Maximum Likelihood Estimation

Berlin Chen
Department of Computer Science \& Information Engineering
National Taiwan Normal University

References:

1. Ethem Alpaydin, Introduction to Machine Learning, Chapter 4, MIT Press, 2004

Sample Statistics and Population Parameters

- A Schematic Depiction

Inference

Sample

Statistics

Introduction

- Statistic
- Any value (or function) that is calculated from a given sample
- Statistical inference: make a decision using the information provided by a sample (or a set of examples/instances)
- Parametric methods
- Assume that examples are drawn from some distribution that obeys a known model $p(x)$

- Advantage: the model is well defined up to a small number of parameters
- E.g., mean and variance are sufficient statistics for the Gaussian distribution
- Model parameters are typically estimated by either maximum likelihood estimation or Bayesian (MAP) estimation

Maximum Likelihood Estimation (MLE) (1/2)

- Assume the instances $\mathbf{x}=\left\{x^{1}, x^{2}, \ldots, x^{\prime}, \ldots, x^{N}\right\}$ are independent and identically distributed (iid), and drawn from some known probability distribution X
- $X^{t} \sim p\left(x^{t} \mid \theta\right)$
- $\theta:$ model parameters (assumed to be fixed but unknown here)
- MLE attempts to find θ that make \mathbf{x} the most likely to be drawn
- Namely, maximize the likelihood of the instances

$$
l(\theta)=p(x \mid \theta)=p\left(x^{(}, \ldots, x^{*} \mid \theta\right)=\prod_{\prod=1}^{x} p\left(x^{\prime} \mid \theta\right)
$$

MLE (2/2)

- Because logarithm will not change the value of θ when it take its maximum (monotonically increasing/decreasing)
- Finding θ that maximizes the likelihood of the instances is equivalent to finding θ that maximizes the log likelihood of the samples

$$
L(\theta \mid \mathbf{x})=\log l(\theta \mid \mathbf{x})=\sum_{t=1}^{N} \log p\left(x^{t} \mid \theta\right)
$$

- As we shall see, logarithmic operation can further simplify the computation when estimating the parameters of those distributions that have exponents

MLE: Bernoulli Distribution (1/3)

- Bernoulli Distribution
- A random variable X takes either the value $x=1$ (with probability r) or the value $x=1$ (with probability $1-r$)
- Can be thought of as X is generated form two distinct states
- The associated probability distribution

$$
P(x)=r^{x}(1-r)^{1-x} \quad, x \in\{0,1\}
$$

- The log likelihood for a set of iid instances \mathbf{x} drawn from Bernoulli distribution

$$
\theta^{\theta^{L(r \mid X)}=}=\log \prod_{t=1}^{N} r^{\left(x^{t}\right)}(1-r)^{\left(1-x^{t}\right)} \quad \mathbf{X}=\left\{x^{t}, X^{2}, ~\left(\sum_{t=1}^{N} x^{t}\right) \log r+\left(N-\sum_{t=1}^{N} x^{t}\right) \log (1-r)\right\}
$$

MLE: Bernoulli Distribution (2/3)

- MLE of the distribution parameter r

$$
\hat{r}=\frac{\sum_{t=1}^{N} x^{t}}{N}
$$

- The estimate for r is the ratio of the number of occurrences of the event ($x^{t}=1$) to the number of experiments
- The expected value for X

$$
E[X]=\sum_{x \in\{0,1\}} x \cdot P(x)=0 \cdot(1-r)+1 \cdot r=r
$$

- The variance value for X

$$
\operatorname{var}(X)=E\left[X^{2}\right]-(E[X])^{2}=r-r^{2}=r(1-r)
$$

MLE: Bernoulli Distribution (3/3)

- Appendix A

$$
\begin{aligned}
& \frac{d L(r \mid X)}{d r}=\frac{\partial\left[\left(\sum_{t=1}^{N} x^{t}\right) \log r+\left(N-\sum_{t=1}^{N} x^{t}\right) \log (1-r)\right]}{d r}=0 \\
& \Rightarrow \frac{\left(\sum_{t=1}^{N} x^{t}\right)}{r}-\frac{\left(N-\sum_{t=1}^{N} x^{t}\right)}{1-r}=0 \\
& \Rightarrow \hat{r}=\frac{\sum_{t=1}^{N} x^{t}}{N}
\end{aligned}
$$

The maximum likelihood estimate of the mean is the sample average

MLE: Multinomial Distribution (1/4)

- Multinomial Distribution
- A generalization of Bernoulli distribution
- The value of a random variable X can be one of K mutually exclusive and exhaustive states $x \in\left\{s_{1}, s_{2}, \cdots, s_{K}\right\}$ with probabilities $r_{1}, r_{2}, \cdots, r_{K}$, respectively
- The associated probability distribution

$$
\begin{aligned}
& p(x)=\prod_{i=1}^{K} r_{i}^{s_{i}}, \quad \sum_{i=1}^{K} r_{i}=1 \\
& s_{i}= \begin{cases}1 & \text { if } X \text { choose state } s_{i} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

- The log likelihood for a set of iid instances \mathbf{X} drawn from a multinomial distribution X

$$
L(\mathbf{r} \mid \mathbf{x})=\log \prod_{t=1}^{N} \prod_{i=1}^{K} r_{i}^{s_{i}^{t}} \quad \mathbf{x}=\left\{x^{1}, x^{2}, \ldots, x^{t}, \ldots, x^{N}\right\}
$$

MLE: Multinomial Distribution (2/4)

- MLE of the distribution parameter r_{i}

$$
\hat{r}_{i}=\frac{\sum_{i=1}^{N} s_{i}^{t}}{N}
$$

- The estimate for r_{i} is the ratio of the number of experiments with outcome of state $i\left(s_{i}^{t}=1\right)$ to the number of experiments

MLE: Multinomial Distribution (3/4)

- Appendix B

$$
\begin{aligned}
& L(\mathbf{r} \mid \mathbf{x})=\log \prod_{t=1}^{N} \prod_{i=1}^{K} r_{i}^{s_{i}^{t}}=\sum_{t=1}^{N} \sum_{i=1}^{K} \log r_{i}^{s_{i}^{t}}, \text { with constraint }: \sum_{i=1}^{K} r_{i}=1 \\
& \frac{\partial \bar{L}(\mathbf{r} \mid \mathbf{x})}{\partial r_{i}}=\frac{\partial\left[\sum_{t=1}^{N} \sum_{i=1}^{K} s_{i}^{t} \cdot \log r_{i}+\lambda\left(\sum_{i=1}^{K} r_{i}-1\right)\right]}{\partial r_{i}}=0 \\
& \Rightarrow \sum_{t=1}^{N} s_{i}^{t} \cdot \frac{1}{r_{i}}+\lambda=0 \\
& \Rightarrow r_{i}=-\frac{1}{\lambda} \sum_{t=1}^{N} s_{i}^{t} \\
& \Rightarrow \sum_{i=1}^{K} r_{i}=1=-\frac{1}{\lambda} \sum_{t=1}^{N}\left(\sum_{i=1}^{\sum_{i}} s_{i}^{t_{i}}\right) \\
& \Rightarrow \lambda=-N \\
& \Rightarrow \hat{r}_{i}=\frac{\sum_{t=1}^{N}}{N} s_{i}^{t}
\end{aligned}
$$

MLE: Multinomial Distribution (4/4)

$P(B)=3 / 10$
$P(W)=4 / 10$
$P(R)=3 / 10$

MLE: Gaussian Distribution (1/3)

- Also called Normal Distribution
- Characterized with mean μ and variance σ^{2}

$$
p(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right], \quad-\infty<x<\infty
$$

- Recall that mean and variance are sufficient statistics for Gaussian
- The log likelihood for a set of iid instances drawn from Gaussian distribution X

$$
\begin{aligned}
L(\mu, \sigma \mid \mathbf{x})= & \log \prod_{t=1}^{N} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\left(\frac{\left(x^{t}-\mu\right)^{2}}{2 \sigma^{2}}\right)} \quad \mathbf{x}=\left\{x^{1},\right. \\
& =-\frac{N}{2} \log (2 \pi)-N \log \sigma-\frac{\sum_{t=1}^{N}\left(x^{t}-\mu\right)^{2}}{2 \sigma^{2}}
\end{aligned}
$$

MLE: Gaussian Distribution (2/3)

- MLE of the distribution parameters μ and σ^{2}

$$
\begin{aligned}
& m=\hat{\mu}=\frac{\sum_{t=1}^{N} x^{t}}{N} \quad \text { sample average } \\
& s^{2}=\hat{\sigma}^{2}=\frac{\sum_{t=1}^{N}\left(x^{t}-m\right)^{2}}{N} \quad \text { sample variance }
\end{aligned}
$$

- Remind that μ and σ^{2} are still fixed but unknown

MLE: Gaussian Distribution (3/3)

- Appendix C

$$
\begin{aligned}
& L(\mu, \sigma \mid \mathbf{x})=-\frac{N}{2} \log (2 \pi)-\frac{N}{2} \log \sigma^{2}-\frac{\sum_{t=1}^{N}\left(x^{t}-\mu\right)^{2}}{2 \sigma^{2}} \\
& \frac{\partial L(\mu, \sigma \mid \mathbf{x})}{\partial \mu}=0 \Rightarrow \frac{1}{\sigma^{2}} \sum_{t=1}^{N}\left(x^{t}-\mu\right)^{2}=0 \Rightarrow \hat{\mu}=\frac{\sum_{t=1}^{N} x^{t}}{N} \\
& \frac{\partial L(\mu, \sigma \mid \mathbf{x})}{\partial \sigma^{2}}=0 \Rightarrow-N+\frac{1}{\sigma^{2}} \sum_{t=1}^{N}\left(x^{t}-\mu\right)^{2}=0 \Rightarrow \hat{\sigma}^{2}=\frac{\sum_{t=1}^{N}\left(x^{t}\right.}{N}
\end{aligned}
$$

Evaluating an Estimator : Bias and Variance (1/6)

- The mean square error of the estimator d can be further decomposed into two parts respectively composed of bias and variance

$$
\begin{aligned}
r(d, \theta) & =E\left[(d-\theta)^{2}\right] \\
& =E\left[(d-E[d]+E[d]-\theta)^{2}\right] \\
& =E\left[(d-E[d])^{2}+(E[d]-\theta)^{2}+2(d-E[d])(E[d]-\theta)\right] \\
& =E\left[(d-E[d])^{2}\right]+E \frac{\left[(E[d]-\theta)^{2}\right]}{\text { constant }}+2 E\left[(d - E [d]) \left(\frac{E[d]-\theta)]}{\text { constant }}\right.\right. \\
& =E\left[(d-E[d])^{2}\right]+(E[d]-\theta)^{2}+2 E[(d-E[d])](E[d]-\theta) \\
& =\frac{E\left[(d-E[d])^{2}\right]}{\text { variance }}+\frac{(E[d]-\theta)^{2}}{\text { bias }^{2}}
\end{aligned}
$$

Evaluating an Estimator : Bias and Variance (2/6)

Figure 4.1: θ is the parameter to be estimated. d_{i} are several estimates (denoted by ' \times ') over different samples. Bias is the difference between the expected value of d and θ. Variance is how much d_{i} are scattered around the expected value. We would like both to be small.

Evaluating an Estimator : Bias and Variance (3/6)

- Example 1: sample average and sample variance
- Assume samples $\mathbf{x}=\left\{x^{1}, x^{2}, \ldots, x^{t}, \ldots, x^{N}\right\}$ are independent and identically distributed (iid), and drawn from some known probability distribution X with mean μ and variance σ^{2}
- Mean $\mu=E[X]=\sum_{x} x \cdot p(x)$
- Variance $\sigma^{2}=E\left[(X-\mu)^{2}\right]=E\left[X^{2}\right]-(E[X])^{2}$
- Sample average (mean) for the observed samples $m=\frac{1}{N} \sum_{t=1}^{N} x^{t}$
- Sample variance for the observed samples $s^{2}=\frac{1}{N} \sum_{t=1}^{N}\left(x^{t}-m\right)^{2}$

$$
\text { or } s^{2}=\frac{1}{N-1} \sum_{t=1}^{N}\left(x^{t}-m\right)^{2} ?
$$

Evaluating an Estimator : Bias and Variance (4/6)

- Example 1 (count.)
- Sample average m is an unbiased estimator of the mean μ

$$
\begin{aligned}
& E[m]=E\left[\frac{1}{N} \sum_{t=1}^{N} X^{t}\right]=\frac{1}{N} \sum_{t=1}^{N} E[X]=\frac{N \cdot \mu}{N}=\mu \\
\therefore & E[m]-\mu=0
\end{aligned}
$$

- m is also a consistent estimator: $\operatorname{Var}(m) \rightarrow 0$ as $N \rightarrow \infty$

$$
\begin{aligned}
\operatorname{Var}(m)=\operatorname{Var}\left(\frac{1}{N} \sum_{t=1}^{N} X^{t}\right)=\frac{1}{N^{2}} \sum_{t=1}^{N} \operatorname{Var}(X)= & \frac{N \cdot \sigma^{2}}{N^{2}}=\frac{\sigma^{2}}{N} \xrightarrow{N=\infty} 0 \\
& \operatorname{Var}(a X+b)=a^{2} \cdot \operatorname{Var}(X) \\
& \operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)
\end{aligned}
$$

Evaluating an Estimator : Bias and Variance (5/6)

- Example 1 (count.)
- Sample variance s^{2} is an asymptotically unbiased estimator of the variance σ^{2}

$$
\begin{aligned}
E\left[s^{2}\right] & =E\left[\frac{1}{N} \sum_{t=1}^{N}\left(X^{t}-m\right)^{2}\right] \\
& =E\left[\frac{1}{N} \sum_{t=1}^{N}(X-m)^{2}\right]\left(X^{t} \text { 's are i.i.d. }\right) \\
& =E\left[\frac{1}{N} \sum_{t=1}^{N}\left(X^{2}-2 X \cdot m+m^{2}\right)\right] \\
& =E\left[\frac{N \cdot X^{2}-2 N \cdot m^{2}+N m^{2}}{N}\right] \\
& =E\left[\frac{N \cdot X^{2}-N \cdot m^{2}}{N}\right]=\frac{N \cdot E\left[X^{2}\right]-N \cdot E\left[m^{2}\right]}{N}
\end{aligned}
$$

Evaluating an Estimator : Bias and Variance (6/6)

- Example 1 (count.)
- Sample variance s^{2} is an asymptotically unbiased estimator of the variance σ^{2}

$$
\begin{aligned}
& \operatorname{Var}(m)=\frac{\sigma^{2}}{N}=E\left[m^{2}\right]-(E[m])^{2} \\
& \Rightarrow E\left[m^{2}\right]=\frac{\sigma^{2}}{N}+(E[m])^{2}=\frac{\sigma^{2}}{N}+\mu^{2}
\end{aligned}
$$

$$
E\left[s^{2}\right]=\frac{N \cdot E\left[X^{2}\right]-N \cdot E\left[m^{2}\right]}{N}
$$

$$
\xrightarrow[=]{N\left(\sigma^{2}+\mu^{2}\right)-N\left(\frac{\sigma^{2}}{N}+\mu^{2}\right)} \text { N}
$$

$$
\begin{aligned}
& \operatorname{Var}(X)=\sigma^{2}=E\left[X^{2}\right]-(E[X])^{2} \\
& \Rightarrow E\left[X^{2}\right]=\sigma^{2}+(E[X])^{2}=\sigma^{2}+\mu^{2}
\end{aligned}=\frac{(N-1)}{N} \sigma^{2}-\frac{N=\infty}{N} \rightarrow \sigma^{2}
$$

The size of the observed sample set

Bias and Variance: Example 2

Simple is Elegant?

