Further Topics on Random Variables: Covariance and Correlation

Berlin Chen
Department of Computer Science & Information Engineering
National Taiwan Normal University

Reference:

Covariance (1/3)

 The covariance of two random variables X and Y is defined by

$$\operatorname{cov} (X, Y) = \mathbf{E} [(X - \mathbf{E} [X])(Y - \mathbf{E} [Y])]$$

An alternative formula is

$$cov (X,Y) = \mathbf{E}[XY] - \mathbf{E}[X]\mathbf{E}[Y]$$

- A positive or negative covariance indicates that the values of $X \mathbf{E}[X]$ and $Y \mathbf{E}[Y]$ tend to have the same or opposite sign, respectively
- A few other properties

$$cov (X, X) = var (X)$$

$$cov (X, aY + b) = a cov (X, Y)$$

$$cov (X, Y + Z) = cov (X, Y) + cov (X, Z)$$

Covariance (2/3)

Note that if X and Y are independent

$$\mathbf{E} \begin{bmatrix} XY \end{bmatrix} = \mathbf{E} \begin{bmatrix} X \end{bmatrix} \mathbf{E} \begin{bmatrix} Y \end{bmatrix}$$

Therefore

$$cov (X,Y) = 0$$

- Thus, if X and Y are independent, they are also uncorrelated
 - However, the converse is generally not true! (See Example 4.13)

Covariance (3/3)

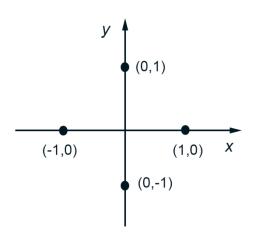
- **Example 4.13.** The pair of random variables (X, Y) takes the values (1, 0), (0, 1), (-1, 0), and (0, -1), each with probability 1/4 Thus, the marginal pmfs of X and Y are symmetric around 0, and E[X] = E[Y] = 0
 - Furthermore, for all possible value pairs (x, y), either x or y is equal to 0, which implies that XY = 0 and E[XY] = 0. Therefore, cov(X, Y) = E[(X - E[X])(Y - E[Y])] = E[XY] = 0, and X and Y are uncorrelated
 - However, X and Y are not independent since, for example, a nonzero value of X fixes the value of Y to zero

$$P(X = 0) = \frac{1}{2}$$

$$P(X = 1) = P(X = -1) = \frac{1}{4}$$

$$P(Y = 0) = \frac{1}{2}$$

$$P(Y = 1) = P(Y = -1) = \frac{1}{4}$$



For example:

$$P(X = 1, Y = 1) = \frac{1}{4}$$

$$(-1,0) \qquad (1,0) \qquad \times \qquad \neq P(X = 1)P(Y = 1) = \frac{1}{16}$$

Correlation (1/3)

- Also denoted as "Correlation Coefficient"
- The correlation coefficient of two random variables X and Y is defined as

$$\rho(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sqrt{\operatorname{var}(X)\operatorname{var}(Y)}}$$

It can be shown that (see the end-of-chapter problems)

$$-1 \le \rho \le 1$$

Note that

the sign of ρ only depends on cov(X,Y)

- $\rho > 0$: positively correlated
- $\rho < 0$: negatively correlated
- $\rho = 0$: uncorrelated $(\Rightarrow cov(X,Y) = 0)$

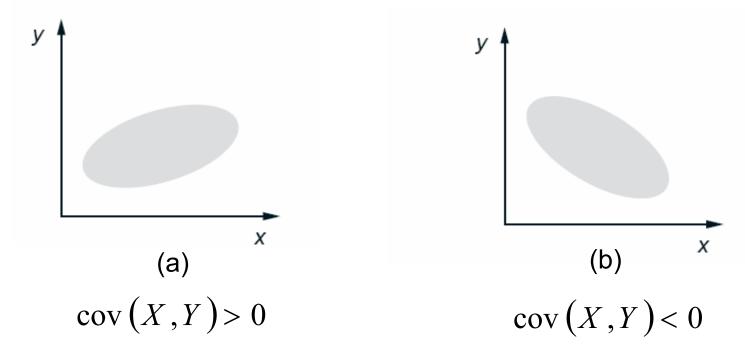
Correlation (2/3)

• It can be shown that $\rho = 1$ (or $\rho = -1$) if and only if there exists a positive (or negative, respectively) constant c such that

$$Y - \mathbf{E}[Y] = c(X - \mathbf{E}[X])$$

Correlation (3/3)

 Figure 4.11: Examples of positively (a) and negatively (b) correlated random variables



An Example

• Consider n independent tosses of a coin with probability of a head to p. Let X and Y be the numbers of heads and tails, respectively, and let us look at the correlation coefficient of X and Y.

$$X + Y = n$$

$$\Rightarrow \mathbf{E}[X] + \mathbf{E}[Y] = n$$

$$\Rightarrow X - \mathbf{E}[X] = -(Y - \mathbf{E}[Y])$$

$$\cot(X, Y) = \mathbf{E}[(X - \mathbf{E}[X])(Y - \mathbf{E}[Y])]$$

$$= -\mathbf{E}[(X - \mathbf{E}[X])^{2}]$$

$$= -\operatorname{var}(X)$$

$$\rho(X, Y) = \frac{\cot(X, Y)}{\sqrt{\operatorname{var}(X)\operatorname{var}(Y)}} = \frac{-\operatorname{var}(X)}{\sqrt{\operatorname{var}(X)\operatorname{var}(X)}} = -1$$

Variance of the Sum of Random Variables

• If X_1, X_2, \dots, X_n are random variables with finite variance, we have

$$var(X_1 + X_2) = var(X_1) + var(X_2) + 2 cov(X_1, X_2)$$

More generally,

$$\operatorname{var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{var}(X_{i}) + \sum_{\{(i,j)|i\neq j\}} \operatorname{cov}(X_{i}, X_{j})$$

 See the textbook for the proof of the above formula and see also Example 4.15 for the illustration of this formula

An Example

 Example 4.15. Consider the hat problem discussed in Section 2.5, where n people throw their hats in a box and then pick a hat at random. Let us find the variance of X, the number of people who pick their own hat.

$$X = X_1 + X_2 + \cdots + X_n$$

(Note that all X_i are Bernoulli with parameter $p = \mathbf{P}(X_i = 1) = \frac{1}{n}$;

 X_i are not independent of each other!)

$$\mathbf{E}[X_i] = \frac{1}{n}; \operatorname{var}(X_i) = \frac{1}{n} \left(1 - \frac{1}{n}\right)$$

For
$$i \neq j$$
, we have
$$\operatorname{cov}(X_i, X_j) = \mathbf{E}[X_i X_j] - \mathbf{E}[X_i] \mathbf{E}[X_j] = \mathbf{P}(X_i = 1 \text{ and } X_j = 1) - \mathbf{E}[X_i] \mathbf{E}[X_j]$$

$$= \mathbf{P}(X_i = 1) \mathbf{P}(X_j = 1 | X_i = 1) - \frac{1}{n^2} = \frac{1}{n} \cdot \frac{1}{n-1} - \frac{1}{n^2} = \frac{1}{n^2(n-1)}$$

Therefore,

$$\operatorname{var}(X) = \operatorname{var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{var}(X_{i}) - \sum_{\{(i,j)|i\neq j\}} \operatorname{cov}\left(X_{i}, X_{j}\right)$$

$$= n \cdot \frac{1}{n} \left(1 - \frac{1}{n} \right) + n(n-1) \frac{1}{n^2(n-1)} = 1$$