Latent Semantic Approaches for Information Retrieval and Language Modeling

Berlin Chen
Department of Computer Science \& Information Engineering
National Taiwan Normal University

References

- G.W.Furnas, S. Deerwester, S.T. Dumais, T.K. Landauer, R. Harshman, L.A. Streeter, K.E. Lochbaum, "Information Retrieval using a Singular Value Decomposition Model of Latent Semantic Structure," ACM SIGIR Conference on R\&D in Information Retrieval , 1988
- J.R. Bellegarda, "Latent semantic mapping," IEEE Signal Processing Magazine, September 2005
- J.R. Bellegarda. Latent Semantic Mapping: Principles and Applications. Morgan and Claypool, 2007
- C.X. Zhai, "Statistical Language Models for Information Retrieval (Synthesis Lectures Series on Human Language Technologies)," Morgan \& Claypool Publishers, 2008
- T. Hofmann, "Unsupervised learning by probabilistic latent semantic analysis," Machine Learning 42, 2001
- M. Steyvers, T. Griffiths, "Probabilistic topic models," In T. K. Landauer, D. S. McNamara, S. Dennis, W. Kintsch (eds.). Handbook of Latent Semantic Analysis, Mahwah NJ: Lawrence Erlbaum, 2007
- B. Chen, "Word topic models for spoken document retrieval and transcription," ACM Transactions on Asian Language Information Processing 8(1), pp. 2:1-2:27 2009
- B. Chen, "Latent topic modeling of word co-occurrence information for spoken document retrieval," ICASSP 2009
- H.-S. Chiu, B. Chen, "Word topical mixture models for dynamic language model adaptation," ICASSP 2007
- D.M. Blei, A.Y.Ng, M. I. Jordan, "Latent Dirichlet allocation," Journal of Machine Learning Research, 2003
- W. Kim, S. Khudanpur, "Lexical triggers and latent semantic analysis for cross-lingual language model adaptation," ACM Transactions on Asian Language Information Processing 3(2), 2004
- D. Gildea, T. Hofmann, "Topic-based language models using EM," Eurospeech1999
- L. K. Saul and F. C. N. Pereira, "Aggregate and mixed-order Markov models for statistical language processing," EMNLP1997

Taxonomy of Classic IR Models

Classification of IR Models Along Two Axes

- Matching Strategy
- Literal term matching
- E.g., Vector Space Model (VSM), Hidden Markov Model (HMM), Language Model (LM)
- Concept matching
- E.g., Latent Semantic Analysis (LSA), Probabilistic Latent Semantic Analysis (PLSA), Word Topic Model (WTM)
- Learning Capability
- Heuristic approaches for term weighting, query expansion, document expansion, etc.
- E.g., Vector Space Model, Latent Semantic Analysis
- Most approaches are based on linear algebra operations
- Solid statistical foundations (optimization algorithms)
- E.g., Unigram or Hidden Markov Model (HMM), Probabilistic Latent Semantic Analysis, Latent Dirichlet Allocation (LDA), Word Topic Model (WTM)
- Most models belong to the language modeling approach

Two Perspectives for IR Models（cont．）

－Literal Term Matching vs．Concept Matching

香港星島日報篇報導引述軍事觀察家的話表示，到二
零零五年台灣將完全喪失空中優勢，原因是中國大陸
戰機不論是數量或是性能上都將超越台灣，報導指出
中國在大量引進俄羅斯先進武器的同時也得加快研發
自製武器系統，目前西安飛機製造廠任職的改進型飛
豹戰機即將部署尚未與蘇愷三十通道地對地攻擊住宅
飛機，以督促遇到挫折的監控其戰機目前也已經取得
了重大階段性的認知成果。根據日本媒體報導在台海
戰爭隨時可能爆發情況之下北京方面的基本方針，使
用高科技答應局部戰爭。因此，解放軍打算在二零零
四年前又有包括蘇愷三十二期在內的兩百架蘇霍伊戰
鬥機。
－There are usually many ways to express a given concept（an information need），so literal terms in a user＇s query may not match those of a relevant document

Latent Semantic Analysis (LSA)

- Also called Latent Semantic Indexing (LSI), Latent Semantic Mapping (LSM), or Two-Mode Factor Analysis
- Original formulated in the context of information retrieval
- Users tend to retrieve documents on the basis of conceptual content
- Individual terms (units) provide unreliable evidence about the conceptual topic or meaning of a document (composition)
- There are many ways to express a given concept
- LSA attempts to explore some underlying latent semantic structure in the data (documents) which is partially obscured by the randomness of word choices
- LSA results in a parsimonious description of terms and documents
- Contextual or positional information for words in documents is discarded (the so-called bag-of-words assumption)

Applications of LSA

- Information Retrieval
- Word/document/Topic Clustering
- Language Modeling
- Automatic Call Routing
- Language Identification
- Pronunciation Modeling
- Speaker Verification (Prosody Analysis)
- Utterance Verification
- Text/Speech Summarization
- Automatic Image Annotation
-

LSA : Schematic Depiction

- Dimension Reduction and Feature Extraction
- PCA feature space

- SVD (in LSA)

LSA: An Example

- Singular Value Decomposition (SVD) used for the worddocument matrix
- A least-squares method for dimension reduction

	Term 1	Term 2	Term 3	Term 4
Query	user	interface		
Document 1	user	interface	HCI	interaction
Document 2			HCI	interaction

Projection of a Vector \boldsymbol{x} :

LSA: Latent Structure Space

- Two alternative frameworks to circumvent vocabulary mismatch

Doc

literal term matching query expansion

Query \Rightarrow terms
\Rightarrow structure model

LSA: Another Example (1/2)

Titles	
c1:	Humart machine interface for Lab ABC compurer applications
c2:	A survey of user opinion of computer system response time
c3:	The EPS user inerface management system
c4:	System and human system engineering testing of EPS
c5:	Relation of user-perceived response rime to error measurement
$\mathrm{m} 1:$	The generation of random, binary, unordered rees
$\mathrm{m} 2:$	The intersection graph of paths in trees
$\mathrm{m} 3:$	Graph minors IV: Widths of mees and well-quasi-ordering
$\mathrm{m} 4:$	Graph minors: A survey

Terms
Documents

		c1	c2	c3	c. 4	es	m 1	m2	m3	m4
1.	human	1	O	0	1	0	0	\bigcirc	0	0
2.	interface	1	0	1	0	0	0	0	0	0
3.	computer	1	1	0	0	0	0	0	0	0
4.	user	0	1	1	0	1	0	0	0	0
5.	system	0	1	1	2	0	0	0	0	0
6.	response	0	1	0	0	1	0	0	0	0
7.	time	0	1	0	0	1	0	0	0	0
8.	EPS	0	0	1	1	0	0	0	0	0
9.	survey	0	1	0	0	0	0	O	0	1
10.	frees	0	0	0	0	0		1	1	0
11.	graph	0	0	0	0	0	0	1	1	1
12.	minors	0	0	0	0	0	0	0	1	1

LSA: Another Example (2/2)

2-D Plot of Terms and Docs from Example

FIG. 1. A two-dimensional plot of 12 Terms and 9 Documents from the sampe TM set. Terms are represented by filled circles. Documents are shown as open squares, and component terms are indicated parenthetically. The query ("human computer interaction") is represented as a pseudo-document at point q. Axes are scaled for Document-Document or Term-Term comparisons. The dotted cone represents the region whose points are within a cosine of 9 from the query q. All documents about human-computer ($\mathrm{c} 1-\mathrm{cs}$) are "near" the query (i.e., within this cone), but none of the graph theory documents $(\mathrm{ml}=\mathrm{m4})$ are nearby. In this reduced space, even documents c 3 and c 5 which share no terms with the query are near it.

LSA: Theoretical Foundation

LSA: Theoretical Foundation

- "term-document" matrix A has to do with the co-occurrences between terms (units) and documents (compositions)
- Contextual or positional information for words in documents is discarded
- "bag-of-words" modeling
- Feature extraction for the entities $a_{i, j}$ of matrix A

1. Conventional $t f$-idf statistics
2. Or, $a_{i, j}$:occurrence frequency weighted by negative entropy
occurrence count of
term i in document j

$$
a_{i, j}=\frac{f_{i, j}}{\left|d_{j}\right|} \times\left(1-\varepsilon_{i}\right), \quad\left|d_{j}\right|=\sum_{i=1}^{m} f_{i, j}
$$

normalized entropy of term i
occurrence count of term i

$$
0 \leq \varepsilon_{i} \leq 1 \quad \varepsilon_{i}=-\frac{1}{\log n} \sum_{j=1}^{n}\left(\frac{f_{i, j}}{\tau_{i}} \log \frac{f_{i, j}}{\tau_{i}}\right), \quad \tau_{i}=\sum_{j=1}^{n} f_{i, j}
$$

in the collection

LSA: Theoretical Foundation

- Singular Value Decomposition (SVD)
- $A^{T} A$ is symmetric $n \times n$ matrix
- All eigenvalues λ_{j} are nonnegative real numbers

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n} \geq 0 \quad \Sigma^{2}=\operatorname{diag}\left(\lambda_{1}, \lambda_{1}, \ldots, \lambda_{n}\right)
$$

- All eigenvectors v_{j} are orthonormal $\left(\in R^{n}\right)$

$$
V=\left[v_{1} v_{2} \ldots v_{n}\right] \quad v_{j}^{T} v_{j}=1 \quad\left(V^{T} V=I_{n x n}\right)
$$

- Define singular values: sigma $\sigma_{j}=\sqrt{\lambda_{j}}, j=1, \ldots, n$
- As the square roots of the eigenvalues of $A^{\top} A$
- As the lengths of the vectors $A v_{1}, A v_{2}, \ldots, A v_{n}$

```
For }\mp@subsup{\lambda}{i}{}\not=0,i=1,\ldotsr
{A\mp@subsup{v}{1}{},A\mp@subsup{v}{2}{},\ldots.,A\mp@subsup{v}{r}{}}\mathrm{ is an}
orthogonal basis of Col A
```

$\sigma_{1}=\left\|A v_{1}\right\|$
$\sigma_{2}=\left\|A v_{2}\right\|$$\quad \begin{aligned} & \left\|A v_{1}\right\|^{2}=v_{i}^{\tau} A^{T} A v_{i}=v_{i}^{\tau} \lambda_{i} v_{i}=\lambda_{i} \\ & \Rightarrow\left\|A v_{i}\right\|=\sigma_{i}\end{aligned}$

LSA: Theoretical Foundation

- $\left\{A v_{1}, A v_{2}, \ldots, A v_{r}\right\}$ is an orthogonal basis of $\operatorname{Col} A\left(\in R^{m}\right)$

$$
A v_{i} \bullet A v_{j}=\left(A v_{i}\right)^{T} A v_{j}=v_{i}^{T} A^{T} A v_{j}=\lambda_{j} v_{i}^{T} v_{j}=0
$$

- Suppose that A (or $A^{\top} A$) has rank $r \leq n$

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{r}>0, \quad \lambda_{r+1}=\lambda_{r+2}=\ldots .=\lambda_{n}=0
$$

- Define an orthonormal basis $\left\{u_{1}, u_{2}, \ldots ., u_{r}\right\}$ for Col A
$\underset{\substack{\text { Uis also an } \\ \text { orthonormal matrix } \\ \text { (mxr) })}}{ } \stackrel{u_{i}}{\Rightarrow}=\frac{1}{\left\|A v_{i}\right\|} A v_{i}=\frac{1}{\sigma_{i}} A v_{i} \Rightarrow \sigma_{i} u_{i}=A v_{i}$
$\left[u_{1} u_{2} \ldots u_{r}\right] \Sigma_{r \times r}=A\left[l_{1} v_{2} v_{r} v_{r}\right]_{\text {an orthonormal matrix }}$
- Extend to an orthonormal başís $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ of R^{m}

$$
\begin{aligned}
& \Rightarrow\left[u_{1} u_{2} \ldots u_{r} \ldots u_{m}\right] \Sigma_{m \times n}=A\left[v_{1} v_{2} \ldots v_{r} \ldots v_{n}\right] \\
& \|A\|_{F}^{2}=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2} \\
& \Rightarrow U \Sigma=A V \Rightarrow U \Sigma V^{T}=A V V^{T}
\end{aligned}
$$

$$
\begin{aligned}
& \|A\|_{F}^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}+\ldots+\sigma_{r}^{2} \text { ? }
\end{aligned}
$$

LSA: Theoretical Foundation

LSA: Theoretical Foundation

- Additional Explanations
- Each row of U is related to the projection of a corresponding row of A onto the basis formed by columns of V

$$
\begin{aligned}
& A=U \Sigma V^{T} \\
& \Rightarrow A V=U \Sigma V^{T} V=U \Sigma \Rightarrow U \Sigma=A V
\end{aligned}
$$

- the i-th entry of a row of U is related to the projection of a corresponding row of A onto the i-th column of V
- Each row of V is related to the projection of a corresponding row of A^{T} onto the basis formed by U

$$
\begin{aligned}
& A=U \Sigma V^{T} \\
& \Rightarrow A^{T} U=\left(U \Sigma V^{T}\right)^{T} U=V \Sigma U^{T} U=V \Sigma \\
& \Rightarrow V \Sigma=A^{T} U
\end{aligned}
$$

- the i-th entry of a row of V is related to the projection of a corresponding row of A^{T} onto the i-th column of U

LSA: Theoretical Foundation

- Fundamental comparisons based on SVD
- The original word-document matrix (A)

- compare two terms \rightarrow dot product of two rows of A
- or an entry in $A A^{\top}$
- compare two docs \rightarrow dot product of two columns of A
- or an entry in $A^{\top} A$
- compare a term and a doc \rightarrow each individual entry of A
- The new word-document matrix (A^{\prime})
$U^{\prime}=U_{m \times k}$ $\Sigma^{\prime}=\Sigma_{k}$ $V^{\prime}=V_{n \times k}$
- compare two terms
 \rightarrow dot product of two rows of U' Σ^{\prime}
- compare two docs
$A^{\top} A^{\prime}=\left(U^{\prime} \Sigma^{\prime} V^{\top}\right)^{\top}\left(U^{\prime} \Sigma^{\prime} V^{\top} T\right)=V^{\prime} \Sigma^{\top} \Gamma^{\top} \dot{U}^{\top} U^{\prime} \Sigma^{\prime} V^{\top} V^{\top}=\left(V^{\prime} \Sigma^{\prime}\right)\left(V^{\prime} V^{\prime} \Sigma^{\prime}\right)^{\top}$
\rightarrow dot product of two rows of $V^{\prime} \Sigma^{\prime}$
- compare a query word and a doc \rightarrow each individual entry of A^{\prime}

LSA: Fold-in

- Find representations for pesudo-docs
- For objects (new queries or docs) that did not appear in the original analysis
- Fold-in a new $m_{x} 1$ query (or doc) vector

See Figure A in next page

$$
\hat{q}_{1 \times k}=\left(q^{T}\right)_{1 \times m} U_{m \times k_{n}^{\prime}} \Sigma-1 \quad \text { The separate dimensions }
$$

Just like a row of V
Query represented by the weighted
sum of it constituent term vectors

- Represented as the weighted sum of its component word (or term) vectors
- Cosine measure between the query and doc vectors in the latent semantic space

$$
\operatorname{sim}(\hat{q}, \hat{d})=\text { coine }(\hat{q} \Sigma, \hat{d} \Sigma)=\frac{\hat{q} \Sigma^{2} \hat{d}^{T}}{|\hat{q} \Sigma||\hat{d} \Sigma|}
$$

LSA: Theoretical Foundation

- Fold-in a new $1 \times \mathrm{n}$ term vector

$$
\hat{t}_{1 \times k}=t_{1 \times n} V_{n \times k} \sum_{k \times k}^{-1} \quad \text { See Figure B below }
$$

$\mathrm{m} \times(\mathrm{n}+\mathrm{p})$

$\mathrm{m} \times \mathrm{k}$
$\mathrm{k} \times \mathrm{k}$

<Figure A>

Mathematical representation of folding-in p documents.

LSA: A Simple IR Evaluation

- Experimental results
- HMM is consistently better than VSM at all recall levels
- LSA is better than VSM at higher recall levels

Recall-Precision curve at 11 standard recall levels evaluated on TDT-3 SD collection. (Using word-level indexing terms)

LSA: Pro and Con (1/2)

- Pro (Advantages)
- A clean formal framework and a clearly defined optimization criterion (least-squares)
- Conceptual simplicity and clarity
- Handle synonymy problems ("heterogeneous vocabulary")
- Replace individual terms as the descriptors of documents by independent "artificial concepts" that can specified by any one of several terms (or documents) or combinations
- Good results for high-recall search
- Take term co-occurrence into account

LSA: Pro and Con (2/2)

- Disadvantages
- High computational complexity (e.g., SVD decomposition)
- Exhaustive comparison of a query against all stored documents is needed (cannot make use of inverted files ?)
- LSA offers only a partial solution to polysemy (e.g. bank, bass,...)
- Every term is represented as just one point in the latent space (represented as weighted average of different meanings of a term)

LSA: Junk E-mail Filtering

- One vector represents the centriod of all e-mails that are of interest to the user, while the other the centriod of all e-mails that are not of interest

LSA: Dynamic Language Model Adaptation (1/4)

- Let w_{q} denote the word about to be predicted, and H_{q-1} the admissible LSA history (context) for this particular word
- The vector representation of H_{q-1} is expressed by \widetilde{d}_{q-1}
- Which can be then projected into the latent semantic space
LSA representation $\quad \widetilde{\bar{v}}_{q-1}=\widetilde{v}_{q-1} S=\widetilde{d}_{q-1}^{T} U \quad$ [change of notation : $S=\Sigma$]
- Iteratively update \widetilde{d}_{q-1} and $\widetilde{\bar{v}}_{q-1}$ as the decoding evolves
VSM representation

LSA representation

$$
\begin{aligned}
& \widetilde{d}_{q}=\frac{n_{q}-1}{n_{q}} \widetilde{d}_{q-1}+\frac{1-\varepsilon_{i}}{n_{q}}[0 \ldots 1 \ldots 0]^{T} \\
& \widetilde{\bar{v}}_{q}=\widetilde{v}_{q} S=d_{q-1}^{T} U=\frac{1^{T}}{n_{q}}\left[\left(n_{q}-1\right) \widetilde{\bar{v}}_{q-1}+\left(\underline{\left.1-\varepsilon_{i}\right)} u_{i}\right]_{\text {with }}\right. \\
& \text { or }=\frac{1}{n_{q}}\left[\bar{x}_{i}\left(n_{q}-1\right) \widetilde{\bar{v}}_{q-1}+\left(1-\varepsilon_{i}\right) u_{i}\right]_{\substack{\text { exponential } \\
\text { decay }}}^{26}
\end{aligned}
$$

LSA: Dynamic Language Model Adaptation (2/4)

- Integration of LSA with N-grams

$$
\operatorname{Pr}\left(w_{q} \mid H_{q-1}^{(n+l)}\right)=\operatorname{Pr}\left(w_{q} \mid H_{q-1}^{(n)}, H_{q-1}^{(l)}\right)
$$

where H_{q-1} denotes some suitable history for word w_{q}, and the superscripts ${ }^{(n)}$ and ${ }^{(l)}$ refer to the n-gram component $\left(w_{q-1} w_{q-2} \ldots w_{q-n+1}\right.$, with $\left.n>1\right)$, the LSA component $\left(\widetilde{d}_{q-1}\right)$:
This expression can be rewritten as :

$$
\operatorname{Pr}\left(w_{q} \mid H_{q-1}^{(n+l)}\right)=\frac{\operatorname{Pr}\left(w_{q}, H_{q-1}^{(l)} \mid H_{q-1}^{(n)}\right)}{\sum_{w_{i} \in V} \operatorname{Pr}\left(w_{i}, H_{q-1}^{(l)} \mid H_{q-1}^{(n)}\right)}
$$

LSA: Dynamic Language Model Adaptation (3/4)

- Integration of LSA with N -grams (cont.)

$$
\begin{gathered}
\operatorname{Pr}\left(w_{q}, H_{q-1}^{(l)} \mid H_{q-1}^{(n)}\right)= \\
\operatorname{Pr}\left(w_{q} \mid H_{q-1}^{(n)}\right) \cdot \operatorname{Pr}\left(H_{q-1}^{(l)} \mid w_{q}, H_{q-1}^{(n)}\right) \quad \begin{array}{l}
\text { Assume the probability of the document } \\
\text { history given the current word is not affec } \\
\text { by the immediate context preceding it }
\end{array} \\
=\operatorname{Pr}\left(w_{q} \mid w_{q-1} w_{q-2} \cdots w_{q-n+1}\right) \cdot \operatorname{Pr}\left(\widetilde{d}_{q-1} \mid w_{q} w_{q-1} w_{q-2} \cdots w_{q-n+1}\right) \\
=\operatorname{Pr}\left(w_{q} \mid w_{q-1} w_{q-2} \cdots w_{q-n+1}\right) \cdot \operatorname{Pr}\left(\widetilde{d}_{q-1} \mid w_{q}\right) \\
=\operatorname{Pr}\left(w_{q} \mid w_{q-1} w_{q-2} \cdots w_{q-n+1}\right) \cdot \frac{\operatorname{Pr}\left(w_{q} \mid \widetilde{d}_{q-1}\right) \operatorname{Pr}\left(\widetilde{d}_{q-1}\right)}{\operatorname{Pr}\left(w_{q}\right)} \\
\operatorname{Pr}\left(w_{q} \mid H_{q-1}^{(n+l)}\right)= \\
\frac{\operatorname{Pr}\left(w_{q} \mid w_{q-1} w_{q-2} \cdots w_{q-n+1}\right) \cdot \frac{\operatorname{Pr}\left(w_{q} \mid \widetilde{d}_{q-1}\right)}{\operatorname{Pr}\left(w_{q}\right)}}{\sum_{w_{i} \in V} \operatorname{Pr}\left(w_{i} \mid w_{q-1} w_{q-2} \cdots w_{q-n+1}\right) \cdot \frac{\operatorname{Pr}\left(w_{i} \mid \widetilde{d}_{q-1}\right)}{\operatorname{Pr}\left(w_{i}\right)}}
\end{gathered}
$$

LSA: Dynamic Language Model Adaptation (4/4)

Intuitively, $\operatorname{Pr}\left(w_{q} \mid \widetilde{d}_{q-1}\right)$ reflects the "relevance" of word w_{q} to the admissible history, as observed through \widetilde{d}_{q-1} :

$$
\begin{aligned}
& \operatorname{Pr}\left(w_{q} \mid \widetilde{d}_{q-1}\right) \\
& \approx K\left(w_{q} \mid \widetilde{d}_{q-1}\right) \\
& =\cos \left(u_{q} S^{1 / 2}, \widetilde{v}_{q-1} S^{1 / 2}\right)=\frac{u_{q} S \widetilde{v}_{q-1}^{T}}{\left\|u_{q} S^{1 / 2}\right\| \widetilde{v}_{q-1} S^{1 / 2} \|}
\end{aligned}
$$

As such, it will be highest for words whose meaning aligns most closely with the semantic favric of \tilde{d}_{q-1} (i.e., relevant "content" words), and lowest for words which do not convey any particular information about this fabric (e.g., "function" works like "the").

LSA: Cross-lingual Language Model Adaptation (1/2)

- Assume that a document-aligned (instead of sentencealigned) Chinese-English bilingual corpus is provided

LSA: Cross-lingual Language Model Adaptation (2/2)

- CL-LSA adapted Language Model
d_{i}^{E} is a relevant English doc of the Mandarin d_{i}^{C}
doc being transcribed, obtained by CL-IR

$$
\begin{aligned}
& P_{\text {Adapt }}\left(c_{k} \mid c_{k-1}, c_{k-2}, d_{i}^{E}\right) \\
& =\lambda \cdot P P_{\text {CL-LCA-Unigram }}\left(c_{k} \mid d_{i}^{E}\right)+P_{\text {BG-Trigram }}\left(c_{k} \mid c_{k-1}, c_{k-2}\right) \\
& P_{\text {CL-LCA-Unigram }}\left(c \mid d_{i}^{E}\right)=\sum_{e} P_{T}(c \mid e) P\left(e \mid d_{i}^{E}\right) \\
& P_{T}(c \mid e) \approx \frac{\operatorname{sim}(\vec{c}, \vec{e})^{\gamma}}{\sum_{c^{\prime}} \operatorname{sim}\left(\vec{c}^{\prime}, \vec{e}\right)^{\gamma}} \quad(\gamma \gg 1)
\end{aligned}
$$

Probabilistic Latent Semantic Analysis (PLSA)

- PLSA models the co-occurrence of word and documents and evaluates the relevance in a low dimensional semantic/topic space
- Each document D is treated as a document model M_{D}

$$
P_{\mathrm{PLSA}}\left(w_{i} \mid M_{D}\right)=\sum_{k=1}^{K} P\left(w_{i} \mid T_{k}\right) P\left(T_{k} \mid M_{D}\right)
$$

- PLSA can be viewed as a nonnegative factorization of a "word-document" matrix consisting probability entries
- A procedure similar to the SVD performed by its algebraic counterpart- LSA

PLSA: Information Retrieval (1/3)

- The relevance measure between a query and a document can be expressed by

$$
P_{\mathrm{PLSA}}\left(Q \mid M_{D}\right)=\prod_{w_{i} \in Q}\left[\sum_{k=1}^{K} P\left(w_{i} \mid T_{k}\right) P\left(T_{k} \mid M_{D}\right)\right]^{c\left(w_{i}, Q\right)}
$$

- Relevance measure is not obtained based on the frequency of a respective query term occurring in a document, but instead based on the frequency of the term and document in the latent topics
- A query and a document thus may have a high relevance score even if they do not share any terms in common

N : number of distinct in the vocabulary M : number of documents in the collection
: observed variable: latent variable

PLSA: Information Retrieval (2/3)

- Unsupervised training: The model parameters are trained beforehand using a set of text documents
- Maximize the log-likelihood of entire collection D

$$
\log L_{\mathrm{D}}=\sum_{D \in \mathbf{D}} \log P_{P L S A}\left(D \mid M_{D}\right)=\sum_{D \in \mathbf{D}} \sum_{w_{n} \in D} c\left(w_{i}, D\right) \log P_{P L S A}\left(w_{i} \mid M_{D}\right)
$$

- Supervised training: The model parameters are trained using a training set of query exemplars and the associated query-document relevance information
- Maximize the log-likelihood of the training set of query exemplars generated by their relevant documents

$$
\begin{aligned}
\log L_{\mathbf{Q}_{\text {TrainSet }}} & =\sum_{Q \in \mathbf{Q}_{\text {TrainSet }}} \sum_{D \in \mathbf{D}_{R \text { to } Q}} \log P_{P L S A}\left(Q \mid M_{D}\right) \\
& =\sum_{Q \in \mathbf{Q}_{\text {TrainSet }}} \sum_{D \in \mathbf{D}_{R \text { to } Q}} \sum_{w_{i} \in Q} c\left(w_{i}, Q\right) \log P\left(w_{i} \mid M_{D}\right)
\end{aligned}
$$

PLSA: Information Retrieval (3/3)

- Example: most probable words form 4 latent topics

aviation	space missions	family love	Hollywood love
Aspect 1	Aspect 2	Aspect 3	Aspect 4
plane	space	home	film
airport	shuttle	family	movie
crash	mission	like	music
flight	astronauts	love	new
safety	launch	kids	best
aircraft	station	mother	hollywood
air	crew	life	love
passenger	nasa	happy	actor
board	satellite	friends	entertainment
airline	earth	cnn	star

The 2 aspects to most likely generate the word 'flight' (left) and 'love' (right), derived from a $K=128$ aspect model of the TDT1 document collection. The displayed terms are the most probable words in the classconditional distribution $P\left(w_{j} \mid z_{k}\right)$, from top to bottom in descending order.

PLSA vs. LSA

- Decomposition/Approximation
- LSA: least-squares criterion measured on the L2- or Frobenius norms of the word-doc matrices
- PLSA: maximization of the likelihoods functions based on the cross entropy or Kullback-Leibler divergence between the empirical distribution and the model
- Computational complexity
- LSA: SVD decomposition
- PLSA: EM training, is time-consuming for iterations ?
- The model complexity of both LSA and PLSA grows linearly with the number of training documents
- There is no general way to estimate or predict the vector representation (of LSA) or the model parameters (of PLSA) for a newly observed document
- LSA and PLSA both assume "bag-of-words" representations of documents (how to distinguish "street market" from market street ?)

PLSA: Dynamic Language Model Adaptation

- The search history can be treated as a pseudo-document which is varying during the speech recognition process

$$
P_{\mathrm{PLSA}}\left(w_{i} \mid H_{w_{i}}\right)=\sum_{k=1}^{K} P\left(w_{i} \mid T_{k}\right) P\left(T_{k} \mid H_{w_{i}}\right)
$$

- The topic unigrams $P\left(w_{i} \mid T_{k}\right)$ are kept unchanged
- The history's probability distribution over the latent topics is gradually updated
- The topic mixture weights $P\left(T_{k} \mid H_{w_{i}}\right)$ are estimated on the fly
- It would be time-consuming

PLSA: Document Organization (1/3)

- Each document is viewed as a document model to generate itself
- Additional transitions between topical mixtures have to do with the topological relationships between topical classes on a 2-D map

$$
P_{\mathrm{PLSA}}\left(w_{i} \mid M_{D}\right)=\sum_{k=1}^{K} P\left(T_{k} \mid \mathrm{M}_{D}\right)\left[\sum_{l=1}^{K} P\left(T_{l} \mid T_{k}\right) P\left(w_{i} \mid T_{l}\right)\right]
$$

Two-dimensional
Tree Structure
for Organized Topics

PLSA: Document Organization (2/3)

- Document models can be trained in an unsupervised way by maximizing the total log-likelihood of the document collection

$$
L_{T}=\sum_{j=1}^{n} \sum_{i=1}^{V} c\left(w_{i}, D_{j}\right) \log P\left(w_{i} \mid D_{j}\right)
$$

- Each topical class can be labeled by words selected using the following criterion

$$
\operatorname{Sig}\left(w_{i}, T_{k}\right)=\frac{\sum_{j=1}^{n} c\left(w_{i}, D_{j}\right) P\left(T_{k} \mid D_{j}\right)}{\sum_{i=1}^{n} c\left(w_{i}, D_{j}\right)\left[1-P\left(T_{k} \mid D_{j}\right)\right]}
$$

PLSA: Document Organization (3/3)

- Spoken Document Retrieval and Browsing System developed by NTU (Prof. Lin-shan Lee)

Latent Dirichlet Allocation (LDA) (1/2)

- The basic generative process of LDA closely resembles PLSA; however,
- In PLSA, the topic mixture $P\left(T_{k} \mid D\right)$ is conditioned on each document $\left(P\left(T_{k} \mid D\right)\right.$ is fixed, unknown)
- While in LDA, the topic mixture $P\left(T_{k} \mid D\right)$ is drawn from a Dirichlet distribution, so-called the conjugate prior, ($P\left(T_{k} \mid D\right)$ is unknown and follows a probability distribution)

Process of generating a corpus with LDA

1) Pick a multinomial distribution φ_{T} for each topic T from a Dirichlet distribution with parameter β
2) Pick a multinomial distribution θ_{D} for each docu D from a Dirichlet distribution with parameter α
3) Pick a topic $T \in\{1,2, \cdots, K\}$ from a multinomial distribution with parameter θ_{D}
4) Pick a word from a multinomial distribution with parameter φ_{T}

Latent Dirichlet Allocation (2/2)

Figure 4: The topic simplex for three topics embedded in the word simplex for three words. The corners of the word simplex correspond to the three distributions where each word (respectively) has probability one. The three points of the topic simplex correspond to three different distributions over words. The mixture of unigrams places each document at one of the corners of the topic simplex. The pLSI model induces an empirical distribution on the topic simplex denoted by x . LDA places a smooth distribution on the topic simplex denoted by the contour lines.

Word Topic Models (WTM)

- Each word of language are treated as a word topical mixture model for predicting the occurrences of other words

$$
P_{\mathrm{wTM}}\left(w_{i} \mid M_{w_{j}}\right)=\sum_{k=1}^{K} P\left(w_{i} \mid T_{k}\right) P\left(T_{k} \mid M_{w_{j}}\right)
$$

- WTM also can be viewed as a nonnegative factorization of a "word-word" matrix consisting probability entries
- Each column encodes the vicinity information of all occurrences of a certain type of word

WTM: Information Retrieval (1/3)

- The relevance measure between a query and a document can be expressed by

$$
P_{\mathrm{wTM}}(Q \mid D)=\prod_{w_{i} \in Q}\left[\sum_{w_{j} \in D} \alpha_{j, D} \sum_{k=1}^{K} P\left(w_{i} \mid T_{k}\right) P\left(T_{k} \mid \mathrm{M}_{w_{j}}\right)\right]^{c\left(w_{i}, Q\right)}
$$

- Unsupervised training
- The WTM of each word can be trained by concatenating those words occurring within a context window of size around each occurrence of the word, which are postulated to be relevant to the word

$$
\log L_{\mathbf{w}}=\sum_{w_{j} \in \mathbf{w}} \log P_{\mathrm{WTM}}\left(Q_{w_{j}} \mid \mathbf{M}_{w_{j}}\right)=\sum_{w_{j} \in \mathbf{w}} \sum_{w_{i} \in Q_{w_{j}}} c\left(w_{i}, Q_{w_{j}}\right) \log P_{\mathrm{WTM}}\left(w_{i} \mid \mathbf{M}_{w_{j}}\right)
$$

WTM: Information Retrieval (2/3)

- Supervised training: The model parameters are trained using a training set of query exemplars and the associated query-document relevance information
- Maximize the log-likelihood of the training set of query exemplars generated by their relevant documents

$$
\log L_{\mathbf{Q}_{\text {Traisset }}}=\sum_{Q \in \mathbf{Q}_{\text {Trainset }}} \sum_{D \in \mathbf{D}_{\text {Rto }}} \log P_{\mathrm{WTM}}(Q \mid D)
$$

WTM: Information Retrieval (3/3)

- Formulas for Supervised Training
where

$$
P\left(T_{k} \mid w, D_{i}\right)=\frac{P\left(w \mid T_{k}\right)\left[\sum_{w_{j} \in D_{i}} \alpha_{j, i} P\left(T_{k} \mid M_{w_{j}}\right)\right]}{\sum_{l=1}^{K}\left[P\left(w \mid T_{l}\right) \sum_{w_{j} \in D_{i}} \alpha_{j, i} P\left(T_{l} \mid M_{w_{j}}\right)\right]}
$$

$$
\hat{P}\left(T_{k} \mid M_{w_{j}}\right)=\frac{\left.\left.\sum_{Q \in[\text { rainSet } Q}\right] \sum_{D_{i} \in[D o c}\right]_{R_{\text {to }}} \sum_{w \in Q} n(w, Q) P\left(M_{w_{j}} \mid w, M_{D_{i}}\right) P\left(T_{k} \mid w, M_{w_{j}}\right)}{\sum_{Q^{\prime} \in[\text { TrainSetQ } Q} \sum_{D_{i}^{\prime} \in[D o c]_{R \text { to } Q^{\prime}}} \sum_{w^{\prime} \in Q^{\prime}} n\left(w^{\prime}, Q^{\prime}\right) P\left(M_{w_{j}} \mid w^{\prime}, M_{D_{i}^{\prime}}\right)}
$$

where

$$
P\left(M_{w_{j}} \mid w, M_{D_{i}}\right)=\frac{\alpha_{j, i} \cdot P\left(w \mid M_{w_{j}}\right)}{\sum_{w_{i} \in D_{i}} \alpha_{l, i} \cdot P\left(w \mid M_{w_{i}}\right)}
$$

$$
\text { and } P\left(T_{k} \mid w, M_{w_{j}}\right)=\frac{P\left(w \mid T_{k}\right) P\left(T_{k} \mid M_{w_{j}}\right)}{\sum_{z=1}^{K} P\left(w \mid T_{z}\right) P\left(T_{z} \mid M_{w_{j}}\right)}
$$

$$
\begin{aligned}
& P\left(M_{w_{j}} \mid w, M_{D_{i}}\right) P\left(T_{k} \mid w, M_{w_{j}}\right) \\
& =\frac{\alpha_{j, i} P\left(w \mid M_{w_{j}}\right)}{\sum_{w_{l} \in D_{i}} \alpha_{l, i} P\left(w \mid M_{w_{l}}\right)} \cdot \frac{P\left(w \mid T_{k}\right) P\left(T_{k} \mid M_{w_{j}}\right)}{\sum_{z=1}^{K} P\left(w \mid T_{z}\right) P\left(T_{z} \mid M_{w_{j}}\right)} \\
& =\frac{\alpha_{j, i} P\left(w \mid M_{w_{j}}\right)}{P\left(w \mid M_{D_{i}}\right)} \cdot \frac{P\left(w \mid T_{k}\right) P\left(T_{k} \mid M_{w_{j}}\right)}{P\left(w \mid M_{w_{j}}\right)} \\
& =\frac{\alpha_{j, i} P\left(w \mid T_{k}\right) P\left(T_{k} \mid M_{w_{j}}\right)}{P\left(w \mid M_{D_{i}}\right)}
\end{aligned}
$$

WTM: Dynamic Language Model Adaptation (1/2)

- For a decoded word w_{i}, we can again interpret it as a (single-word) query; while for each of its search histories, expressed by $H_{w_{i}}=w_{1}, w_{2}, \ldots, w_{i-1}$, we can linearly combine the associated WTM models of the words occurring in $H_{w_{i}}$ to form a composite WTM model

$$
P_{\mathrm{wTM}}\left(w_{i} \mid \mathrm{M}_{H_{w_{i}}}\right)=\sum_{j=1}^{i-1} \beta_{j} P_{\mathrm{wTM}}\left(w_{i} \mid \mathrm{M}_{w_{j}}\right)=\sum_{j=1}^{i-1} \beta_{j} \sum_{k=1}^{K} P\left(w_{i} \mid T_{k}\right) P\left(T_{k} \mid \mathrm{M}_{w_{j}}\right)
$$

$\beta_{j}=\varphi_{j} \prod_{s=1}^{i-j-1}\left(1-\varphi_{j+s}\right)$

- $\beta_{j}=\varphi_{j}$ are nonnegative weighting coefficients which empirically set to be exponentially decayed as the word is being apart from w_{i}
- ϕ_{j} is set to a fixed value (between 0 and 1) for $j=2, \cdots, i-1$, and set to 1 for $j=1$

WTM: Dynamic Language Model Adaptation (2/2)

- For our speech recognition test data, it was experimentally observed that the language model access time of WTM was approximately $1 / 30$ of that of PLSA for language model adaptation, as the iteration number of the online EM estimation of $P\left(T_{k} \mid H_{w_{i}}\right)$ for PLSA was set to 5

$$
P_{\text {Adapt }}\left(w_{i} \mid w_{i-2} w_{i-1}\right)=\lambda \cdot P_{\mathrm{WTM}}\left(w_{i} \mid \mathrm{M}_{H_{w_{i}}}\right)+(1-\lambda) \cdot P_{\mathrm{BG}}\left(w_{i} \mid w_{i-2} w_{i-1}\right)
$$

BG: background n-gram model

Comparison of WTMM and PLSA/LDA

- A schematic comparison for the matrix factorizations of PLSA/LDA and WTM

Summary: Three Ways of Developing LM Approaches for IR

(a) Query likelihood
(b) Document likelihood
literal term matching
or concept matching
(c) Model comparison

LSA: SVDLIBC

- Doug Rohde's SVD C Library version 1.3 is based on the SVDPACKC library
- Download it at http://tedlab.mit.edu/~dr/

LSA: Exercise (1/4)

- Given a sparse term-document matrix
- E.g., 4 terms and 3 docs

- Each entry can be weighted by TFxIDF score

Row \#Tem	Col. \# Doc	
4	43	
		2 nonzero entries at Col 0
0	02.3	Col 0, Row 0
2	23.8	Col 0, Row 2
	1	1 nonzero entry
1	11.3	Col 1, Row 1
3	3	3 nonzero entry
		at Col 2
	04.2	Col 2, Row 0
1	12.2	Col 2, Row 1
2	20.5	Col 2, Row 2

- Perform SVD to obtain term and document vectors represented in the latent semantic space
- Evaluate the information retrieval capability of the LSA approach by using varying sizes (e.g., 100, 200,...,600 etc.) of LSA dimensionality

LSA: Exercise (2/4)

- Example: term-document matrix

```
Indexing Doc no. Nonzero
```

 512532265218852
 77
 5087.725771
 59616.213399
 61213.080868
 7097.725771
 7137.725771
 7447.725771
 11907.725771
 120016.213399
 12597.725771
 - SVD command (IR_svd.bat)

LSA100-Ut
output
LSA100-S
LSA100-Vt

LSA: Exercise (3/4)

- LSA100-Ut

51253 words

word vector $\left(u^{\top}\right): 1 \times 100$

- LSA100-Vt
- LSA100-S

100	
2686.18	
829.941	
559.59	
\ldots	

LSA: Exercise (4/4)

- Fold-in a new $m \times 1$ query vector

$$
\begin{array}{l:l}
\hat{q}_{1 \times k}= & \left(q^{T}\right)_{1 \times m} U_{m \times k}, ~ \sum 1 \\
\text { Just like a row of } V & \begin{array}{c}
\text { Query represented by the weighted } \\
\text { sum of it constituent term vectors }
\end{array}
\end{array}
$$

- Cosine measure between the query and doc vectors in the latent semantic space

$$
\operatorname{sim}(\hat{q}, \hat{d})=\text { coine } \quad(\hat{q} \Sigma, \hat{d} \Sigma)=\frac{\hat{q} \Sigma^{2} \hat{d}^{T}}{|\hat{q} \Sigma||\hat{d} \Sigma|}
$$

