Joint Uncertainty Decoding for Noise Robust Speech Recognition

Jasha Droppo, Alex Acero, and Li Deng Microsoft Research, One Microsoft Way, Redmond, Washington, USA

Presented by Howard

Outline

- What is robust?
- Feature-domain & model-domain
- Introduction to SPLICE
- What is uncertainty?
- Concept of uncertainty decoding
- Uncertainty Decoding with SPLICE
- Uncertainty with Joint Uncertainty Decoding

What is robust?

- We can say it is robust if it is hardly affected by extrinsic events.
 - Ex: A waterproof watch in water can still work as usual.
- For ASR
 - Speech recognition performance degrades in the presence of environmental noise, why?

The answer is the mismatch between training and test condition.

- Solution
 - There are tow main direction using different aspect to cut into this problem.

Feature-domain & Model-domain

• Where is part of feature-domain or model-domain?

Introduction to SPLICE

 Stereo piecewise linear compensation for environment (SPLICE) takes advantage of seamlessly integrating into existing system, without a complete overhaul of existing code.

Sp

What is uncertainty?

• Feature compensation without uncertainty

ND

– The corrupted speech is restored by compensation and sent into decoder. The \hat{x} is viewed as the clean feature, is that right?

Feature compensation with uncertainty
 It is intuitively reasonable to incorporate with uncertain observation.

Concept of uncertainty decoding

- Model-compensation
 - Renewing acoustic model for the specific noise.

- The input is either the corrupted speech data or the data combined clean and corrupted speech to achieve this goal.
- Computationally expensive

How to design uncertainty?

• Noise robustness DBN

Corrupted speech likelihood given by

The key
point
$$p(y_t|M,\tilde{M},\theta_t) = \int p(y_t|x_t,\tilde{M}) p(x_t|M,\theta_t) dx_t \quad (1)$$
$$p(y_t|x_t,\tilde{M}) = \int p(y_t|x_t,n_t) p(n_t|\tilde{M},\theta_t^n) dn_t \quad (2)$$

- Only $p(y_t | x_t, \breve{M})$ depend on noise.
- Efficient approximation emerges from above formulation.
 - Independent of clean model complexity.
 - Appropriate form for integration.

Appendix A for (1)

marginalise

$$p(A \mid D) = \int p(A, B \mid D) d_B$$

$$p(y_t | M, \breve{M}, \theta_t) = \int p(y_t, x_t | M, \breve{M}, \theta_t) d_{x_t}$$
$$= \int p(y_t | x_t, M, \breve{M}, \theta_t) p(x_t | M, \breve{M}, \theta_t) d_{x_t}$$
$$= \int p(y_t | x_t, \breve{M}) p(x_t | M, \theta_t) d_{x_t}$$

$$P(y_t \mid x_t, \tilde{M}) = \int p(y_t, n_t \mid x_t, \tilde{M}) d_{n_t}$$

= $\int p(y_t \mid n_t, x_t, \tilde{M}) p(n_t \mid x_t, \tilde{M}) d_{n_t}$
= $\int p(y_t \mid n_t, x_t) p(n_t \mid \tilde{M}, \theta_t^n) d_{n_t}$

What's difference of decoding between SPLICE & JUD

 Passing conditional probability to decoding

- Passing conditional probability to decoding
- Tow form of uncertainty decoding
 - Splice with uncertainty $\longrightarrow p(y_t|x_t, \tilde{M})$ by Bayes' rule
 - Joint ditribution $\longrightarrow p(y_t|x_t, \tilde{M})$ by joint probability
- Both are based on Gaussian mixture model
 - Using different approximation to make process efficient

Uncertainty decoding with SPLICE

• Splice with uncertainty decoding uses Bayes' rule to write GMM as

$$p(y_t \mid x_t, \breve{M}) = \sum_{n=1}^{N} \left(\frac{p(x_t \mid y_t, \breve{s}_n, \breve{M}) p(y_t \mid \breve{s}_n, \breve{M}) \breve{c}_n}{p(x_t \mid \breve{M})} \right)$$
(3)

- $p(x_t | y_t, \breve{s}_n, \breve{M})$ related to standard SPLICE estimate

– Denominator $p(x_t | \breve{M})$ is a GMM – simplify using a single Gaussian

Appendix C for (3)

$$p(y_{t} | x_{t}, \breve{M}) = \sum_{n=1}^{N} p(y_{t} | \breve{s}_{n}, x_{t}, \breve{M}) p(\breve{s}_{n} | x_{t}, \breve{M})$$

$$= \sum_{n=1}^{N} \frac{p(x_{t}, y_{t} | \breve{s}_{n}, \breve{M}) p(\breve{s}_{n} | x_{t}, \breve{M})}{p(x_{t} | \breve{s}_{n}, \breve{M})}$$

$$= \sum_{n=1}^{N} \frac{p(x_{t} | \breve{s}_{n}, y_{t}, \breve{M}) p(y_{t} | \breve{s}_{n}, \breve{M}) p(\breve{s}_{n} | x_{t}, \breve{M})}{p(x_{t} | \breve{s}_{n}, \breve{M}) p(\breve{s}_{n} | x_{t}, \breve{M})}$$

$$= \frac{\sum_{n=1}^{N} p(x_{t} | \breve{s}_{n}, y_{t}, \breve{M}) p(y_{t} | \breve{s}_{n}, \breve{M}) p(\breve{s}_{n} | x_{t}, \breve{M})}{p(x_{t} | \breve{M})}$$

$$= \frac{\sum_{n=1}^{N} p(x_{t} | \breve{s}_{n}, y_{t}, \breve{M}) p(y_{t} | \breve{s}_{n}, \breve{M}) p(\breve{s}_{n} | x_{t}, \breve{M})}{p(x_{t} | \breve{M})}$$

Replaced with prior

Uncertainty with SPLICE

Standard SPLICE uses $\hat{x}_t = \mathbf{E}[x_t \mid y_t] = \sum P(k \mid y_t) \mathbf{E}[x_t \mid y_t, k]$ Replace k with s $=\sum_{n=1}^{N} P(\breve{s}_n \mid y_t, \breve{M}) \int_x x_t P(x_t \mid y_t, \breve{s}_n, \breve{M}) d_{x_t}$ •Uncertainty with SPLICE uses Bayes' rule to write GMM as : Acoustic Model $P(y_t \mid x_t, \tilde{M}) = \sum_{i=1}^{N} \left(\frac{P(x_t \mid y_t, \tilde{s}_n, \tilde{M}) p(y_t \mid \tilde{s}_n, \tilde{M}) \tilde{c}_n}{p(x \mid \tilde{M})} \right)$ Corrupted Uncertainty p(y|x) Corrupted Uncertainty p(y|x) Decode Hypothesis $p(y_t | x_t, \tilde{M}, \tilde{s}_n) = f(y_t, \tilde{s}_n) N(A^{(n)}y_t + b^{(n)}; x_t, \sum_{h}^{(n)})$ $\breve{s}_{n^*} = \arg \max_{\breve{s}_n} \left(\frac{\breve{c}_n p(y_t | \breve{s}_n, M)}{\sum^N \breve{c} p(y_t | \breve{s}_h, \breve{M})} \right)$ $p(y_t | M, \breve{M}, \theta_t) \propto \sum_{a} c_m N(A^{(n^*)}y_t + B^{(n^*)}; \mu^{(m)}, \sum^{(m)} + \sum_{b}^{(n^*)})$

Uncertainty decoding with JUD

• Joint distribution p(x, y)

When SNR high, the conditional is deterministic. When SNR low, the conditional is Gaussian

Uncertainty decoding with JUN

- GMM is a standard approach to handle complex distribution
 - It's simple to marginalise tow Gaussians
- Using approximation front-end compensation model \breve{M}

$$p(y_t \mid x_t, \breve{M}) \approx \sum_{n=1}^{N} p(\breve{s}_n \mid x_t, \breve{M}) p(y_t \mid x_t, \breve{s}_n, \breve{M})$$

- Only \overline{M} is a function of noise.
- Some issues need to be handled with
 - Component posterior $p(\breve{s}_n | x_t, \breve{M})$ is a function of clean speech
 - Component compensation parameters $p(y_t | x_t, \breve{s}_n, \breve{M})$
 - Direct use increases number of components

Uncertainty decoding for JUD

• Joint uncertainty decoding uses the GMM directly,

$$p(y_t \mid x_t, \breve{M}) = \sum_{n=1}^{N} p(y_t \mid \breve{s}_n, x_t, \breve{M}) p(\breve{s}_n \mid x_t, \breve{M})$$
$$= \sum_{n=1}^{N} \frac{p(x_t, y_t \mid \breve{s}_n, \breve{M}) p(\breve{s}_n \mid x_t, \breve{M})}{p(x_t \mid \breve{s}_n, \breve{M})}$$

but

Approximates the component posterior of clean speech, using the corrupted speech:

 $p(\breve{s}_n \mid x_t, \breve{M}) \approx p(\breve{s}_n \mid y_t, \breve{M})$

- This decouples the front-end distribution from being dependent on the acoustic model through the clean speech variable
- conditional probability derived from the joint distribution

$$p(x_t, y_t | \breve{s}_n, \breve{M}) = N(\begin{bmatrix} x_t \\ y_t \end{bmatrix}; \begin{bmatrix} \breve{\mu}_x^{(n)} \\ \breve{\mu}_y^{(n)} \end{bmatrix}, \begin{bmatrix} \sum_{xx}^{(n)} & \sum_{xy}^{(n)} \\ \sum_{xy}^{(n)} & \sum_{yy}^{(n)} \end{bmatrix})$$

covariance matrix is usually made diagonal ofr efficiency

Uncertainty decoding for JUD

• Both uncertainty decoding schemes yield same decoding form:

$$p(y_{y} | M, \breve{M}, \theta_{t}) \approx \sum_{m=1}^{M} \sum_{n=1}^{N} \alpha^{(mn)} \mathbf{N}(\mathbf{A}^{(n)} y_{t} + \mathbf{b}^{(n)}; \mu^{(m)}, \Sigma^{(m)} + \Sigma^{(n)})$$

– Form of $\mathbf{A}^{(n)}, \mathbf{b}^{(n)}$ and $\Sigma^{(n)}$ differ in the two cases

$$A^{(n)} = \sum_{x}^{(n)} \sum_{yx}^{(n)-1}$$

$$b^{(n)} = \mu_{x}^{(n)} - A^{(n)} \mu_{y}^{(n)}$$

$$\sum_{b}^{(n)} = A^{(n)} \sum_{y}^{(n)} A^{(n)T} - \sum_{x}^{(n)}$$

- To improve efficiency only a single front-end component selected, for Joint based on $p(\breve{s}_n | y_t, \breve{M})$
- Compared to model-based compensation computational cost is:
 - only a function of the N,
 - Not the number of components in clean speech model through variance bias must be applied