and Y be independent random variables that are uniformly distributed on the interval $[0,1]$. What is the PDF of the random variable $Z=2 X / 3 Y$
2. Let X and Y be independent random variables that are uniformly distributed on the interval [0, 1]. What is the PDF of the random variable $Z=2 X-3 Y$
$X . Y \sim U_{\text {niform }}[0.1]$
$Z=2 X-3 Y=X^{\prime}-Y^{\prime}$
$x^{\prime} \sim$ Uniform $[0.2]$
$Y^{\prime} \sim$ Uniform $[0.3]$

$$
f_{X^{\prime} Y^{\prime}(x, y)}=\frac{1}{6} \quad 0 \leqslant x \leqslant 2
$$

$$
\begin{aligned}
& (1) \leq z \leq 2 \\
& F_{z}(z)=\frac{1}{6}\left[6-\frac{1}{2}(2-z)^{2}\right] \\
\Rightarrow & f_{z}(z)=\frac{1}{6}(2-z)
\end{aligned}
$$

$$
\text { (2) }-1 \leq z \leq 0
$$

$$
\begin{aligned}
F_{z}(z) & =\frac{1}{6}\left[\frac{[(1+z)+(z+z)] \times 2}{2}\right] \\
& =\frac{2+z}{3} \\
\Rightarrow f_{z}(z) & =\frac{1}{3}
\end{aligned}
$$

(3)

$$
\begin{aligned}
-3 \leq z & \leq-1 \\
& F_{z}(z)=\frac{1}{6}\left[\frac{1}{2}(3+z)^{2}\right] \\
\Rightarrow & f_{z}(z)=\frac{3+z}{6}
\end{aligned}
$$

Sums of Independent Random Variables (1/2)

- We also can use the convolution method to obtain the distribution of $W=X+Y$
- If X and Y are independent discrete random variables with integer values

$$
\begin{aligned}
p_{W}(w) & =\mathbf{P}(X+Y=w)=\sum_{\{(x, y) \mid x+y=w\}} \mathbf{P}(X=x, Y=y) \\
& =\sum_{x} \mathbf{P}(X=x, Y=w-x)=\sum_{x} \mathbf{P}(X=x) \mathbf{P}(Y=w-x) \\
& =\sum_{x} p_{X}(x) p_{Y}(w-x) \quad\left(\text { also equivalent to } \sum_{y} p_{X}(w-y) p_{Y}(y)\right)
\end{aligned}
$$

Sums of Independent Random Variables (2/2)

- If X and Y are independent continuous random variables, the PDF $f_{W}(w)$ of $W=X+Y$ can be obtained by

$$
\begin{aligned}
f_{W}(w)= & =\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(w-x) d x \\
& \left(\text { also equivalent to } \int_{-\infty}^{\infty} f_{X}(w-x) f_{Y}(y) d y\right)
\end{aligned}
$$

Note that

$$
\begin{aligned}
\mathbf{P}(W \leq w \mid X=x) & =\mathbf{P}(X+Y \leq w \mid X=x) \\
& =\mathbf{P}(x+Y \leq w) \\
& =\mathbf{P}(Y \leq w-x)
\end{aligned}
$$

Differentiate the CDFs of both sides with respect to w
$\Rightarrow f_{W \mid X}(w \mid x)=f_{Y}(w-x)$

Applying the multiplication (chain) rule, we have

$$
\begin{aligned}
f_{W, X}(w, x) & =f_{X}(x) f_{W \mid X}(w \mid x) \\
& =f_{X}(x) f_{Y}(w-x)
\end{aligned}
$$

Finally, by marginalization, we can have

$$
\begin{aligned}
f_{W}(w) & =\int_{-\infty}^{\infty} f_{W, X}(w, x) d x \\
& =\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(w-x) d x
\end{aligned}
$$

Illustrative Examples (1/4)

- Example. Let X and Y be independent and have PMFs given by

$$
p_{X}(x)=\left\{\begin{array}{ll}
1 / 3, & \text { if } x=1,2,3, \\
0, & \text { otherwise } .
\end{array} \quad p_{Y}(y)= \begin{cases}1 / 2, & \text { if } y=0 \\
1 / 3, & \text { if } y=1 \\
1 / 6, & \text { if } y=2 \\
0, & \text { otherwise }\end{cases}\right.
$$

- Calculate the PMF of $W=X+Y$ by convolution.

We know that the range of possible value of W are integers from the range [1,5]

$$
\begin{aligned}
& p_{W}(1)=\sum_{x} p_{X}(x) p_{Y}(1-x) \\
& =p_{X}(1) p_{Y}(0) \\
& =1 / 3 \cdot 1 / 2=1 / 6 \\
& p_{W}(3)=\sum_{x} p_{X}(x) p_{Y}(3-x) \\
& =p_{X}(1) p_{Y}(2)+p_{X}(2) p_{Y}(1)+p_{X}(3) p_{Y}(0) \\
& =1 / 3 \cdot 1 / 6+1 / 3 \cdot 1 / 3+1 / 3 \cdot 1 / 2 \\
& =1 / 18+1 / 9+1 / 6=1 / 3 \\
& p_{W}(2)=\sum_{x} p_{X}(x) p_{Y}(2-x) \\
& =p_{X}(1) p_{Y}(1)+p_{X}(2) p_{Y}(0) \\
& =1 / 3 \cdot 1 / 3+1 / 3 \cdot 1 / 2 \\
& =1 / 9+1 / 6=5 / 18 \\
& p_{W}(4)=\sum_{x} p_{X}(x) p_{Y}(4-x) \\
& =p_{X}(2) p_{Y}(2)+p_{X}(3) p_{Y}(1) \\
& =1 / 3 \cdot 1 / 6+1 / 3 \cdot 1 / 3 \\
& =1 / 18+1 / 9=1 / 6 \\
& p_{W}(5)=\sum_{x} p_{X}(x) p_{Y}(5-x) \\
& =p_{X}(3) p_{Y}(2) \\
& =1 / 3 \cdot 1 / 6 \\
& =1 / 18
\end{aligned}
$$

Illustrative Examples (2/4)

- Example 4.10. The random variables X and Y are independent and uniformly distributed in the interval [0, 1]. The PDF of $W=X+Y$ is

$$
f_{W}(w)=\int_{-\infty}^{\infty} f_{X}(t) f_{Y}(w-t) d t
$$

We know that the range of possible value of W are in the range [0, 2]

Illustrative Examples (3/4)

(iv) $w=2$

$$
f_{W}(w)=\int_{1}^{1} f_{X}(t) f_{Y}(1-t) d t=0
$$

$$
\therefore \quad f_{W}(w)= \begin{cases}w, & \text { if } 0 \leq w \leq 1 \\ 2-w, & \text { if } 1 \leq w \leq 2 \\ 0, & \text { otherwise }\end{cases}
$$

$$
\text { or as } f_{W}(w)=\left\{\begin{array}{ll}
\min \{1, w\}-\max \{0, \mathrm{w}-1\}, & 0 \leq w \leq 2 \\
0, & \text { otherwise }
\end{array}\right. \text { shown in textbook }
$$

Illustrative Examples (4/4)

- Or, we can use the "Derived Distribution" method previously introduced

Since X and Y are indepent random varibles uniformly distribute din $[0,1]$, we have their joint PDF $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)=1$, for $0 \leq x, y \leq 1$

Graphical Calculation of Convolutions

- Figure 4.10. Illustration of the convolution calculation. For the value of W under consideration, $f_{W}(w)$ is equal to the integral of the function shown in the last plot.

Recitation

- SECTION 4.1 Derived Distributions
- Problems 1, 4, 8, 11, 14

