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Hidden Markov Model (HMM):
A Brief OverviewA Brief Overview

History
– Published in papers of Baum in late 1960s and early 1970s
– Introduced to speech processing by Baker (CMU) and Jelinek 

(IBM) in the 1970s (discrete HMMs)(IBM) in the 1970s  (discrete HMMs)
– Then extended to continuous HMMs by Bell Labs

Assumptionsp
– Speech signal can be characterized as a parametric random 

(stochastic) process
P t b ti t d i i ll d fi d– Parameters can be estimated in a precise, well-defined manner

Three fundamental problems
Evaluation of probability (likelihood) of a sequence of– Evaluation of probability (likelihood) of a sequence of 
observations given a specific HMM

– Adjustment of model parameters so as to best account for 
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observed signals
– Determination of a best sequence of model states



Stochastic Process

• A stochastic process is a mathematical model of a p
probabilistic experiment that evolves in time and 
generate s a sequence of numeric values
– Each numeric value in the sequence is modeled by a random 

variable
– A stochastic process is just a (finite/infinite) sequence of randomA stochastic process is just a (finite/infinite) sequence of random 

variables

• ExamplesExamples
(a) The sequence of recorded values of a speech utterance
(b) The sequence of daily prices of a stock( ) q y p
(c) The sequence of hourly traffic loads at a node of a 

communication network
(d) The sequence of radar measurements of the position of an

SP - Berlin Chen   3

(d) The sequence of radar measurements of the position of an 
airplane



Observable Markov Model

• Observable Markov Model (Markov Chain)Observable Markov Model (Markov Chain)
– First-order Markov chain of N states is a triple (S,A,π)

• S is a set of N states
• A is the N N matrix of transition probabilities between states

P(st=j|st-1=i, st-2=k, ……)=P(st=j|st-1=i)≡Aij

• π is the vector of initial state probabilities
First-order and time-invariant assumptions

• π is the vector of initial state probabilities
πj =P(s1=j)

– The output of the process is the set of 
states at each instant of time, 
when each state corresponds to an 
observable event

– The output in any given state is 
not random  (deterministic!)
T i l t d ib th h

SP - Berlin Chen   4

– Too simple to describe the speech 
signal characteristics



Observable Markov Model (cont.)
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Observable Markov Model (cont.)( )

• Example 1: A 3-state Markov Chain λ
State 1 generates symbol A only, 
State 2 generates symbol B only, 

and State 3 generates symbol C only A
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– Given a sequence of observed symbols O={CABBCABC}, the only 
one corresponding state sequence is {S3S1S2S2S3S1S2S3}, and the 
corresponding probability is

[ ] B C

p g p y

P(O|λ)
=P(S3)P(S1|S3)P(S2|S1)P(S2|S2)P(S3|S2)P(S1|S3)P(S2|S1)P(S3|S2)
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P(S3)P(S1|S3)P(S2|S1)P(S2|S2)P(S3|S2)P(S1|S3)P(S2|S1)P(S3|S2)
=0.1 0.3 0.3 0.7 0.2 0.3 0.3 0.2=0.00002268



Observable Markov Model (cont.)( )

• Example 2: A three-state Markov chain for the Dow 
J I d t i lJones Industrial average

The probability of 5 consecutive up days
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Observable Markov Model (cont.)( )

• Example 3: Given a Markov model, what is the mean p ,
occupancy duration of each state i
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Hidden Markov Model
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Hidden Markov Model (cont.)( )

• HMM, an extended version of Observable Markov Model
– The observation is turned to be a probabilistic function (discrete or 

continuous) of a state instead of an one-to-one correspondence of a 
state

– The model is a doubly embedded stochastic process with an 
underlying stochastic process that is not directly observable (hidden)

• What is hidden? The State Sequence!q
According to the observation sequence, we are not sure which 
state sequence generates it!

• Elements of an HMM (the State-Output HMM) λ={S,A,B,π}
– S is a set of N states
– A is the N N matrix of transition probabilities between states
– B is a set of N probability functions, each describing the observation 

probability with respect to a state
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probability with respect to a state
– π is the vector of initial state probabilities



Hidden Markov Model (cont.)( )

• Two major assumptions j p
– First order (Markov) assumption

• The state transition depends only on the origin and destination
• Time-invariant 

( ) ( ) ( ) jitt AijPisjsPisjsP ,11 ======= −− ττ

– Output-independent assumption
• All observations are dependent on the state that generated them,All observations are dependent on the state that generated them, 

not on neighboring observations

( ) ( )tttttttt sPsP oooooo =++−− KK 2112 ,,,,,( ) ( )tttttttt ++ 2112
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Hidden Markov Model (cont.)( )

• Two major types of HMMs according to the observations
– Discrete and finite observations:

• The observations that all distinct states generate are finite in 
numbernumber
V={v1, v2, v3, ……, vM}, vk∈RL

• In this case, the set of observation probability distributions 
B {b ( )} i d fi d b ( ) P( | j) 1 k M 1 j NB={bj(vk)}, is defined as  bj(vk)=P(ot=vk|st=j), 1≤k≤M, 1≤j≤N
ot : observation at time t, st : state at time t

for state j, bj(vk) consists of only M probability values

A left-to-right HMM
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Hidden Markov Model (cont.)( )

• Two major types of HMMs according to the observationsj yp g
– Continuous and infinite observations:

• The observations that all distinct states generate are infinite 
d ti th t i V { | Rd}and continuous, that is, V={v| v∈Rd}

• In this case, the set of observation probability distributions 
B={bj(v)}, is defined as  bj(v)=fO|S(ot=v|st=j), 1≤j≤N{ j( )}, j( ) O|S( t | t j), j

bj(v) is a continuous probability density function (pdf)
and is often a mixture of Multivariate Gaussian (Normal)
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Hidden Markov Model (cont.)( )

• Multivariate Gaussian Distributions
– When X=(X1, X2,…, Xd) is a d-dimensional random vector, the 

multivariate Gaussian pdf has the form:
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– If X1, X2,…, Xd are independent, the covariance matrix is reduced 
to diagonal covariance 
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g
• The distribution as d independent scalar Gaussian distributions 
• Model complexity is significantly reduced



Hidden Markov Model (cont.)( )

• Multivariate Gaussian Distributions
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Hidden Markov Model (cont.)( )

• Covariance matrix of the 
correlated feature vectors 
(Mel-frequency filter bank 
outputs)outputs)

• Covariance matrix of the 
partially de correlated featurepartially de-correlated feature 
vectors (MFCC without C0)
– MFCC: Mel-frequency cepstral CC e eque cy ceps a

coefficients
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Hidden Markov Model (cont.)( )

• Multivariate Mixture Gaussian Distributions (cont.)( )
– More complex distributions with multiple local maxima can be 

approximated by Gaussian (a unimodal distribution) mixture
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– Gaussian mixtures with enough mixture components can 
approximate any distribution
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Hidden Markov Model (cont.)( )

• Example 4: a 3-state discrete HMM λ 0.6 Ergodic HMM
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– Given a sequence of observations O={ABC}, there are 27 
possible corresponding state sequences, and therefore the 
corresponding probability iscorresponding probability is
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Hidden Markov Model (cont.)( )

• Notation :
– O={o1o2o3……oT}: the observation (feature) sequence
– S= {s1s2s3……sT} : the state sequence

λ : model for HMM λ={A B π}– λ : model, for HMM, λ={A,B,π} 
– P(O|λ) :  The probability of observing O given the model λ
– P(O|S,λ) : The probability of observing O given λ and a state ( | ) p y g g

sequence S of λ
– P(O,S|λ) : The probability of observing O and S given λ

P(S|O λ) : The probability of observing S given O and λ– P(S|O,λ) : The probability of observing S given O and λ

• Useful formula
Bayes’ Rule :– Bayes  Rule : 
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( ) ( )BPBP

( ) ( ) ( ) ( ) ( )BPBAPAPABPBAP ==,

yprobabilitthedescribingmodel :λ

chain rule



Hidden Markov Model (cont.)( )

• Useful formula (Cont.):
– Total Probability Theorem
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Three Basic Problems for HMM

• Given an observation sequence O=(o1,o2,…..,oT),
and an HMM λ=(S,A,B,π)
– Problem 1:

How to efficiently compute P(O|λ) ?
Evaluation problem

– Problem 2:
How to choose an optimal state sequence S=(s s s ) ?How to choose an optimal state sequence S=(s1,s2,……, sT) ?

Decoding Problem

– Problem 3:
How to adjust the model parameter λ=(A,B,π) to maximize P(O|λ)?

L i / T i i P bl
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Learning / Training Problem



Basic Problem 1 of HMM (cont.)( )

Given  O and λ, find P(O|λ)= Prob[observing O given λ]
• Direct Evaluation

– Evaluating all possible state sequences of length T that generating 
observation sequence Oobservation sequence O
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Basic Problem 1 of HMM (cont.)( )

• Direct Evaluation (cont )Direct Evaluation (cont.)
– : The joint output probability along the path S

• By output-independent assumption
( )λ,SOP

– The probability that a particular observation symbol/vector is 
emitted at time t depends only on the state st and is 
conditionally independent of the past observations 
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Basic Problem 1 of HMM (cont.)( )

• Direct Evaluation (Cont.) ( ) ( )tstt t
bsP oo =λ, 
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– Huge Computation Requirements: O(NT)
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• Exponential computational complexity

( )  ADD  : 1-, NTN2 MUL N1T-2 TTT ≈Complexity

• A more efficient algorithms can be used to evaluate                
– Forward/Backward Procedure/Algorithm

( )λOP
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Basic Problem 1 of HMM (cont.)( )

• Direct Evaluation (Cont.) s2

s1

s3

s s s s
State
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State-time Trellis Diagram
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si means bj(ot) has been computed 

aij means aij has been computed



Basic Problem 1 of HMM
The Forward Procedure- The Forward Procedure

• Base on the HMM assumptions the calculation of• Base on the HMM assumptions, the calculation of
and                    involves only        ,          

and , so it is possible to compute the likelihood
( )λ,ssP 1tt − ( )λ,tt sP o 1ts − ts

toand        , so it is possible to compute the likelihood               
with recursion on 

to
t

• Forward variable :  
– The probability that the HMM is in state i at time t having 

( ) ( )λis,o...ooPi tt21t ==α

generating partial observation o1o2…ot
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Basic Problem 1 of HMM
The Forward Procedure (cont )- The Forward Procedure (cont.)

• Algorithm
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Computed in a time synchronous fashion from left to right where
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– Computed in a time-synchronous fashion from left-to-right, where 
each cell for time t is completely computed before proceeding to 
time t+1

All t t dl h l i l
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• All state sequences, regardless how long previously, 
merge to N nodes (states) at each time instance t



Basic Problem 1 of HMM
The Forward Procedure (cont )- The Forward Procedure (cont.)

( ) ( )jPj λ
( ) ( ) ( )APABPBAP =,

output( ) ( )
( ) ( )
( ) ( ) ( )

ttt

ttt

jsPjsoooP

jsoooPj

===

==

21

21

,...        

,...α

λλ

λ output
independent
assumption

( ) ( ) ( )
( ) ( )
( ) ( )

tttt

ttttt

jsoPjsoooP

jsPjsoPjsoooP

===

====

−

−

121

121

,,...        

,,...        

λλ

λλλ ( ) ( ) ( )BAPAPABP ,=

( ) ( )j objsoP == λ( ) ( )

( ) ( )tj

N

ttt

tjtt

objsisoooP

objsoooP

⎥⎦
⎤

⎢⎣
⎡ ===

==

∑

−

1121

121

,,...

,...        

λ

λ
( ) ( )tjtt objsoP λ,

( ) ( )∑
Ball

BAPAP
 

,( ) ( )

( ) ( ) ( )tj

N

i
ttttt

tj
i

ttt

obisooojsPisoooP

objsisoooP

⎥⎦
⎤

⎢⎣
⎡ ====

⎥⎦⎢⎣

∑

∑

−−−−

=
−−

1
11211121

1
1121

,,...,...        

,,...        

λλ

λ

( ) ( ) ( )tj

N

i
tttt

i

obisjsPisoooP ⎥⎦
⎤

⎢⎣
⎡ ====

⎥⎦⎢⎣

∑
=

−−−

=

1
11121

1

,,...        λλ
first order

SP - Berlin Chen   28

( ) ( )tj

N

i
ijt obai ⎥⎦
⎤

⎢⎣
⎡=

⎦⎣

∑
=

−
1

1        α

first-order 
Markov
assumption



Basic Problem 1 of HMM
The Forward Procedure (cont )- The Forward Procedure (cont.)

• α3(3)=P(o1,o2,o3,s3=3|λ) s2
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Basic Problem 1 of HMM
The Forward Procedure (cont )- The Forward Procedure (cont.)

• A three-state Hidden Markov Model for the Dow Jones 
Industrial average
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0 4

0.7

(0.6*0.35+0.5*0.02+0.4*0.009)*0.7
=0.1792
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Basic Problem 1 of HMM
The Backward Procedure- The Backward Procedure

• Backward variable : βt(i)=P(ot+1,ot+2,…..,oT|st=i , λ)Backward variable : βt(i) P(ot+1,ot+2,…..,oT|st i , λ)
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Basic Problem 1 of HMM
Backward Procedure (cont )- Backward Procedure (cont.)

• Why ?( ) ( ) ( )iiisP βαλ ==OWhy                                             ?
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Basic Problem 1 of HMM
The Backward Procedure (cont )- The Backward Procedure (cont.)

• β2(3)=P(o3,o4,…, oT|s2=3,λ) s2

s1

s3β2( ) ( 3, 4, , T| 2 , )
=a31* b1(o3)*β3(1) +a32* b2(o3)*β3(2)+a33* b1(o3)*β3(3)

State

s2

s3

s2

s3

s2

s3

s2

s3

s2

s3

s2

s3
State

s2

s1

s2

s1

s2

s1

s2

s1

s2

s3

s2

s1

1 2 3 T-1 T Time

O1 O2 O3 OT

1            2             3                                       T-1         T     Time

OT-1
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Basic Problem 2 of HMM

How to choose an optimal state sequence S=(s1,s2,……, sT)?p q ( 1 2 T)
• The first optimal criterion: Choose the states st are 

individually most likely at each time t

Define a posteriori probability variable ( ) ( )λO  ,isPi tt ==γ

( ) ( )
( )

( )
( )

( ) ( )
( ) ( )∑∑

=
=

=
=

=
= N

tt
N

tt
t

mm
ii

msP
,isP

P
,isP

i
βα

βαγ  
λO

λO
λO

λO
( ) ( ) ( ) ( )∑∑

== 1m tt1m t mm,msP βαλO

state occupation probability (count) – a soft alignment of HMM state to the 

– Solution : st* = argi max [γt(i)], 1 ≤ t ≤ T
• Problem: maximizing the probability at each time t individually

observation (feature) 
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Problem: maximizing the probability at each time t individually 
S*= s1*s2*…sT* may not be a valid sequence (e.g. ast*st+1* = 0)



Basic Problem 2 of HMM (cont.)( )

• P(s3 = 3 ,O | λ)=α3(3)*β3(3) s2

s1

s3P(s3  3 ,O | λ) α3(3) β3(3)

State α3(3)
s s

β3(3)

s2

s1

s2

s1

s2

s1

s2

s1

s2

s1

s2

s3

s2

s3

s2

s3

s2

s3

s2

s3

a23=0

s2

s3

s2

s3

s2

s3

s2

s3

s2

s3

s2

s3

s2

s3

s2

s3

2

s3

2

s1

1            2             3                                       T-1         T     time

O1 O2 O3 OTOT-1
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Basic Problem 2 of HMM
The Viterbi Algorithm- The Viterbi Algorithm

• The second optimal criterion: The Viterbi algorithm can p g
be regarded as the dynamic programming algorithm 
applied to the HMM or as a modified forward algorithm

– Instead of summing up probabilities from different 
paths coming to the same destination state the Viterbipaths coming to the same destination state, the Viterbi 
algorithm picks and remembers the best path

• Find a single optimal state sequence S=(s1,s2,……, sT)

– How to find the second, third, etc., optimal state 
sequences (difficult ?)

– The Viterbi algorithm also can be illustrated in a trellis 
framework similar to the one for the forward algorithm
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g
• State-time trellis diagram



Basic Problem 2 of HMM
The Viterbi Algorithm (cont )- The Viterbi Algorithm (cont.)

• Algorithmg
( )

( )
s,ss= 

T

T

= 21

21

? ,..,,n observatio
given afor  ,..,sequence statebest  a Find

oooO
S
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121
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121

( ) ( )[ ] ( )baij tjijtNit +≤≤+ =∴ 111  maxinduction By δδ o

( ) ( )
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T
*
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ijtNit ≤≤+

=

=
11

maxargfrombacktracecan We

gbacktracinFor  ....  maxarg                        δψ
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– Complexity: O(N2T)

( )TNiT ≤≤1
g



Basic Problem 2 of HMM
The Viterbi Algorithm (cont )- The Viterbi Algorithm (cont.)

s2

s1

s3

s3 s3 s3 s3

State
s3

δ3(3)

s2 s2 s2 s2

3

s2

s1 s1 s1 s1s1

1            2             3                                       T-1         T     time

O1 O2 O3 OTOT-1
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Basic Problem 2 of HMM
The Viterbi Algorithm (cont )- The Viterbi Algorithm (cont.)

• A three-state Hidden Markov Model for the Dow JonesA three state Hidden Markov Model for the Dow Jones 
Industrial average

0.6
(0.6*0.35)*0.7

0.5

0.4
0.7

( )
=0.147

0.1

0.3
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Basic Problem 2 of HMM
The Viterbi Algorithm (cont )- The Viterbi Algorithm (cont.)

• Algorithm in the logarithmic form g g
( )

( )
s,ss= 
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( )  iδs TNiT ≤≤
=
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maxargfrombacktracecan We



Homework-1
• A three-state Hidden Markov Model for the Dow Jones 

Industrial averageIndustrial average

– Find the probability:  
P(up, up, unchanged, down, unchanged, down, up|λ)
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– Fnd the optimal state sequence of the model which generates the 
observation sequence: (up, up, unchanged, down, unchanged, down, up)



Probability Addition in F-B Algorithmy g

• In Forward-backward algorithm, operations usually g , p y
implemented in logarithmic domain P1

P1 +P2logP1

logP2 log(P1+P2)

• Assume that we want to add       and1P 2P P2

( ) ( )12 loglog
121

21

1logloglog   

if
PP

bb
bbbPPP

PP
−++=+

≥

( ) ( )

( ) ( )21 loglog1logloglog

else
PP bbbPPP −++=+( ) ( )221 1logloglog  bb bPPP ++=+

The values of                     can be
d i  i   bl   d  h  

( )x
b b+1log
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saved in in a table to speedup the 
operations



Probability Addition in F-B Algorithm (cont.)y g ( )

• An example codep
#define LZERO  (-1.0E10)   // ~log(0) 
#define LSMALL (-0.5E10)   // log values < LSMALL are set to LZERO
#define minLogExp  -log(-LZERO) // ~=-23g g( )
double LogAdd(double x, double y)
{
double temp,diff,z;   
if (x<y)if (x y)
{

temp = x; x = y; y = temp;
}
diff = y x; //notice that diff <= 0diff = y-x; //notice that diff <= 0
if (diff<minLogExp) // if y’ is far smaller than x’

return (x<LSMALL) ?  LZERO:x;
else
{{
z = exp(diff);
return x+log(1.0+z);

}
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}
}



Basic Problem 3 of HMM
Intuitive ViewIntuitive View

• How to adjust (re-estimate) the model parameter λ=(A,B,π) 
i i P(O O | ) l P(O O | )?to maximize P(O1,…, OL|λ) or logP(O1,…, OL |λ)?

– Belonging to a typical problem of “inferential statistics”
The most difficult of the three problems because there is no known– The most difficult of the three problems, because there is no  known 
analytical method that maximizes the joint probability of the training 
data in a close form

( ) ( )loglog OOOO PP
L

∏= λλ( ) ( )

( ) ( ) ( ),loglog      

log,...,,log

11

1
21

SOSO

OOOO

S
PPP

PP

R

l all
l

L

l
l

l
lL

∑ ∑∑

∏

==

=

==

=

λλλ

λλ
The “log of sum” form is 
difficult to deal with

f

HMM  theof sequence state possible a :-
HMM for the utterances  training have  that weSuppose-

11

S

S

L
l alll ==

– The data is incomplete because of the hidden state sequences
– Well-solved by the Baum-Welch (known as forward-backward) 

algorithm and EM (Expectation-Maximization) algorithm

SP - Berlin Chen   44

a go a d ( pec a o a a o ) a go
• Iterative update and improvement
• Based on Maximum Likelihood (ML) criterion 



Maximum Likelihood (ML) Estimation: 
A Schematic Depiction (1/2)A Schematic Depiction  (1/2)

• Hard Assignment
– Given the data follow a multinomial distribution

P(B| S ) 2/4 0 5
State S1

P(B| S1)=2/4=0.5

P(W| S1)=2/4=0.5
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Maximum Likelihood (ML) Estimation: 
A Schematic Depiction (1/2)A Schematic Depiction  (1/2)

• Soft Assignment
Given the data follow a multinomial distribution– Given the data follow a multinomial distribution

– Maximize the likelihood of the data given the alignment

State S1 State S2
( ) ( )λγ ,1 1 OssP tt == ( ) ( )λγ ,2 2 OssP tt ==

( ) ( ) 121∑ + γγ

0.7 0.3

( ) ( ) 121 =∑ + tt γγ

0.4 0.6P(B| S1)=(0.7+0.9)/
(0.7+0.4+0.9+0.5) P(B| S2)=(0.3+0.1)/

0.9 0.1

0 5 0 5

( )
=1.6/2.5=0.64

P(W| S )=(0 4+0 5)/

(0.3+0.6+0.1+0.5)
=0.4/1.5=0.27

P(W| S2)=( 0.6+0.5)/
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0.5 0.5P(W| S1)=(0.4+0.5)/
(0.7+0.4+0.9+0.5)

=0.9/2.5=0.36

P(W| S2) ( 0.6 0.5)/
(0.3+0.6+0.1+0.5)

=0.11/1.5=0.73



Basic Problem 3 of HMM
Intuitive View (cont )Intuitive View (cont.)

• Relationship between the forward and backward variables
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Basic Problem 3 of HMM
Intuitive View (cont )Intuitive View (cont.)

• Define a new variable: i
j

Define a new variable:
( ) ( )λO,,, 1 jsisPji ttt === +ξ t t+1

– Probability being at state i at time t and at state j at time t+1
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• Recall the posteriori probability variable:
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Basic Problem 3 of HMM
Intuitive View (cont )Intuitive View (cont.)

• P(s3 = 3, s4 = 1,O | λ)=α3(3)*a31*b1(o4)*β1(4) s2

s1

s3P(s3  3, s4  1,O | λ) α3(3) a31 b1(o4) β1(4)

s1 s1 s1

State
s3 s3 s3 s3 s3 s3

s2 s2 s2s2 s2 s2 s2 s2 s2

s3 s3 s1s1 s1 s1 s1 s1 s1

1            2             3            4                        T-1         T     time

O1 O2 O3 OTOT-1
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Basic Problem 3 of HMM
Intuitive View (cont )Intuitive View (cont.)

• ( ) ( )λO,,, 1 jsisPji ttt === +ξ

( )∑
−
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=
1

1
in   state  to state from ns transitioofnumber  expected,

T

t
t jiji Oξ

•

1 1T T N

( ) ( )λγ ,OisPi tt ==

A set of reasonable re estimation form la for {A } is
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• A set of reasonable re-estimation formula for {A,π} is

tii 1 at time  statein   times)of(number freqency  expectedπ ==
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 state  to state fromn  transitioofnumber  expected
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  state fromn  transitioofnumber  expected

Formulae for Single Training Utterance



Basic Problem 3 of HMM
Intuitive View (cont )Intuitive View (cont.)

• A set of reasonable re-estimation formula for {B} is{ }
– For discrete and finite observation bj(vk)=P(ot=vk|st=j)
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∑ jtγ
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– For continuous and infinite observation bj(v)=fO|S(ot=v|st=j),
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Modeled as a mixture of multivariate Gaussian distributions
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Basic Problem 3 of HMM
Intuitive View (cont )Intuitive View (cont.)

– For continuous and infinite observation (Cont.)
( )
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• Define a new variable 
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Basic Problem 3 of HMM
Intuitive View (cont )Intuitive View (cont.)

– For continuous and infinite observation (Cont.)
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Basic Problem 3 of HMM
Intuitive View (cont )Intuitive View (cont.)

• Multiple Training Utterancesp g

F/B F/B F/B

s1

台師大
s2 s3
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Basic Problem 3 of HMM
Intuitive View (cont )Intuitive View (cont.)

– For continuous and infinite observation (Cont.)
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Basic Problem 3 of HMM
Intuitive View (cont )Intuitive View (cont.)

– For discrete and finite observation (cont.) 
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Semicontinuous HMMs 
• The HMM state mixture density functions are tied 

together across all the models to form a set oftogether across all the models to form a set of 
shared kernels
– The semicontinuous or tied-mixture HMM

( ) ( ) ( ) ( ) ( )kk

M

1k j

M

1k kjj ,,Nkbvfkbb Σμooo ∑∑
==

==

t t t tstate output  
Probability of state j k-th mixture weight

t of state j
(discrete model dependent)

k-th mixture density function or k-th codeword
(shared across HMMs, M is very large)

– A combination of the discrete HMM and the continuous HMM
• A combination of discrete model-dependent weight coefficients and 

(discrete, model-dependent)

continuous model-independent codebook probability density functions
– Because M is large, we can simply use the L most significant 

values ( )kvf o
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values
• Experience showed that L is 1~3% of M is adequate

– Partial tying of                for different phonetic class

( )kf

( )kvf o



Semicontinuous HMMs (cont.)( )

( )11, ΣμN

s3

( ) ⎤⎡b 1
( )
⎥
⎤

⎢
⎡b3 1

( )11, ΣμN

s2

s1

( )

( )
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎡

kb

b

2

2

.  

.  
1

( )

⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡b1

.  

.  
1

( )

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢
⎢
⎢
⎢

kb3

.  

.  

. ( )22 , ΣμN

( )⎥
⎥
⎥
⎥

⎦
⎢
⎢
⎢
⎢

⎣ Mb2

.  

.  ( )

( )⎥
⎥
⎥
⎥
⎥
⎥

⎦
⎢
⎢
⎢
⎢
⎢
⎢

⎣ Mb

kb1

.  

.  ( )⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣ Mb3

.  

( )kkN Σμ ,

s3

( )⎦⎣ Mb1
( )kkμ ,

s2

s1 ( )MMN Σμ ,
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( )MMμ ,



HMM Topologygy

• Speech is time-evolving non-stationary signalp g y g
– Each HMM state has the ability to capture some quasi-stationary 

segment in the non-stationary speech signal
A l ft t i ht t l i t l did t t d l th– A left-to-right topology is a natural candidate to model the 
speech signal (also called the “beads-on-a-string” model)

– It is general to represent a phone using 3~5 states (English) and 
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g p p g ( g )
a syllable using 6~8 states (Mandarin Chinese)



Initialization of HMM
s2s1 s3

• A good initialization of HMM training :
Segmental K-Means Segmentation into States

A th t h t i i t f b ti d i iti l ti t f ll– Assume that we have a training set of observations and an initial estimate of all 
model parameters

– Step 1 : The set of training observation sequences is segmented into states, based 
on the initial model (finding the optimal state sequence by Viterbi Algorithm)( g p q y g )

– Step 2 :
• For discrete density HMM (using M-codeword codebook)

jk stateinindexcodebookwithvectorsofnumberthe

• For continuous density HMM (M Gaussian mixtures per state)

( )  
j

jkkb j  statein   vectorsofnumber  the
statein index codebook with vectorsofnumber the =

lfihi hib il h M

  statein   vectorsofnumber  by the divided         
 state of cluster in  classified  vectorsofnumber 

clustersofset aintostateeach within n vectorsobservatioecluster th

j
jmw

Mj

jm =
⇒

– Step 3: Evaluate the model score
  state of cluster in  classified  vectors theofmatrix  covariance sample

 state of cluster in  classified  vectors theofmean  sample

jm

jm

jm

jm

=Σ

=μ
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Step 3: Evaluate the model score
If the difference between the previous and current model scores is greater than a 
threshold, go back to Step 1, otherwise stop, the initial model is generated



Initialization of HMM (cont.)( )

Training Data

Initial Model StateSequenceEstimate parameters 
ModelReestimation

q
Segmemtationof Observation via

Segmental K-means

Model 
Convergence

?

NO

YES
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Model Parameters



Initialization of HMM (cont.)( )

• An example for discrete HMM
s2s1 s3

p
– 3 states and 2 codeword

State s3s3s3 s3 s3s3 s3 s3 s3 s3

s2

s1

s2

s1

s2

s1

s2

s1

s2

s1

s2

s1

s2

s1

s2

s1

s2

s1

s2

s1

O1 O2 O3

1         2          3         4        5        6         7         8         9        10
O4 O5 O6 O9O8O7 O10

• b1(v1)=3/4, b1(v2)=1/4
• b2(v1)=1/3, b2(v2)=2/3
• b (v )=2/3 b (v )=1/3

v1

v2• b3(v1)=2/3, b3(v2)=1/3
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Initialization of HMM (cont.)( )

• An example for Continuous HMM
s2s1 s3

p
– 3 states and 4 Gaussian mixtures per state

State s3s3s3 s3s3 s3 s3 s3 s3

s2

3

s1

s2

3

s1

s2

s1

s2

3

s1

s2

s1

s2

3

s1

s2

3

s1

s2

3

s1

s2

3

s1

O1 O2

1         2                         N
ON

K {μ Σ ω }{μ12,Σ12,ω12}K-means {μ11,Σ11,ω11}{μ12,Σ12,ω12}

Global mean Cluster 1 mean

Cluster 2mean
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Cluster 2mean

{μ13,Σ13,ω13} {μ14,Σ14,ω14}



Known Limitations of HMMs (1/3)( )

• The assumptions of conventional HMMs in Speech 
P iProcessing
– The state duration follows an exponential distribution

• Don’t provide adequate representation of the temporal structure of• Don t provide adequate representation of the temporal structure of 
speech

( ) ( )ii
t
iii aatd −= − 11

– First-order (Markov) assumption: the state transition depends 
only on the origin and destination

– Output-independent assumption: all observation frames areOutput independent assumption: all observation frames are 
dependent on the state that generated them, not on neighboring 
observation frames

Researchers have proposed a number of techniques to address 
these limitations, albeit these solution have not significantly 
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g y
improved speech recognition accuracy for practical applications.



Known Limitations of HMMs (2/3)( )

• Duration modeling

geometric/

empirical 
distribution

geometric/
exponential
distribution

Gamma
distribution

Gaussian 
distribution
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Known Limitations of HMMs (3/3)( )

• The HMM parameters trained by the Baum-Welchp y
algorithm and EM algorithm were only locally optimized

Likelihood

  l M d l C fi ti  S
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Current  Model Configuration Model Configuration Space



Homework-2 (1/2)( )
0.34

s1{A:.34,B:.33,C:.33}

0.33 0.33

s2 s30.34

0.33
0.33

0.33

0.33
0.33

0.33

0.34

{A:.33,B:.34,C:.33} {A:.33,B:.33,C:.34}

TrainSet 1:
1.  ABBCABCAABC   
2.  ABCABC             
3 ABCA ABC

TrainSet 2:
1.  BBBCCBC    
2.  CCBABB      
3 AACCBBB3.  ABCA ABC           

4.  BBABCAB           
5.  BCAABCCAB       
6.  CACCABCA         

3.  AACCBBB    
4.  BBABBAC    
5.  CCA ABBAB  
6.  BBBCCBAA  
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7.  CABCABCA         
8.  CABCA               
9.  CABCA  

7.  ABBBBABA  
8.  CCCCC        
9.  BBAAA  



Homework-2 (2/2)( )

P1. Please specify the model parameters after the first and 50th  
iterations of Baum-Welch training 

P2 Please show the recognition results by using the above trainingP2. Please show the recognition results by using the above training  
sequences as the testing data (The so-called inside testing). 
*You have to perform the recognition task with the HMMs trained  
f th fi t d 50th it ti f B W l h t i i ti lfrom the first and 50th iterations of Baum-Welch training, respectively

P3. Which class do the following testing sequences belong to?
ABCABCCAB
AABABCCCCBBB

P4. What are the results if Observable Markov Models were instead 
used in P1, P2 and P3? 
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Isolated Word Recognitiong

Word Model M1

( )1Mp X

Likelihood 
of M1

Word Model M2

( )2Mp X

S
el

ec
to

r

Feature 
SequenceSpeech

Si l

Likelihood 
of M2 ( ) ( )k

k
MpLabel XX maxarg=

Word Model M

Feature 
Extraction

t L
ik

e 
W

or
d 

MML
XSignal

Likelihood 
of MVWord Model MV

( )VMp X

M
os

tof MV

Viterbi Approximation

( ) ( )[ ]k
k

MpLabel SXX
S

,maxmaxarg=

Word Model MSil

( )Mp X

k
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( )SilMp X
Likelihood 

of MSil



Measures of ASR Performance (1/8)

• Evaluating the performance of automatic speech recognition 
(ASR) systems is critical and the Word Recognition Error(ASR) systems is critical, and the Word Recognition Error 
Rate (WER) is one of the most important measures

• There are typically three types of word recognition errors
S b tit ti– Substitution

• An incorrect word was substituted for the correct word
– Deletion

• A correct word was omitted in the recognized sentence
– Insertion

A d dd d i h i d• An extra word was added in the recognized sentence

H t d t i th i i t ?
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• How to determine the minimum error rate?



Measures of ASR Performance (2/8)
• Calculate the WER by aligning the correct word string 

against the recognized word string
A ma im m s bstring matching problem– A maximum substring matching problem

– Can be handled by dynamic programming
deleted

• Example: Correct       : “the effect is clear”
Recognized: “effect is not clear”

– Error analysis: one deletion and one insertion
Measures: word error rate (WER) word correction rate (WCR)

matched matchedinserted

– Measures: word error rate (WER), word correction rate (WCR), 
word accuracy rate (WAR)

%50
4
2

tti thdfN
   wordsIns.Del.Sub.100%RateError Word ==

++
=

Might be higher than 100%

%75
4
3

sentencecorrect  in the  wordsof No.
  wordsMatched100%Rate Correction Word

4sentencecorrect  in thewordsofNo.

===

WER+
WAR
=100%
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%50
4

13
sentencecorrect in thewordsofNo.

 wordsIns.- Matched100%RateAccuracy  Word =
−

==

Might be negative



Measures of ASR Performance (3/8)
• A Dynamic Programming Algorithm (Textbook)

//denotes for the word length of the correct/reference sentence
//denotes for the word length of the recognized/test sentence//denotes for the word length of the recognized/test sentence

minimum word 
error alignment
at the a grid [i j]

/hit

at the a grid [i,j]

/hit

kinds of
alignment

Test j

/hit

Ref i
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Measures of ASR Performance (4/8)
• Algorithm (by Berlin Chen)

:tionInitializa  :1 Step
// f{jf

 //test{n  1,...,ifor       
:Iteration  :2 Step

=Ref j

1;1][0]-G[iG[i][0]                 
 //test{n  1,...,ifor             

0;G[0][0]            

+=
=

=

on)Substituti LT[i],LR[j]! (if 11]-1][j-G[i
                                )(Delection   11]-G[i][j 

                                 )(Insertion  11][j]-G[i

minG[i][j]            

ce//referen{ m1,...,jfor         

⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡

=+
+
+

=

=

ce //referen{  m1,...,jfor              
Direction) l(Horizonta    }             

on //Inserti1;B[i][0]                 

=

=

Di ti )(Di lti//S b tit3
        Direction) (Vertical  ,n  //Deletio2;

    Direction) l(Horizonta  on, //Inserti1;

B[i][j]             

          Match) LT[i],LR[j] (if   1]-1][j-G[i

⎪

⎪
⎪
⎨

⎧

=

⎥
⎥
⎦⎢

⎢
⎣ =Test i

Direction) (Vertical    }             
Deletion // 2;B[0][j]                 

1;1]-G[0][jG[0][j]                 
=

+=

reference j, //for }             
                 

              Direction) (Diagonal //match ;4
   Direction)(Diagonaltion  //Substitu;3

⎪
⎪
⎩

 test i, //for }       

G[n][m]100%RateErrorWord

:Backtrace and Measure  :3 Step

×=

Note: the penalties for substitution, deletion
and insertion errors are all set to be 1 here

l ftth//I tiLT[i]""i t1B[i][j]if
B[0][0]).....(B[n][m] path backtrace Optimal             

RateError  Word%100RateAccuracy     Word          
m

100%RateError   Word          

→→=
−=

×=
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   diagonallydown  go   then on,Substitutior h //Hit/Matc;" LR[i]    LR[j]"print                           else            

down go   then , //Deletion;"              LR[j]"print    2B[i][j]   if else            
leftgo   then n,//Insertio;LT[i]"            "print    1B[i][j]         if           

=
=



Measures of ASR Performance (5/8)( )
• A Dynamic Programming Algorithm

– Initialization
Correct/Reference Word 

Sequence
m
m-1
.

Ins. (n,m)

Del.

j
Ins. (i,j)

Del

for (j=1;j<=m;j++)
{ //reference
grid[0][j] = grid[0][j-1];
grid[0][j].dir = VERT; (i-1,j)

.

.

.
4

Del.
grid[0][j].score 

+= DelPen;
grid[0][j].del ++;

}

(i-1,j-1) (i,j-1)

3

2
1

Del.

}

1Del.

2Del.
3Del.

HTK

Recognized/test Word
Sequence

1       2       3       4       5 ….     …                  i …  …        n-1    n
1Ins.

grid[0][0].score = grid[0][0].ins for (i=1;i<=n;i++) { // test
id[i][0] id[i 1][0]

0
0 2Ins. 3Ins.

HTK
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Sequenceg [ ][ ] g [ ][ ]
= grid[0][0].del = 0;
grid[0][0].sub = grid[0][0].hit = 0;
grid[0][0].dir = NIL;

grid[i][0] = grid[i-1][0];
grid[i][0].dir = HOR;
grid[i][0].score +=InsPen;
grid[i][0].ins ++;

}



Measures of ASR Performance (6/8)
• Program
for (i=1;i<=n;i++) //test C

(Ins,Del,Sub,Hit)
(0 5 0 0)

• Example 1
Correct

{   gridi = grid[i]; gridi1 = grid[i-1];
for (j=1;j<=m;j++) //reference
{       h = gridi1[j].score +insPen;

d = gridi1[j-1].score;
if (lRef[j] != lTest[i])

C

C(0,4,0,0)

(0,5,0,0)

(0,3,0,1)

(0,4,0,1)

(0,2,1,1)

(0,3,1,1)

(1,2,0,2)

(0,3,1,1) (0,2,2,1)
or (1,3,0,2)

(1,1,0,3)

(1,2,0,3)
Delete C

Hit Cif (lRef[j] !  lTest[i])
d += subPen;

v = gridi[j-1].score + delPen;
if (d<=h && d<=v) { /* DIAG = hit or sub */

gridi[j] = gridi1[j-1];
gridi[j] score = d;

B(0,3,0,0)

j
(0,2,0,1) (1,2,0,1)

or (0,1,2,0)
(1,1,0,2)

( , , , )

(2,1,0,2)
or (1,0,2,1)

(1,1,0,3)Hit C

Hit B
HTK

//structure assignment

gridi[j].score = d;
gridi[j].dir = DIAG;
if (lRef[j] == lTest[i])   ++gridi[j].hit;
else  ++gridi[j].sub;

}

C

A(0 1 0 0)

(0,2,0,0)

j
(0,1,1,0) (1,1,0,1)

or(0,0,2,0)
(1,0,1,1) (2,0,0,2)

Del C

HTK

else if (h<v) { /* HOR = ins */
gridi[j] = gridi1[j]; 
gridi[j].score = h;
gridi[j].dir = HOR;
++ gridi[j].ins; B A B C

A 

0
0

(0,1,0,0) (0,0,1,0) (1,0,0,1) (2,0,0,1) (3,0,0,1)

Hit A

Ins B

Test
//structure assignment

g [j] ;
}
else { /* VERT = del */

gridi[j] = gridi[j-1];
gridi[j].score = v;
gridi[j] dir = VERT;

B                 A              B              C0
(0,0,0,0) (1,0,0,0) (2,0,0,0) (3,0,0,0) (4,0,0,0)

i
Ins  B

A        C         B        C       CCorrect:
Still have an

Alignment 1: WER= 60%//structure assignment
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gridi[j].dir = VERT;
++gridi[j].del;   }

} /* for j */
} /* for i */

B        A                   B        CTest:

Del  CHit CHit BDel CHit AIns  B

Still have an
Other optimal
alignment !



Measures of ASR Performance (7/8)

C(0,5,0,0)
(0,4,0,1) (0,3,1,1)(0,3,1,1) (0,2,2,1)

or (1,3,0,2) (1,2,1,2)
Delete C

• Example 2
Correct

Note: the penalties for 
C

B(0 3 0 0)

(0,4,0,0)
(0,3,0,1) (0,2,1,1) (1,2,1,1)

o ( ,3,0, )

(1,1,1,2) Hit C

Note: the penalties for 
substitution, deletion
and insertion errors are 
all set to be 1 here

B

C

(Ins,Del,Sub,Hit)
(0,2,0,0)

(0,3,0,0)

j
(0,1,1,0)

(0,2,0,1)

(1 1 0 1)

(1,2,0,1)
or (0,1,2,0)

(1,0,1,1)

(1,1,1,1)

(2,0,0,2)

(2,1,0,2)
or (1,0,2,1)Sub B

A (0,1,0,0) (0,0,1,0) (1,0,0,1)

(1,1,0,1)
or(0,0,2,0)

(2,0,0,1)

( , , , )

(3,0,0,1)

Del C

Hit A

B                 A              A              C
0

0(0,0,0,0)
(1,0,0,0) (2,0,0,0) (3,0,0,0) (4,0,0,0)

i

Ins  B

A C B C CCorrect:

TestAlignment 1: WER= 80%

Alignment 3:iA        C         B        C       C
B        A                   A        CTest:

Del  CHit CSub BDel CHit AIns  B A        C         B        C       C

B A A CTest:
Correct:

Alignment 3:
WER=80%
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B        A        A                   CTest:

Del  CHit CDel BSub CHit AIns  BB       A          A        CTest:

Correct:

Del  CHit CSub BSub CSub A

A        C         B        C       C
Alignment 2:
WER=80%



Measures of ASR Performance (8/8)( )

• Two common settings of different penalties for g p
substitution, deletion, and insertion errors

/* HTK error penalties */
subPen = 10;
delPen = 7;delPen  7;
insPen = 7;

/* NIST error penalties*//  NIST error penalties /
subPenNIST = 4;
delPenNIST = 3;
i P NIST 3insPenNIST = 3;
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Self-Exercise (1/2)( )
• Measures of ASR Performance

Reference ASR Output 
100000 100000 桃
100000 100000 芝
100000 100000 颱
100000 100000 風

Reference
100000 100000 桃
100000 100000 芝
100000 100000 颱
100000 100000 風100000 100000 風

100000 100000 重
100000 100000 創
100000 100000 花
100000 100000 蓮

100000 100000 風
100000 100000 重
100000 100000 創
100000 100000 花
100000 100000 蓮100000 100000 蓮

100000 100000 光
100000 100000 復
100000 100000 鄉
100000 100000 大

100000 100000 蓮
100000 100000 光
100000 100000 復
100000 100000 鄉
100000 100000 打100000 100000 大

100000 100000 興
100000 100000 村
100000 100000 死
100000 100000 傷

100000 100000 打
100000 100000 新
100000 100000 村
100000 100000 次
100000 100000 傷100000 100000 傷

100000 100000 慘
100000 100000 重
100000 100000 感
100000 100000 觸

100000 100000 傷
100000 100000 殘
100000 100000 周
100000 100000 感
100000 100000 觸
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100000 100000 觸
100000 100000 最
100000 100000 多
……

100000 100000 觸
100000 100000 最
100000 100000 多
…….



Self-Exercise (2/2)( )

• 506 BN stories of ASR outputs
R t th CER ( h t t ) f th fi t 100 200– Report the CER (character error rate) of the first one, 100, 200, 
and 506 stories

– The result should show the number of substitution, deletion and 
insertion errors  
------------------------ Overall Results ----------------------------------------------------------------------

SENT: %Correct=0 00 [H=0 S=1 N=1]SENT: %Correct=0.00 [H=0, S=1, N=1]
WORD: %Corr=81.52, Acc=81.52 [H=75, D=4, S=13, I=0, N=92]
===================================================================
------------------------ Overall Results -----------------------------------------------------------------------

SENT: %Correct=0.00 [H=0, S=100, N=100]
WORD: %Corr=87.66, Acc=86.83 [H=10832, D=177, S=1348, I=102, N=12357]
===================================================================
------------------------ Overall Results -----------------------------------------------------------------------

Overall Results

SENT: %Correct=0.00 [H=0, S=200, N=200]
WORD: %Corr=87.91, Acc=87.18 [H=22657, D=293, S=2824, I=186, N=25774]
===================================================================
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------------------------ Overall Results ------------------------------------------------------------------------

SENT: %Correct=0.00 [H=0, S=506, N=506]
WORD: %Corr=86.83, Acc=86.06 [H=57144, D=829, S=7839, I=504, N=65812]
===================================================================



Symbols for Mathematical OperationsSymbols for Mathematical Operations
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The EM Algorithm (1/7)g ( )

λ
0.6

o1,o2,……,oT p(O|λ)

λ
s1 {A:.3,B:.2,C:.5}

0.3
0 3 0 1

0.3
1, 2, , T

s2 s3

{A:.7,B:.1,C:.2} {A:.3,B:.6,C:.1}

0.7
0.3

0.2
0.2

0.1
0.7

p(O|λ)> p(O|λ) 

A B

Ob d d t O “b ll ”Observed data : O : “ball sequence”
Latent data : S : “bottle sequence”
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Parameters to be estimated to maximize logP(O|λ)
λ={P(A),P(B),P(B|A),P(A|B),P(R|A),P(G|A),P(R|B),P(G|B)}



The EM Algorithm (2/7)g ( )

• Introduction of EM (Expectation Maximization):( p )
– Why EM?

• Simple optimization algorithms for likelihood function         
relies on the intermediate variables, called latent data
In our case here, the state sequence is the latent data

• Direct access to the data necessary to estimate theDirect access to the data necessary to estimate the 
parameters is impossible or difficult
In our case here, it is almost impossible to estimate {A,B, π} 
without consideration of the state sequencewithout consideration of the state sequence

– Two Major Steps :
• E : expectation with respect to the latent data using the currentE : expectation with respect to the latent data using the current 

estimate of the parameters and conditioned on the 
observations
M id ti ti f th t di t

[ ] OλS  ,•E
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• M: provides a new estimation of the parameters according to 
Maximum likelihood (ML) or Maximum A Posterior  (MAP) 
Criteria



The EM Algorithm (3/7)g ( )

ML and MAP
• Estimation principle based on observations:

{ }21 X,...,X,X=X( )nxxxx ,...,, 21=

– The Maximum Likelihood  (ML) Principle
find the model parameter so that the likelihood is

{ }n21 X,...,X,XX( )nxxxx ,...,, 21

( )ΦxpΦfind the model parameter so that the likelihood is 
maximum
for example, if is the parameters of a multivariate 

l di t ib ti d X i i i d (i d d t  id ti ll  

( )ΦxpΦ

{ }ΣμΦ ,=
normal distribution, and X is i.i.d. (independent, identically 
distributed), then the ML estimate of is

11

{ }ΣμΦ ,=

Th M i A P t i i (MAP) P i i l

( )( )∑∑
==

−−==
n

i

t
MLiMLiML

n

i
iML nn 11

1  ,  1 μxμxΣxμ
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– The Maximum A Posteriori (MAP) Principle
find the model parameter so that the likelihood is 
maximum

Φ ( )xΦp



The EM Algorithm (4/7)g ( )

• The EM Algorithm is important to HMMs and otherThe EM Algorithm is important to HMMs and other 
learning techniques
– Discover new model parameters to maximize the log-likelihood 

( )of incomplete data by iteratively maximizing the 
expectation of log-likelihood from complete data ( )λSO ,log P

( )λOPlog

• Firstly, using scalar (discrete) random variables to 
introduce the EM algorithmg
– The observable training data  

• We want to maximize               ,     is a parameter vector
O

S
λ( )λOP

– The hidden (unobservable) data 
• E.g. the component probabilities (or densities) of observable 

data      , or the underlying state sequence in HMMs

S

O
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The EM Algorithm (5/7)g ( )

– Assume we have     and estimate the probability that each    λ S
occurred in the generation of 

– Pretend we had in fact observed a complete data pair            with 
frequency proportional to the probability , to( )λSO ,P

O
( )SO ,

frequency proportional to the probability , to 
computed a new     , the maximum likelihood estimate of 

– Does the process converge?
λ

( ),
λ

– Algorithm

( ) ( ) ( )λOλOSλSO PPP ,, = Bayes’ rule

unknown model setting

• Log-likelihood expression and expectation taken over S

( ) ( ) ( )lll

incomplete data likelihoodcomplete data likelihood

( ) ( ) ( )λOSλSOλO ,log,loglog PPP −=

take expectation over S
( ) ( ) ( )[ ]∑= λOλOSλO log,log PPP
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The EM Algorithm (6/7)g ( )

– Algorithm (Cont.)
W th f ll( )λOPl• We can thus express                       as follows

( )
( ) ( )[ ] ( ) ( )[ ]∑∑ λOSλOSλSOλOS

λO

ll

log

PPPP

P

( )λOPlog

( ) ( )[ ] ( ) ( )[ ]
( ) ( )

∑∑
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−=
SS

λλλλ

λOSλOSλSOλOS

,,

,log,,log,

HQ

PPPP

( ) ( ) ( )[ ]
( )[ ]

∑=
S

λSOλOSλλ ,log,,

where

PPQ

• We want

( ) ( ) ( )[ ]∑=
S

λOSλOSλλ ,log,, PPH

( ) ( )λOλO PP loglog ≥We want 

( ) ( )
( ) ( )[ ] ( ) ( )[ ]λλλλλλλλ

λOλO loglog

HQHQ

PP −

( ) ( )λOλO PP loglog ≥
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The EM Algorithm (7/7)g ( )

• has the following property( ) ( )λλλλ ,H,H +−
( ) ( )
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∑
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– Therefore, for maximizing                      , we only need to 
maximize the Q-function (auxiliary function) 

( ) ( ),,
( )λOPlog
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( ) ( ) ( )[ ]∑=
S

λSOλOSλλ ,log,, PPQ
Expectation of the complete
data log likelihood with respect
to the latent state sequences 



EM Applied to Discrete HMM Training (1/5)g ( )

• Apply EM algorithm to iteratively refine the HMM pp y g y
parameter vector 
– By maximizing the auxiliary function 

),,( πBAλ =

( ) ( ) ( )[ ]
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– Where                     and                     can be expressed as
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EM Applied to Discrete HMM Training (2/5)g ( )

• Rewrite the auxiliary function as
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EM Applied to Discrete HMM Training (3/5)g ( )

• The auxiliary function contains three independent
terms,        ,         and 
– Can be maximized individually

All f th f

ija ( )kbjiπ

– All of the same form

( ) ( )  and      where ∑∑ ≥=== j
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1j j
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j

j

j1j j1j jjN

w

w
yF y

∑
=1j jw
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EM Applied to Discrete HMM Training (4/5)g ( )

• Proof: Apply Lagrange Multiplier
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Lagrange Multiplier: http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html



EM Applied to Discrete HMM Training (5/5)g ( )

• The new model parameter set can be( )BAπλ =• The new model parameter set                      can be 
expressed as: 
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EM Applied to Continuous HMM Training (1/7)pp g ( )

• Continuous HMM: the state observation does not comeContinuous HMM: the state observation does not come 
from a finite set, but from a continuous space
– The difference between the discrete and continuous HMM lies 

in a different form of state output probability
– Discrete HMM requires the quantization procedure to map 

observation vectors from the continuous space to the discreteobservation vectors from the continuous space to the discrete 
space

• Continuous Mixture HMM
– The state observation distribution of HMM is modeled by 

multivariate Gaussian mixture density functions (M mixtures)
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Distribution for State i
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EM Applied to Continuous HMM Training (2/7)g ( )

• Express         with respect to each single mixture 
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EM Applied to Continuous HMM Training (3/7)g ( )

• Therefore, an auxiliary function for the EM algorithm can , y g
be written as:
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EM Applied to Continuous HMM Training (4/7)g ( )

• The only difference we have when compared with y p
Discrete HMM training
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EM Applied to Continuous HMM Training (5/7)g ( )
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EM Applied to Continuous HMM Training (6/7)
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EM Applied to Continuous HMM Training (7/7)g ( )

• The new model parameter set  for each mixture p
component and mixture weight can be expressed as:

( ) ⎤⎡ == TT kkjsp λO( )
( )

( )
( )[ ]

( )∑

∑

∑

∑
==

=
==

⎥
⎦

⎤
⎢
⎣

⎡ ==

= T

T

t
tt

T
tt

T

t
t

tt

jk

k

kj

kkjsp
p

kkjsp

11
,

,,

,,
γ o

λO

o
λO

λO

μ ( )
( ) ( )∑∑

== t
t

t

tt kj
p

kkjsp
11

,,, γ
λO

λO

( ) ⎤⎡T kkj λO( )
( ) ( )( )

( )
( )( )( )[ ]

( )∑

∑∑
==

−−
=

==

⎥
⎦

⎤
⎢
⎣

⎡
−−

==

= T

T

t

t
jktjktt

T

T

t

t
jktjkt

tt

jk

kj

kkjsp
p

kkjsp

11
,

,,
γ μoμo

λO

μoμo
λO

λO

Σ ( )
( ) ( )∑∑

==

==

t
t

t

tt kj
p

kkjsp
11

,,, γ
λO

λO

( )∑
T kjγ

SP - Berlin Chen   99

( )
( )∑ ∑

∑

= =

== T

1t

M

1k t

1t t

jk
k,j

k,j
c

γ

γ


