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What is Language Modeling ?

• Language Modeling (LM) deals with the probability 
di ib i f ddistribution of word sequences, e.g.:

P(“hi”)=0 01 P(“and nothing but the truth”)  ≈ 0 001P( hi )=0.01, P( and nothing but the truth )  ≈ 0.001
P(“and nuts sing on the roof”) ≈ 0
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From Joshua Goodman’s material



What is Language Modeling ? (cont.)g g g ( )

• For a word sequence     ,          can be decomposed into 
d t f diti l b biliti

( )WPW
a product of conditional probabilities:

( ) ( )= mwwwPP 21 ,...,,W
chain (multiplication) rule 

( ) ( ) ( ) ( )
( ) ( )∏
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– E.g.: P(“and nothing but the truth”) = P(“and”) ×P(“nothing|and”) 

( ) ( )∏=
=

−
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ii wwwwPwP
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1211 ,...,,         

g ( g ) ( ) ( g| )
× P(“but|and nothing”) × P(“the|and nothing but”) 
× P(“truth|and nothing but the”) 

– However, it’s impossible to estimate and store                                  
if      is large (data sparseness problem etc.)i ( )1i21i w,...,w,wwP −
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What is LM Used for ?

• Statistical language modeling attempts to capture the 
regularities of natural languagesregularities of natural languages

– Improve the performance of various natural languageImprove the performance of various natural language 
applications by estimating the probability distribution of various 
linguistic units, such as words, sentences, and whole documents

– The first significant model was proposed in 1980s

( ) ( )? ,...,, 21 mwwwPP =W
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What is LM Used for ? (cont.)( )

• Statistical language modeling is most prevailing in many 
li ti d iapplication domains

– Speech recognition

– Spelling correction

– Handwriting recognitionHandwriting recognition

– Optical character recognition (OCR)

– Machine translation

– Document classification and routing

– Information retrieval

SP - Berlin Chen   5



Current Status

• Ironically, the most successful statistical language 
modeling techniques use very little knowledge of whatmodeling techniques use very little knowledge of what 
language is

– The most prevailing n-gram language models take no advantage 
of the fact that what is being modeled is language

( ) ( )121121 ,...,,,...,, −+−+−− ≈ ininiiii wwwwPwwwwP
History of length n-1

– It may be a sequence of arbitrary symbols, with no deep 
structure, intention, or though behind then

y g

– F. Jelinek said “put language back into language modeling”
• “Closing remarks” presented at the 1995 Language Modeling Summer
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Closing remarks  presented at the 1995 Language Modeling Summer 
Workshop, Baltimore



LM in Speech Recognitionp g

• For a given acoustic observation                    , the goal of n21 ,...,, xxxX =g , g
speech recognition is to find out the corresponding word 
sequence                            that has the maximum 

t i b bilit

n21

m21 ,...,w,ww=W
( )posterior probability ( )XWP

( )XWW Pmax argˆ = Bayes classification rule( )
( ) ( )
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WWX

WW
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g
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Language ModelingAcoustic Modeling
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The Trigram Approximationg
• The trigram modeling assumes that each word depends 

only on the previous two words (a window of three wordsonly on the previous two words (a window of three words 
total) Second-order Markov modeling
– “tri” means three “gram” means writingtri  means three, gram  means writing
– E.g.:

P(“the| whole truth and nothing but”) ≈ P(“the|nothing but”)P( the|… whole truth and nothing but ) ≈ P( the|nothing but )
P(“truth|… whole truth and nothing but the”) ≈ P(“truth|but the”)

– Similar definition for bigram (a window of two words in total)

• How do we find probabilities?p
– Get real text, and start counting (empirically) !

P(“the | nothing but”) ≈C[“nothing but the”]/C[“nothing but”]
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P( the | nothing but ) ≈C[ nothing but the ]/C[ nothing but ]

count Probability may be 0



Maximum Likelihood Estimate (ML/MLE) for LM

• Given a a training corpus T and the language model Λg p g g

{ }V
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– Essentially,  the distribution of the sample counts              with  
the same history        referred as a multinominal (polynominal) 
distribution
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Maximum Likelihood Estimate (ML/MLE) for LM (cont.)
• Take logarithm of                ,  we have ( )ΛTp

( ) ( ) ∑ ∑=Λ=ΛΦ hhNTp λloglog

• For any pair            , try to maximize              and subject
t
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Lagrange Multiplier: http://www.slimy.com/~steuard/teaching/tutorials/Lagrange.html



Main Issues for LM

• Evaluation
– How can you tell a good language model from a bad one
– Run a speech recognizer or adopt other statistical measurements

• Smoothing
– Deal with data sparseness of real training data
– Various approaches have been proposed

• Cachingg
– If you say something, you are likely to say it again later
– Adjust word frequencies observed in the current conversation

• Clustering
– Group words with similar properties (similar semantic or 
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grammatical) into the same class
– Another efficient way to handle the data sparseness problem



Evaluation

• Two most common metrics for evaluation a language 
model
– Word Recognition Error Rate (WER)

P l it (PP)– Perplexity (PP)

• Word Recognition Error Rate• Word Recognition Error Rate

– Requires the participation of a speech recognition system
(slow!)(slow!)

– Need to deal with the combination of acoustic probabilities and 
language model probabilities (penalizing or weighting betweenlanguage model probabilities (penalizing or weighting between 
them)
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Evaluation (cont.)( )

• Perplexityp y
– Perplexity is geometric average inverse language model 

probability (measure language model difficulty, not acoustic 
difficulty/confusability)difficulty/confusability)

( ) m
m

2im21 )www|w(P
1

)w(P
1w,...,w,wPP ∏

=
⋅==W

– Can be roughly interpreted as the geometric mean of the 
b hi f t f th t t h t d t th l

1i21i1 )w,...,w,w|w(P)w(P −

branching factor of the text when presented to the language 
model

12 , −− ii ww

– For trigram modeling:

( ) m 111wwwPP ∏⋅⋅==W
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Evaluation (cont.)( )

• More about Perplexityp y
– Perplexity is an indication of the complexity of the language if we 

have an accurate estimate of  
A l ith hi h l it th t th b f

( )WP
– A language with higher perplexity means that the number of 

words branching from a previous word is larger on average
– A langue model with perplexity L has roughly the same difficulty g p p y g y y

as another language model in which every word can be followed 
by L different words with equal probabilities

– Examples: 
• Ask a speech recognizer to recognize digits: “0, 1, 2, 3, 4, 5, 6, 7, 8, 

9” – easy – perplexity ≈10

• Ask a speech recognizer to recognize names at a large institute

SP - Berlin Chen   14

Ask a speech recognizer to recognize names at a large institute 
(10,000 persons) – hard  – perplexity ≈ 10,000 



Evaluation (cont.)( )

• More about Perplexity (Cont.)p y ( )
– Training-set perplexity: measures how the language model fits the 

training data

– Test-set perplexity: evaluates the generalization capability of the 
language model
• When we say perplexity, we mean “test-set perplexity”
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Evaluation (cont.)( )

• Is a language model with lower perplexity is better?

– The true (optimal) model for data has the lowest possible 
perplexity

– The lower the perplexity, the closer we are to the true model

– Typically, perplexity correlates well with speech recognition word yp y, p p y p g
error rate

• Correlates better when both models are trained on same data
• Doesn’t correlate well when training data changes• Doesn t correlate well when training data changes

– The 20,000-word continuous speech recognition for Wall Street 
Journal (WSJ) task has a perplexity about 128 ~ 176 (trigram)Journal (WSJ) task has a perplexity about 128  176 (trigram) 

– The 2,000-word conversational Air Travel Information System
(ATIS) task has a perplexity less than 20 

SP - Berlin Chen   16
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Evaluation (cont.)( )

• The perplexity of bigram with different vocabulary size 
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Evaluation (cont.)( )

• A rough rule of thumb (by Rosenfeld)

– Reduction of 5% in perplexity is usually not practically significant

– A 10% ~ 20% reduction is noteworthy, and usually translates into y, y
some improvement in application performance

– A perplexity improvement of 30% or more over a good baseline 
is quite significant

Vocabulary Perplexity WERVocabulary Perplexity WER

zero |one |two |three |four
|five |six |seven |eight |nine

10 5
Perplexity cannot always 

John |tom |sam |bon |ron |
|susan |sharon |carol |laura |sarah

10 7

bit |bite |boot |bait |bat 10 9

reflect the difficulty of a 
speech recognition task
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bit |bite |boot |bait |bat
|bet |beat |boat |burt |bart

10 9

Tasks of recognizing 10 isolated-words using IBM ViaVoice



Smoothingg

• Maximum likelihood (ML) estimate of language models ( ) g g
has been shown previously, e.g.:
– Trigam probabilities    

( ) [ ]
[ ]

[ ]
[ ]xyC
xyzC

xywC
xyzCxyzPML ==

∑
|

– Bigram probabilities 

w
∑

count

( ) [ ]
[ ]

[ ]
[ ]xC
xyC

xwC
xyCxyPML ==

∑
| [ ] [ ]

w
∑
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Smoothing (cont.)g ( )

• Data Sparseness p
– Many actually possible events (word successions) in the test set 

may not be well observed in the training set/data

• E.g. bigram modeling  

P( d|M l ) 0 P(M l d b k) 0P(read|Mulan)=0           P(Mulan read a book)=0

P(W)=0                          P(X|W)P(W)=0( ) ( | ) ( )

– Whenever a string         such that                    occurs during 
h iti t k ill b d

( ) 0=WPW
speech recognition task, an error will be made
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Smoothing (cont.)g ( )

• Operations of smoothingp g
– Assign all strings (or events/word successions) a nonzero 

probability if they never occur in the training data

– Tend to make distributions flatter by adjusting lower 
probabilities upward and high probabilities downwardp p g p
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Smoothing: Simple Modelsg p

• Add-one smoothing
– For example, pretend each trigram occurs once more than it 

actually does

( ) [ ] [ ] 11 xyzCxyzC ++( ) [ ]
[ ]( )

[ ]
[ ]

1
1

1|
VxyC

xyzC
xywC

xyzCxyzP

w

smooth +
+

=
+

+
≈

∑

• Add delta smoothing

 y words vocabular totalofnumber  :V

• Add delta smoothing

( ) [ ]
[ ]

δxyzCxyzPsmooth
+

≈|( ) [ ] δVxyC
ysmooth +

|

Should the word “unicorn” receive the same probability mass as the word “animal” if they are 
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both unseen in the training data ?   



Smoothing: Back-Off Modelsg

• The general form for n-gram back-off

( )
( ) [ ]⎪⎧
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,...,| 11 iniismooth
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α

– : normalizing/scaling factor chosen to make ( )11,..., −+− ini wwα g g
the conditional probability sum to 1

• I.e., 

( )11, ,+ ini

( ) 1,...,| 11 =∑ −+− iniismooth wwwP n-gram
iw
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Smoothing: Interpolated Modelsg

• The general form for Interpolated n-gram back-offThe general form for Interpolated n gram back off
( )

( ) ( ) ( )( ) ( )12111111

11

|1|
,...,| −+−

−+= hML

iniismooth

wwwPwwwwwPww
wwwP

λλ( ) ( ) ( )( ) ( )12111111 ,...,|,...,1,...,|,..., −+−−+−−+−−+− + iniismoothiniiniiMLini wwwPwwwwwPww λλ

( ) [ ]11 ,,...,
| −+−= iini wwwC

wwwP ( ) [ ]11
11 ,...,

,...,|
−+−

−+− =
ini

iniiML wwC
wwwP

count

• The key difference between backoff and interpolated 
models 

For n grams with nonzero counts interpolated models use– For n-grams with nonzero counts, interpolated models use 
information from lower-order distributions while back-off models 
do not
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– Moreover, in interpolated models, n-grams with the same counts 
can have different probability estimates



Clusteringg

• Class-based language Models
– Define classes for words that exhibit similar semantic or 

grammatical behavior

WEEKDAY = Sunday, Monday, Tuesday, …
MONTH = January, February, April, May, June, …
EVENT=meeting, class, party, …

E P(Tuesday| party on) is similar to P(Monday| party on) ?• E.g., P(Tuesday| party on) is similar to P(Monday| party on) ?
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Clustering (cont.)g ( )

• A word may belong to more than one class and a class y g
may contain more than one word (many-to-many 
mapping)

a meeting Sunday is canceleda              meeting                                Sunday               is                      canceled 
the           date                  on                Monday              will be               postponed
one          party                                     Tuesday                                        

in                January                                       prepared
February                                     arranged
April       
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Clustering (cont.)g ( )

• The n-gram model can be computed based on the 
i 1 lprevious n-1 classes

– If trigram approximation and unique mappings from words to 
d l d (d i i i   l   i )word classes are used (deterministic class assignment)

( ) ( )
( ) ( )( ) ( ) ( ) ( )( )

,... 1211 iiiinii wwwPwwwP −−−+− ≈

( ) ( )( ) ( ) ( ) ( )( )
( )  tobelongs  which class  the:

, 1212

ii

iiiiiiii

wwClass
wClasswClasswClassPwClasswPwwwP −−−− ≈

– Empirically estimate the probabilities

( )( ) [ ]
( )[ ]

i
ii wClassC

wCwClasswP = ( )[ ]

( ) ( ) ( )( ) ( ) ( ) ( )[ ]
( ) ( )[ ]1i2i

i1i2i
1i2ii

i

wClasswClassC
wClasswClasswClassCwClasswClasswClassP

wClassC

−−

−−
−− =
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• Further probability smoothing is also needed



Clustering (cont.)g ( )

• Clustering is another way to battle data sparseness 
bl ( thi f th l d l)problem (smoothing of the language model)

• For general-purpose large vocabulary dictation g p p g y
application, class-based n-grams have not significant 
improved recognition accuracy

Mainly used as a back off model to complement the lower order– Mainly used as a back-off model to complement the lower-order 
n-grams for better smoothing

• For limited (or narrow discourse) domain speech• For limited (or narrow discourse) domain speech 
recognition, the class-based n-gram is very helpful
– Because the class can efficiently encode semantic information 

for improved keyword-spotting and speech understanding 
accuracy

– Good results are often achieved by manual clustering of 
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semantic categories



Class-based Bigram Model Jelinek et al., 1992g

• A kind of first-order hidden Markov model

2w1w
graphical model representation

word

1z
graphical model representation

2zword class

– Nondeterministic class assignment

( ) ( ) ( ) ( )∑∑ |||| PPPP

– Deterministic class assignment

( ) ( ) ( ) ( )∑∑ ⋅⋅=
1 2

22121112 ||||
z z

zwPzzPwzPwwP

g

( ) ( ) ( )221212 ||| zwPzzPwwP ⋅=

• Needing estimation of class bigram and word unigram 
probabilities
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Class-based Bigram Model: Explanationg p

2w1w
graphical model representation

word

1z 2zword class

( ) ( )
1 2

121212      ,,| wzzwPwwP
z z
∑ ∑=

( ) ( ) ( )

( ) ( ) ( )
1122112
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,,,                wzzwPwzzPwzP
z z
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1 2

11                zwPzzPwzP
z z
∑ ∑≈
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Aggregate Markov Modelgg g

• An alternative approach for class-based bigram LMspp g

2w1wword

graphical model representation

tt′latent cluster

( ) ( ) ( )∑=
t

wtPtwPwwP 1212 |||

– Models trained by maximizing the log-likelihood of the training 
corpus

t

( ) ( )12
,

21 |ln,
21

wwPwwnl
ww

∑=
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L. Saul and F. Pereira, “Aggregate and mixed‐order Markov models for statistical language processing,” 
in Proc. EMNLP 1997.



Aggregate Markov Model: Explanationgg g

2w1wword 21

graphical model representation

tt′latent cluster
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Caching (cont.)g ( )

• The basic idea of cashing is to accumulate n-grams 
dictated so far in the current document/conversation and 
use these to create dynamic n-grams model 

• Trigram interpolated with unigram cache
( ) ( ) ( ) ( )−+≈ history|zP1xy|zPxy|zP λλ( ) ( ) ( ) ( )

( ) [ ] [ ]∈∈

+≈ cachesmoothcache

historyzChistoryzChi t|P

history
history|zP1xy|zPxy|zP
far so dictatedn onversatiodocument/c :

λλ

• Trigram interpolated with bigram cache

( ) [ ]
[ ]

[ ]
[ ]∑ ∈

==
w

cache historywC
y

historylength
yhistory|zP

• Trigram interpolated with bigram cache
( ) ( ) ( ) ( )

[ ]hi tC
history,y|zP1xy|zPxy|zP cachesmoothcache −+≈ λλ
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Caching (cont.)g ( )

• Real Life of Caching g
– Someone says “I swear to tell the truth”
– System hears “I swerve to smell the soup”

Cache remembers!

– Someone says “The whole truth”, and, with cache, system hears 
“The toll booth.” – errors are locked in

• Caching works well when users corrects as they go, 
poorly or even hurts without correction
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Known Weakness in Current LM

• Brittleness Across Domain
– Current language models are extremely sensitive to changes in 

the style or topic of the text on which they are trained
• E.g., conversations vs. news broadcasts, fictions vs. politicsE.g., conversations vs. news broadcasts, fictions vs. politics

– Language model adaptation
I d i t t t / h t i t• In-domain or contemporary text corpora/speech transcripts

• Static or dynamic adaptation
• Local contextual (n-gram) or global semantic/topical information

• False Independence Assumption
In order to remain trainable the n gram modeling assumes the– In order to remain trainable, the n-gram modeling assumes the 
probability of next word in a sentence depends only on the 
identity of last n-1 words

• n 1 order Markov modeling
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• n-1-order Markov modeling



LM Integrated into Speech Recognition g p g

• TheoreticallyTheoretically,

( ) ( )WXWW
W

PPˆ max arg=

• Practically language model is a better predictor while

W

• Practically, language model is a better predictor while 
acoustic probabilities aren’t “real” probabilities

– Penalize insertions

( ) ( ) ( )maxarg βα PPˆ length WWXWW ( ) ( ) ( )

decidedy empiricall becan     where

maxarg

βα

β

,,

PP g

W
WXWW ⋅=
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• E.g., 8 =α



Good-Turing Estimateg

G (19 3)• First published by Good (1953) while Turing is 
acknowledged Use the notation 

m-grams instead of 
n-grams here 

• A smoothing technique to deal with infrequent m-grams 
(m gram smoothing) but it usually needs to be used

g

(m-gram smoothing), but it usually needs to be used 
together with other back-off schemes to achieve good 
performancep

• How many words were seen once? Estimate for howHow many words were seen once? Estimate for how 
many are unseen. All other estimates are adjusted 
(downward) to give probabilities for unseen
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Good-Turing Estimate (cont.)g ( )

• For any m-gram,             ,that occurs r times (             ), mw1=a [ ]mwcr 1=

[ ]we pretend it occurs r* times (                ), 
( ) ,1 1*

n
nrr r ++=

[ ]mwcr 1
** =

A new frequency count

data  trainingin the         
 timesexactly  occurs that grams- ofnumber   theis ere        wh rmn

n

r 

r

Not a conditional
probability !

– The probability estimate for a m-gram,                , with r counts

( ) datatrainingtheofcounts)word(totalsizetheiswhere
*

NrP =a

mw1=a

• The size (word counts) of the training data remains the 
same

( ) datatrainingtheofcounts) word(totalsizetheiswhere, N
N

PGT =a

same

( )~ * ∞∞∞

Nnr
r

r =∑ ⋅
∞

=1
Let   
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Good-Turing Estimate (cont.)g ( )

• It follows from above that the total probability estimate p y
used for the set of m-grams that actually occur in the 
sample is

( )
[ ] N

nwP
mm wcw

m
GT

1

0,
1 1

11

−=∑
>

• The probability of observing some previously unseen m-
grams is

( )
N
nwP m

GT
1

1 =∑ ( )
[ ] Nmm wcw

GT
0,

1
11

∑
=
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– Which is just a fraction of the singletons (m-grams occurring only 
once) in the text sample  



Good-Turing Estimate: Exampleg
• Imagine you are fishing. You have caught 10 Carp (鯉魚), 

3 Cod (鱈魚), 2 tuna(鮪魚), 1 trout(鱒魚), 1 salmon(鮭魚), (鱈魚), (鮪魚), (鱒魚), (鮭魚),
1 eel(鰻魚)

• How likely is it that next species is new? y
– p0=n1/N=3/18= 1/6

• How likely is eel? 1*

– n1 =3, n2 =1
– 1* =(1+1) ×1/3 = 2/3

P( l) 1* /N (2/3)/18 1/27– P(eel) = 1  /N = (2/3)/18 = 1/27

• How likely is tuna? 2*

n =1 n =1– n2 =1, n3 =1
– 2* =(2+1) ×1/1 = 3
– P(tuna) = 2* /N = 3/18 = 1/6
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( )

• But how likely is Cod? 3*

– Need a smoothing for n4 in advance



Good-Turing Estimate (cont.)g ( )

• The Good-Turing estimate may yield some problems g y y p
when nr+1=0
– An alternative strategy is to apply Good-Turing to the m-grams 

( t ) t t k ti h k i t h(events) seen at most k times, where k is a parameter chosen so 
that nr+1 ≠0, r=1,…,k
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Good-Turing Estimate (cont.)g ( )

• For Good-Turing estimate, it may happen that an m-gram g , y pp g
(event) occurring k times takes on a higher probability 
than an event occurring k+1 times
– The choice of k may be selected in an attempt to overcome such 

a drawback  
( ) 11ˆ +⋅

+
= knkaP ( )

( ) 2
1

2ˆ +
+ ⋅

+
=

=

k
kGT

k
kGT

n
n

N
kaP

nN
aP

– Experimentally, k ranging from 4 to 8 will not allow the about 
condition to be true (for r ≤ k)

1+knN

condition to be true (for r ≤ k)

( ) ( )
( ) ( )

ˆˆ
2

1< +aPaP kGTkGT
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Katz Back-off Smoothing
1987

g

• Extend the intuition of the Good-Turing estimate by 

1987

adding the combination of higher-order language 
models with lower-order ones

E bi d i l d l– E.g., bigrams and unigram language models

L t t k t b li bl th t• Larger counts are taken to be reliable, so they are not 
discounted
– E g for frequency counts r > k– E.g., for frequency counts r > k

• Lower counts are discounted, with total reduced countsLower counts are discounted, with total reduced counts 
assigned to unseen events, based on the Good-Turning 
estimate
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– E.g., for frequency counts r ≤ k



Katz Back-off Smoothing (cont.)g ( )

• Take the bigram (m-gram, m=2) counts for example:

[ ] ⎪
⎨

⎧
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>
= 0if

 if                        

1
* rkrd
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wwC ii
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[ ]
( ) ( )⎪
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⎨
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rwPw
rkrdwwC

iKatzi

rii
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[ ]1. 

2.                     : discount constant, satisfying to the following rd r

*
≈

[ ]ii wwCr 1−=

, y g g
two equations

d

r
d r

rd
*

μ= ( ) 11 nrdn
k

=−∑

Note: dr should 
be calculated for
different m-gram
counts and 

and 

3. [ ] [ ]∑∑ − * wwCwwC

r
d r μ= ( ) 1

1
1 nrdn

r
rr∑

=different m-gram
histories, e.g., 
wi-1 here
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Assume lower level
LM probability has
been defined

( )
[ ] [ ][ ]

( )[ ]∑
∑∑

=

> −−

−

−

−=
0:

0: 11
1

1

1

iii

iiii

wwCw iKatz

wwCw iiw ii
i wP

wwCwwC
wβ



Katz Back-off Smoothing (cont.)

• Derivation of the discount constant: 
( )
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Katz Back-off Smoothing (cont.)g ( )

• Derivation of the discount constant rd r

( )
( )[ ]

( )[ ] ( )
11

1
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1
1

nknr
nrrd

k
r

++−
−

−=⇒
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Katz Back-off Smoothing (cont.)g ( )

• Take the conditional probabilities of  bigrams (m-gram, m=2) 
for example:

[ ] [ ]
⎪
⎧ >−−  if         , 11 krwCwwC iii

( ) [ ] [ ]
( ) ( )⎪
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Katz Back-off Smoothing: Exampleg

• A small vocabulary consists of only five words, y y ,
i.e.,                        . The frequency counts for word pairs 
started with      are:

{ }521 ,...,, wwwV =

1w

[ ] [ ] [ ] [ ] [ ]
, and the word frequency counts are:

[ ] [ ] [ ] [ ] [ ] 0,,,1, ,2,,3, 5111413121 ===== wwCwwCwwCwwCwwC

[ ] [ ] [ ] [ ] [ ] 461086 CCCCC .

Katz back-off smoothing with Good-Turing estimate is

[ ] [ ] [ ] [ ] [ ] 4,6,10,8 ,6 54321 ===== wCwCwCwCwC

Katz back off smoothing with Good Turing estimate is 
used here for word pairs with frequency counts equal to 
or less than two. Show the conditional probabilities of 
word bigrams started with         , i.e., 1w

( ) ( ) ( ) ? ....,,, 151211 wwPwwPwwP KatzKatzKatz
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( ) ( ) ( ) ?....,,, 151211 KatzKatzKatz



Katz Back-off Smoothing: Example (cont.)g ( )

( )  timesexactly  occurs that grams- ofnumber   theis  where,1 1* rnn
n

n
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r ++=

data  trainingin the         
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Kneser-Ney Back-off Smoothing
1995

y g

• Absolute discounting without the Good-Turning 
ti t

1995

estimate
• The lower n-gram (back-off n-gram) is not proportional 

to the n mber of occ rrences of a ord b t instead toto the number of occurrences of a word but instead to 
the number of different words that it follows, e.g.:
– In “San Francisco” “Francisco” only follows a single history itIn San Francisco , Francisco  only follows a single history, it 

should receive a low unigram probability

San Salvador ? At Salvador P(Salvador | At) ? 

– In “US dollars”, “TW dollars” etc., “dollars” should receive a 

San Salvador ? At Francisco P(Francisco | At) ?

high unigram probability
C(US dollars)=200
C(HK dollars)=100 
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( )
C(TW dollars)=25

.

.



Kneser-Ney Back-off Smoothing (cont.)y g ( )

• Take the conditional probabilities of  bigrams (m-gram, m=2) 
for example:

( )
[ ]{ }
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Kneser-Ney Back-off Smoothing: Exampley g

• Given a text sequence as the following:q g
SABCAABBCS                    (S is the sequence’s start/end marks)

Show the corresponding unigram conditional    
probabilities:

[ ] [ ] 2     3    =•=• BA CC
[ ] [ ]

( ) 3
1     1    

=⇒

=•=•

AP

SC CC

( )

( )
7
2     

7

=

⇒

BP

AP

KN

KN

( )
7
1     

7

=CPKN
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Katz vs. Kneser-Ney Back-off Smoothingy g

• Example 1: Wall Street Journal (JSW), English 
– A vocabulary of 60,000 words and a corpus of 260 million words 

(read speech) from a newspaper such as Wall Street Journal
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Katz vs. Kneser-Ney Back-off Smoothing (cont.)y g ( )

• Example 2: Broadcast News Speech, Mandarin p p ,
– A vocabulary of 72,000 words and a corpus of 170 million Chinese 

characters from Central News Agency (CNA)
T t d M d i b d t h ll t d i T i– Tested on Mandarin broadcast news speech collected in Taiwan, 
September 2002, about 3.7 hours

M d l P l it Ch t E R tModels Perplexity Character Error Rate
(after tree-copy search, TC )

Bigram Katz 959.56 16.81

Bigram Kneser-Ney 942.34 18.17

Tigram Katz 752 49 14 62Tigram Katz 752.49 14.62

Tigram Kneser-Ney 670.24 14.90
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– The perplexities are high here, because the LM training materials 
are not speech transcripts but merely newswire texts



Interpolated Kneser-Ney Smoothing y g

• Always combine both the higher-order and the lower-
order LM probability distributions

• Take the bigram (m-gram, m=2) conditional probabilities
f lfor example:

[ ]{ }
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[ ]• : the number of unique words that precede

• : a normalizing constant that makes the probabilities

[ ]iwC • iw

)( 1−iwλ : a normalizing constant that makes the probabilities      
sum to 1
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[ ]•=)( wCDwλ
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Interpolated Kneser-Ney Smoothing (cont.)y g ( )

• The exact formula for interpolated Kneser-Ney smoothed p y
trigram conditional probabilities
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For the IKN bigram and unigram, the number of 
unique words that precede a given history is 
considered  instead of the frequency counts
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considered, instead of the frequency counts.



Back-off  vs. Interpolation 

• When determining the probability of n-grams with g p y g
nonzero counts, interpolated models use information 
from lower-order distributions while back-off models do 

tnot

ff• In both back-off and interpolated models, lower-order 
distributions are used in determining the probability 
of n grams with zero countsof n-grams with zero counts

• It is easy to create a back off version of an interpolated• It is easy to create a back-off version of an interpolated 
algorithm by modifying the normalizing constant

SP - Berlin Chen   57



Witten-Bell Discountingg

• A much better smoothing method that is only slightly g y g y
more complex than add-one

• The count of “first time” n-grams is just for the number of 
n-gram types we have already seen in data
– Probability of total unseen (zero-count) n-grams

T⎤⎡ *

TN
Tp

ici
i +

=⎥
⎦

⎤
⎢
⎣

⎡
∑

=0:

*

• : the types of n-grams we have already seen 
• differs from       (      : total types of n-grams defined beforehand)

T
T V V

SP - Berlin Chen   58



Witten-Bell Discounting (cont.)g ( )

• Probability mass is equally divided up to among all the y q y p g
zero-count n-grams

* T
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Witten-Bell Discounting (cont.)g ( )

• Another formulation (in terms of frequency count)

⎪⎧ =0if ,* icNT
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⎪
⎨= +

>
+

,

0 if  ,

* i

ii

TNZ
c

TN
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ic

• Example (of unigram modeling)

⎩ +TN

– V={A,B,C,D,E}, |V|=5
– S={A,A,A,A,A,B,B,B,C,C}, N=|S|=10

5 f ‘A’ 3 f ‘B’ 2 f ‘C’ 0 f ‘D’ ’E’ T |{A B C}| 3 Z 2– 5 for ‘A’, 3 for ‘B’, 2 for ‘C’, 0 for ‘D’,’E’, T=|{A,B,C}|=3, Z=2
– P(A)=5/(10+3)=0.385
– P(B)=3/(10+3)=0.23
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P(B) 3/(10 3) 0.23
– P(C)=2/(10+3)=0.154
– P(D)=P(E)=3/(10+3)*(1/2)=0.116



Witten-Bell Discounting (cont.)g ( )

• Extended to Bigram Modelingg g
– Consider bigrams with the history word

• For zero-count bigrams (with        as the history)
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– : frequency count of word         in the corpusxw)( xwC

))()()(( xxx

– : types of nonzero-count bigrams (with        as the history)

t f t bi ( ith th hi t )

)( xwT xw

)(Z
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– : types of zero-count bigrams (with        as the history)xw)( xwZ

∑=
=0)(:
1)(

ixwwCi
xwZ



Witten-Bell Discounting (cont.)g ( )

• Extended to Bigram Modelingg g
• For nonzero-count n-grams (with        as the history)
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