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What is robust?

• We can say it is robust if it is hardly affected by extrinsic events.
– Ex: A waterproof watch in water can still work as usual.

• For ASR
– Speech recognition performance degrades in the presence of 

environmental noise,  why?

• Solution
– There are tow main direction using different aspect to cut into this 

problem.
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The answer is the mismatch between training and test condition.



Feature-domain & Model-domain

• Where is part of feature-domain or model-domain?

Feature-domain Model-domain

Parametric
method

Nonparametric
method

Feature-domain: The outputs from feature 
extraction are all restored feature vectors 
without any other information to adapt 
acoustic model.  

model-domain: The outputs from feature 
extraction may be not feature vectors but 
contains other information (ex: likelihood) 
to adapt acoustic model.



Introduction to SPLICE

• Stereo piecewise linear compensation for environment (SPLICE) 
takes advantage of seamlessly integrating into existing system, 
without a complete overhaul of existing code.
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• Assuming that the difference between 
clean data and corrupted data can be 
compensated by each single Gaussian 
providing a linear compensation.
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What is uncertainty?  

• Feature compensation without uncertainty
– The corrupted speech is restored by compensation and sent into 

decoder. The     is viewed as the clean feature, is that right?x̂

It is intuitively reasonable to incorporate with uncertain observation.
• Feature compensation with uncertainty

Noticing here, it is the key idea
adjusted by SPLICE and JUN
uncertainty decoding to make process
efficient.



Concept of uncertainty decoding

• Model-compensation
– Renewing acoustic model for the specific noise.

– The input is either the corrupted speech data or the data 
combined clean and corrupted speech to achieve this goal.

↓  
input A specific 

noise

• Computationally expensive 

decoder



How to design uncertainty?
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• Noise robustness DBN

• Corrupted speech likelihood given by
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• Efficient approximation emerges from above formulation.
– Independent of clean model complexity.
– Appropriate form for integration.

The key 
point



Appendix A for (1)
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Appendix B for (2)
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What’s difference of decoding between SPLICE & JUD

• Passing conditional probability 
to decoding

p

• Passing conditional probability to decoding
• Tow form of uncertainty decoding

– Splice with uncertainty                                     by Bayes’ rule
– Joint ditribution by joint probability

• Both are based on Gaussian mixture model
– Using different approximation to make process efficient 
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Uncertainty decoding with SPLICE

• Splice with uncertainty decoding uses Bayes’ rule to write GMM as
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Appendix C for (3)
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Uncertainty with SPLICE

•Standard SPLICE uses
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•Uncertainty with SPLICE uses Bayes’ rule to write GMM as :
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Uncertainty decoding with JUD

• Joint distribution ),( yxp

When SNR high, the conditional is deterministic.
When SNR low, the conditional is Gaussian



Uncertainty decoding with JUN

• GMM is a standard approach to handle complex distribution
– It’s simple to marginalise tow Gaussians

• Using approximation front-end compensation model M
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• Only       is a function of noise.

• Some issues need to be handled with

– Component posterior                       is a function of clean speech
– Component compensation parameters
– Direct use increases number of components
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Uncertainty decoding for JUD
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• Joint uncertainty decoding uses the GMM directly,

but
– Approximates the component posterior of clean speech, using the 

corrupted speech:
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– This decouples the front-end distribution from being dependent on 
the acoustic model through the clean speech variable

– conditional probability derived from the joint distribution
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Uncertainty decoding for JUD

• Both uncertainty decoding schemes yield same decoding form:
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• To improve efficiency only a single front-end component selected, for 
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• Compared to model-based compensation computational cost is:
– only a function of the N,
– Not the number of components in clean speech model through variance 

bias must be applied 
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