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Introduction

• Classification of Speech Variability in Five CategoriesClassification of Speech Variability in Five Categories
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Introduction (cont.)( )

• The Diagram for Speech Recognition
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signal
Recognition

results

Linguistic Network 
Decoding

Acoustic 
model

Language
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• Importance of the robustness in speech recognition
– Speech recognition systems have to operate in situations with p g y p

uncontrollable acoustic environments
– The recognition performance is often degraded due to the 

mismatch in the training and testing conditions
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mismatch in the training and testing conditions
• Varying environmental noises, different speaker characteristics 

(sex, age, dialects), different speaking modes (stylistic, Lombard 
effect), etc. 



Introduction (cont.)( )

• If a speech recognition system’s accuracy does not p g y y
degrade very much under mismatch conditions, the 
system is called robust 
– ASR performance is rather uniform for SNRs greater than 25dB, 

but there is a very steep degradation as the noise level 
increases 
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• Signal energy measured in time domain, e.g.:
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• Various noises exist in varying real-world environments

[ ] [ ]∑ ×=
= 0n

s nsns
T

E
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– Periodic, impulsive, or wide/narrow band



Introduction (cont.)( )

• Therefore, several possible robustness approaches have , p pp
been developed to enhance the speech signal, its 
spectrum, and the acoustic models as well

– Environmental compensation processing (feature-based)

A ti d l d t ti ( d l b d)– Acoustic model adaptation (model-based)

– Robust acoustic features (both model- and feature-based)
• Or, inherently discriminative acoustic features
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The Noise Types (1/2)The Noise Types (1/2)
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The Noise Types (2/2)y ( )
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Additive Noises
• Additive noises can be stationary or non-stationary

– Stationary noises– Stationary noises
• Such as computer fan, air conditioning, car noise: the power 

spectral density does not change over time (the above noises are 
also narrow band noises)also narrow-band noises)

– Non-stationary noises
• Machine gun, door slams, keyboard clicks, radio/TV, and other 

speakers’ voices (babble noise, wide band nose, most difficult): the 
statistical properties
change over time

loglog SCSS ⇒⇒

power
spectrum

log power
spectrum cepstrum

) (        ) (         cl SS
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Additive Noises (cont.)( )
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Convolutional Noises

• Convolutional noises are mainly resulted from channel y
distortion (sometimes called “channel noises”) and are 
stationary for most cases
– Reverberation, the frequency response of microphone, 

transmission lines, etc. 

loglog SCSS ⇒⇒

power
spectrum

log power
spectrum cepstrum

) (        ) (         cl SS
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Noise Characteristics

• White Noise
– The power spectrum is flat                 ,a condition equivalent to 

different samples being uncorrelated, 
Whit i h b t h diff t di t ib ti

( ) qSnn =ω
[ ] [ ]mqmRnn δ=

– White noise has a zero mean, but can have different distributions 
– We are often interested in the white Gaussian noise, as it 

resembles better the noise that tends to occur in practicep

• Colored Noise
The spectr m is not flat (like the noise capt red b a microphone)– The spectrum is not flat (like the noise captured by a microphone)

– Pink noise
• A particular type of colored nose that has a low-pass nature, as it p yp p ,

has more energy at the low frequencies and rolls off at high 
frequency

• E.g., the noise generated by a computer fan, an air conditioner, or 
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g , g y p , ,
an automobile   



Noise Characteristics (cont.)( )

• Musical Noise
M i l i i h t i id (t ) d l di t ib t d– Musical noise is short sinusoids (tones) randomly distributed 
over time and frequency

• That occur due to, e.g., the drawback of original spectral g g p
subtraction technique and statistical inaccuracy in estimating 
noise magnitude spectrum

• Lombard effect
– A phenomenon by which a speaker increases his vocal effect in 

th f b k d i (th dditi i )the presence of background noise (the additive noise)
– When a large amount of noise is present, the speaker tends to 

shout, which entails not only a high amplitude, but also often , y g p ,
higher pitch, slightly different formants, and a different coloring 
(shape) of the spectrum
The vowel portion of the words will be overemphasized by the
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– The vowel portion of the words will be overemphasized by the 
speakers 



A Few Robustness Approaches



Three Basic Categories of Approachesg

• Speech Enhancement Techniquesp q
– Eliminate or reduce the noisy effect on the speech signals, thus 

better accuracy with the originally trained models
(Restore the clean speech signals or compensate for distortions)(Restore the clean speech signals or compensate for distortions)

– The feature part is modified while the model part remains 
unchanged

• Model-based Noise Compensation Techniques
– Adjust (changing) the recognition model parameters (means and 

i ) f b tt t hi th t ti i ditivariances) for better matching the testing noisy conditions
– The model part is modified while the feature part remains 

unchangedg

• Robust Parameters for Speech
– Find robust representation of speech signals less influenced by 
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additive or channel noise
– Both of the feature and model parts are changed



Assumptions & Evaluationsp

• General Assumptions for the Noise
– The noise is uncorrelated with the speech signal
– The noise characteristics are fixed during the speech utterance 

or vary very slowly (the noise is said to be stationary)or vary very slowly (the noise is said to be stationary)
• The estimates of the noise characteristics can be obtained during 

non-speech activity 
– The noise is supposed to be additive or convolutional

• Performance EvaluationsPerformance Evaluations
– Intelligibility, quality (subjective assessment)
– Distortion between clean and recovered speech (objective

assessment)
– Speech recognition accuracy
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Spectral Subtraction (SS)     S. F. Boll, 1979( )

• A Speech Enhancement Technique
E ti t th it d ( th ) f l h b• Estimate the magnitude (or the power) of clean speech by 
explicitly subtracting the noise magnitude (or the power) 
spectrum from the noisy magnitude (or power) spectrumspectrum from the noisy magnitude (or power) spectrum

• Basic Assumption of Spectral Subtraction
– The clean speech is corrupted by additive noise[ ]ms [ ]mnThe clean speech         is corrupted by additive noise 
– Different frequencies are uncorrelated from each other
– and are statistically independent, so that the power 

[ ]ms [ ]mn

[ ]ms [ ]mn

spectrum of the noisy speech     can be expressed as: 

To eliminate the additive noise:

[ ]mx

( ) ( ) ( )ωωω NSX PPP +=

( ) ( ) ( )ωωω PPP =– To eliminate the additive noise:
– We can obtain an estimate of          using the average period of M

frames that known to be just noise:

( ) ( ) ( )ωωω NXS PPP −=

( )ωNP

( ) ( )−1M P1P̂
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Spectral Subtraction (cont.)( )

• Problems of Spectral Subtraction
– and are not statistically independent such that the cross [ ]ms [ ]mn y p

term in power spectrum can not be eliminated
– is possibly less than zero

I t d “ i l i ” h

[ ] [ ]

( )ωSP̂
( ) ( )PP
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– Introduce “musical noise” when
– Need a robust endpoint (speech/noise/silence) detector

( ) ( )ωω NX PP ≈



Spectral Subtraction (cont.)( )

• Modification: Nonlinear Spectral Subtraction (NSS)p ( )

( ) ( ) ( ) ( ) ( ) ( )
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Spectral Subtraction (cont.)( )

• Spectral Subtraction can be viewed as a filtering p g
operation 
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Wiener Filteringg

• A Speech Enhancement Techniquep q
• From the Statistical Point of View

– The process        is the sum of the random process       and the [ ]ms[ ]mx
additive noise process

Find a linear estimate in terms of the process :

[ ]mn

[ ]mŝ [ ]mx

[ ] [ ] [ ]mmm nsx +=

– Find a linear estimate         in terms of the process          :
• Or to find a linear filter         such that the sequence                   

minimizes the expected value of  

[ ]ms [ ]mx

[ ]mh [ ] [ ] [ ]mhmxmŝ ∗=
[ ] [ ]( )2msmŝ −

Noisy Speech

A linear filter 
h[n]

[ ]mx [ ]mŝ
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Wiener Filtering (cont.)g ( )

• Minimize the expectation of the squared error (MMSE 
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Wiener Filtering (cont.)g ( )

• Minimize the expectation of the squared error (MMSE p q (
estimate)
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Wiener Filtering (cont.)g ( )

• The time varying Wiener Filter also can be expressed in 

( ) ( )
( ) ( )
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PSH Sss ωωω ==

a similar form as the spectral subtraction
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Wiener Filtering (cont.)g ( )

• Wiener Filtering can be realized only if we know the g y
power spectra of both the noise and the signal
– A chicken-and-egg problem

• Approach - I : Ephraim(1992) proposed the use of an 
f f fHMM where, if we know the current frame falls under, we 

can use its mean spectrum as 
In practice we do not know what state each frame falls into

( ) ( )ωω Sss PS or   
– In practice, we do not know what state each frame falls into 

either
• Weight the filters for each state by a posterior probability that frame 

ffalls into each state
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Wiener Filtering (cont.)g ( )

• Approach - II :
– The background/noise is stationary and its power spectrum can 

be estimated by averaging spectra over a known background 
regiong

– For the non-stationary speech signal, its time-varying power 
spectrum can be estimated using the past Wiener filter (of 
previous frame)previous frame) 
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• The initial estimate of the speech spectrum can be derived from

( ) ( ) ( )ωωω ,,,~   tHtPtP XS =
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• The initial estimate of the speech spectrum can be derived from 
spectral subtraction

– Sometimes introduce musical noise



Wiener Filtering (cont.)g ( )

• Approach - III :pp
– Slow down the rapid frame-to-frame movement of the object 

speech power spectrum estimate by apply temporal smoothing 
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Wiener Filtering (cont.)g ( )

Clean Speechp

Noisy Speech

Enhanced Noise Speech
Using Approach – III

85.0=α

Other more complicate 
Wiener filters
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The Effectives of Active Noise
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Cepstral Mean Normalization (CMN)( )

• A Speech Enhancement Technique and sometimes 
ll d C t l M S bt ti (CMS)called Cepstral Mean Subtraction (CMS)

• CMN is a powerful and simple technique designed to 
handle convolutional (Time invariant linear filtering)handle convolutional (Time-invariant linear filtering)
distortions [ ] [ ] [ ]nhnsnx ∗=

( ) ( ) ( )HSX

Time Domain

S t l D i
lll HSHSSHX +=+==

222 logloglog
( ) ( ) ( )ωωω HSX =

( ) lllll CHCSHSCCX +=+=
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Log Power Spectral Domain
Cepstral Domain( )
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( ) ( ) llll CSCS1CX1CX −=− The spectral characteristics of the microphone and 
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( ) ( ) llll CSCS2CX2CX −=− room acoustics thus can be removed !

Can be eliminated if the assumption of zero-mean speech contribution!



Cepstral Mean Normalization (cont.)( )

• Some Findingsg
– Interesting, CMN has been found effective even the testing and 

training utterances are within the same microphone and 
environmentenvironment

• Variations for the distance between the mouth and the microphone 
for different utterances and speakers

– Be careful that the duration/period used to estimate the mean 
of noisy speech y p

• Why?
– Problematic when the acoustic feature vectors are almost 

identical within the selected time periodidentical within the selected time period

Speech - Berlin Chen   30



Cepstral Mean Normalization (cont.)( )

• Performance
– For telephone recordings, where each call has different 

frequency response, the use of CMN has been shown to provide 
as much as 30 % relative decrease in error rateas much as 30 % relative decrease in error rate

– When a system is trained on one microphone and tested on 
another, CMN can provide significant robustness
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Cepstral Mean Normalization (cont.)( )

• CMN has been shown to improve the robustness not p
only to varying channels but also to the noise
– White noise added at different SNRs
– System trained with speech with the same SNR (matched 

Condition)

Cepstral delta and delta-delta
features are computed prior to the 
CMN operation so that they are 

ff t dunaffected.
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Cepstral Mean Normalization (cont.)( )

• From the other perspectivep p
– We can interpret CMN as the operation of subtracting a low-pass 

temporal filter         , where all the     coefficients are identical and 
equal to which is a high pass temporal filter

[ ]nd T
1equal to         , which is a high-pass temporal filter

– Alleviate the effect of conventional noise introduced in the 
channel

T
1

Temporal (Modulation)
Frequency
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Cepstral Mean Normalization (cont.)( )

• Real-time Cepstral Normalizationp
– CMN requires the complete utterance to compute the cepstral 

mean; thus, it cannot be used in a real-time system, and an 
approximation needs to be usedapproximation needs to be used

– Based on the above perspective, we can implement other types 
of high-pass filters

( ) mean)cepstral:(  , t
l

1t
l

t
l

t
l CXCX1CXCX −⋅−+⋅= αα ( ) )p(,
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Histogram EQualization (HEQ)g ( )
• HEQ has its roots in the assumption that the transformed 

speech feature distributions of the test (or noisy) dataspeech feature distributions of the test (or noisy) data             
should be identical to that of the training (or reference) 
data y

– Find a transformation function         converts      to          
satisfying

( )dFd )(1−

x( )xF y
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Therefore the relationship between the cumulative probability
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Histogram Equalization (Cont.)g ( )

• Convert the distribution of each feature vector 
component of the test speech into a predefined targetcomponent of  the test speech into a predefined target 
distribution which corresponds to that of the training 
speechp
– Attempt not only to match speech feature means/variances, but 

also to completely match the feature distribution of the training 
and test dataand test data

R
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U
tte

n
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RASTA Temporal Filter   Hyneck Hermansky, 1991

• A Speech Enhancement Technique
• RASTA (Relative Spectral)

Assumption
– The linguistic message is coded into movements of the vocal 

tract (i.e., the change of spectral characteristics)
The rate of change of non linguistic components in speech often– The rate of change of non-linguistic components in speech often 
lies outside the typical rate of change of the vocal tact shape

• E.g. fix or slow time-varying linear communication channels
– A great sensitivity of human hearing to modulation frequencies 

around 4Hz than to lower or higher modulation frequencies

EffectEffect
– RASTA Suppresses the spectral components that change more 

slowly or quickly than the typical rate of change of speech
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RASTA Temporal Filter (cont.)( )

• The IIR transfer function
( ) 431~
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Retraining on Corrupted Speechg

• A Model-based Noise Compensation Technique
• Matched-Conditions Training

– Take a noise waveform from the new environment, add it to all 
the utterance in the training database and retrain the systemthe utterance in the training database, and retrain the system

– If the noise characteristics are known ahead of time, this method 
allow as to adapt the model to the new environment with 

l ti l ll t f d t f th i t trelatively small amount of data from the new environment, yet 
use a large amount of training data
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Retraining on Corrupted Speech (cont.)g ( )

• Multi-style Training
C t b f tifi i l ti l i t b– Create a number of artificial acoustical environments by 
corrupting the clean training database with noise samples of 
varying levels (30dB, 20dB, etc.) and types (white, babble, etc.), 
as well as varying the channels

– All those waveforms (copies of training database) from multiple 
acoustical environments can be used in trainingacoustical environments can be used in training
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Model Adaptation

• A Model-based Noise Compensation Techniquep q
• The standard adaptation methods for speaker adaptation 

can be used for adapting speech recognizers to noisy 
environments
– MAP (Maximum a Posteriori) can offer results similar to those of 

matched conditions but it requires a significant amount ofmatched conditions, but it requires a significant amount of 
adaptation data

– MLLR (Maximum Likelihood Regression) can achieve 
reasonable performance with about a minute of speech for minor 
mismatch. For severe mismatches, MLLR also requires a larger 
amount of adaptation datap
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Signal Decomposition Using HMMsg g

• A Model-based Noise Compensation Technique
• Recognize concurrent signals (speech and noise) 

simultaneously
Parallel HMMs are sed to model the conc rrent signals and the– Parallel HMMs are used to model the concurrent signals and the 
composite signal is modeled as a function of their combined 
outputs

• Three-dimensional Viterbi Search

Computationally Expensive
Noise HMM

(especially for 
non-stationary noise)

Computationally Expensive
for both Training and Decoding !

Clean speech HMM
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Parallel Model Combination (PMC)( )

• A Model-based Noise Compensation Techniquep q
• By using the clean-speech models and a noise model, 

we can approximate the distributions obtained by training 
a HMM with corrupted speech
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Parallel Model Combination (cont.)( )

• The steps of Standard Parallel Model Combination (Log-p ( g
Normal Approximation)

Cepstral domain
Log-spectral domain Linear spectral domain

Noise HMM’s
l

l

Σ
μ

cl μCμ 1−=
Tcl )( 11 −−= CΣCΣ

( )2exp l
ii

l
ii Σ+= μμ

( )[ ]1exp −Σ=Σ l
ijjiij μμc

c

Σ
μ

Σ
μ

Clean speech HMM’s

Σ

μμμ ~gˆ +=

Σμ ~    ~
In linear spectral domain, 
the distribution is lognormal μμμ g

ΣΣΣ ~gˆ 2 +=

Noisy speech HMM’s

Because speech and noise are 
independent and additive in the 
linear spectral domain

Σ

μ
ˆ
ˆ

l

lμ
ˆ
ˆcμ

ˆ
ˆ

( ) ( )1log
2
1ˆlogˆ 2ˆ

ˆ
+−= Σ

i

ii
i

l
i μ

μμ

( )1logˆ ˆ
+Σ Σijl

lc μCμ ˆ ˆ =
Tlc CΣCΣ ˆˆ

y p linear spectral domain

Log-normal 
approximation
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ΣlΣcΣ̂ ( )1log
ˆˆ
+=Σ

ji

ijl
ij μμ

Tlc CΣCΣ = approximation
(Assume the new 
distribution is lognormal)

Constraint: the estimate of
variance is positive



Parallel Model Combination (cont.)( )

• Modification-I: Perform the model combination in the Log-
S t l D i (th i l t i ti )Spectral Domain (the simplest approximation)
– Log-Add Approximation: (without compensation of variances)

( ) ( )( )
• The variances are assumed to be small

A simplified version of Log Normal approximation

( ) ( )( )lll μμμ ~expexplogˆ +=

– A simplified version of Log-Normal approximation
• Reduction in computational load

• Modification-II: Perform the model combination in the 
Linear Spectral Domain (Data-Driven PMC, DPMC, or 
Iterative PMC)Iterative PMC)
– Use the speech models to generate noisy samples (corrupted 

speech observations) and then compute a maximum likelihood of 
these noisy samples
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these noisy samples
– This method is less computationally expensive than standard 

PMC with comparable performance 



Parallel Model Combination (cont.)( )

• Modification-II: Perform the model combination in the 
Linear Spectral Domain (Data-Driven PMC, DPMC)

Noise HMMClean Speech HMM Noisy Speech HMM

Cepstral domain

G tiGenerating 
samples

Apply Monte Carlo 
simulation to draw random 
cepstral vectors
(for example, at least 100 for

Linear spectral domain Domain 
transform

( p ,
each distribution)

p transform

Speech - Berlin Chen   46



Parallel Model Combination (cont.)( )

• Data-Driven PMC
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Vector Taylor Series (VTS)   P. J. Moreno,1995y ( )

• A Model-based Noise Compensation Techniquep q
• VTS Approach

– Similar to PMC, the noisy-speech-like models is generated by 
combining of clean speech HMM’s and the noise HMM

– Unlike PMC, the VTS approach combines the parameters of 
clean speech HMM’s and the noise HMM linearly in the log-clean speech HMM s and the noise HMM linearly in the log
spectral domain

Power spectrum( ) ( ) ( ) ( )
( ) ( ) ( )( )l

NHSX PPPP += ωωωω
Log Power spectrum( ) ( ) ( )( )

( ) ( ) ( )
( ) ( )

N
HS

NHS
l

PP
P

PP
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⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

+=

1log     

log

ω
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ωωω

( ) ( )
( ) ( ) ( ) ( ) ( )( )

( )lll
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HSNll
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−−+++=
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⎠
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⎠

⎜
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Non-linear function( )
( ) ( ) ( )lll HSNllllllll

HSNll

eNHSfNHSfHS

eHS
−−

−−

+=++=

+++=

1log,,    where,,,     

1log     
Is a vector 
function



Vector Taylor Series (cont.)y ( )

• The Taylor series provides a polynomial representation y p p y p
of a function in terms of the function and its derivatives at 
a point
– Application often arises when nonlinear functions are employed 

and we desire to obtain a linear approximation
– The function is represented as an offset and a linear termThe function is represented as an offset and a linear term 

→ RRf :

( ) ( ) ( )( ) ( )( )−′′+−′+=

→

xxxfxxxfxfxf

RRf

2
00000 2

1
:

( )( )( ) ⎟
⎠
⎞⎜

⎝
⎛ −+−++ nnn xxoxxxf

n 000!
1....                     
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Vector Taylor Series (cont.)y ( )

• Apply Taylor Series Approximation
( )( ) ( ) ( )( )

( )( ) ( )( ),,,,

,,
,,,,

000000

0
000

000

+++

−+≅

ll
lll

ll
lll

ll
l

lll
llllll

NN
NHSdf

HH
NHSdf

SS
dS

NHSdf
NHSfHSNf

– VTS-0: use only the 0th-order terms of Taylor Series
– VTS-1: use only the 0th- and 1th-order terms of Taylor Series

( )( ) ( )( ) .....             00 +−+−+ ll NN
dN

HH
dH

VTS 1: use only the 0th and 1th order terms of Taylor Series
– is the vector function evaluated at a particular 

vector point
( )lll NHSf 000 ,,

• If VTS-0 is used 
[ ] ( )[ ]

( )[ ]llllll

llllll

NHSfEuuu
N,H,SfHSEXE

++

++=
(constant)biasaasitregardcanwe

invariant, time-linear isfilter  channel  theIf
g( )[ ]

( )[ ]
( ) Gaussian)alsois(       

    
llllll

lllll
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nhshs

hsx

++≅

++≅

++=

( ) Gaussian) also is (     
domain  spectrumpower  log in the 
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lllll Xu,g,ufguu

g
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0-th order VTS
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( )
t)independen are  and  (if   

)(
lllll HS

,,f
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nhshs

Σ+Σ≅Σ  ll
sx Σ≅Σ

To get the clean speech statistics



Vector Taylor Series (cont.)y ( )

Speech - Berlin Chen   51



Retraining on Compensated Featuresg

• A Model-based Noise Compensation Technique that also 
U h d F t ( d b SS CMN t )Uses enhanced Features (processed by SS, CMN, etc.)
– Combine speech enhancement and model compensation

SPLICE: Stereo-based Piecewise Linear Compensation
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More on SPLICE
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Principal Component Analysisy

• Principal Component Analysis (PCA) :
– Widely applied for the data analysis and dimensionality reduction 

in order to derive the most “expressive” feature
– Criterion:Criterion: 

for a zero mean r.v. x∈RN, find k (k≤N) orthonormal vectors
{e1, e2,…, ek} so that

– (1) var(e1
T x)=max 1

(2) var(ei
T x)=max i

subject to e⊥ e ⊥ ⊥e 1≤ i ≤ksubject to ei⊥ ei-1 ⊥…… ⊥e1 1≤ i ≤k

– {e1, e2,…, ek} are in fact the eigenvectors 
f th i t i (Σ ) fof the covariance matrix (Σx) for x

corresponding to the largest k eigenvalues
– Final r.v y ∈R k : the linear transform 

T P i i l i
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(projection) of the original r.v., y=ATx
A=[e1 e2 …… ek] 

Principal axis



Principal Component Analysis (cont.)y ( )
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Principal Component Analysis (cont.)y ( )

• Properties of PCA
– The components of y are mutually uncorrelated

E{yiyj}=E{(ei
Tx) (ej

Tx)T}=E{(ei
Tx) (xTej)}=ei

TE{xxT} ej =ei
TΣxej{yiyj} {( i ) ( j ) } {( i ) ( j)} i { } j i x j 

= λjei
Tej=0 , if i≠j

∴ the covariance of y is diagonal
– The error power (mean-squared error) between the original vector x

and the projected x’ is minimum 
x=(e1

Tx)e1+ (e2
Tx)e2 + ……+(ek

Tx)ek + ……+(eN
Tx)eN( 1 ) 1 ( 2 ) 2 ( k ) k ( N ) N 

x’=(e1
Tx)e1+ (e2

Tx)e2 + ……+(ek
Tx)ek    (Note : x’∈RN)

error r.v : 
x x’= (e Tx)e + (e Tx)e + +(e Tx)ex-x = (ek+1

Tx)ek+1+ (ek+2
Tx)ek+2 + ……+(eN

Tx)eN

E((x-x’)T(x-x’))=E((ek+1
Tx) ek+1

Tek+1 (ek+1
Tx))+……+E((eN

Tx) eN
TeN

(eN
Tx))
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(eN x))
=var(ek+1

Tx)+ var(ek+2
Tx)+…… var(eN

Tx) 
= λk+1+ λk+2+…… +λN minimum



PCA Applied in Inherently Robust Features pp y

• Application 1 : the linear transform of the original
features (in the spatial domain)

Original feature stream xtg t

Frame index

AT AT AT AT

zt= ATxt

The columns of A are the 
“first k” eigenvectors of Σx
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transformed feature 
stream zt

Frame index



PCA Applied in Inherently Robust Features (cont.) pp y ( )

• Application 2 : PCA-derived temporal filter
(i th t l d i )(in the temporal domain)
– The effect of the temporal filter is equivalent to the weighted sum of 

sequence of a specific MFCC coefficient with length L slid along thesequence of a specific MFCC coefficient with length L slid along the 
frame index  
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stream xt

The impulse response of Bk(z) is one of the

( ) ( ) ( ) ( ) ( )Nn xxxxx                   3      2      1   LL

zk(n)=[ yk(n) yk(n+1) yk(n+2) …… yk(n+L-1)]T
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=

1

11
1 LN

k n
LNk

zzμ

L
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The impulse response of Bk(z) is one of the 
eigenvectors of the covariance for zk
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The element in the new feature vector
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zk(2)
zk(3) ( ) ( ) ( )nknx k

T
k ze 1,ˆ =

The element in the new feature vector

From Dr. Jei-wei Hung



PCA Applied in Inherently Robust Features (cont.)

The frequency responses of the 15 PCA-derived temporal filters
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PCA Applied in Inherently Robust Features (cont.)

• Application 2 : PCA-derived temporal filterpp p

Mismatched 
condition

Filter length
L=10

MatchedMatched 
condition
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PCA Applied in Inherently Robust Features (cont.) pp y ( )

• Application 3 : PCA-derived filter bankpp

Power spectrum
obtained by DFT 

x1 x2 x3

hh1

h3

h2 hk is one of the 
eigenvectors 
of the covariance
for xk
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PCA Applied in Inherently Robust Features (cont.)

• Application 3 : PCA-derived filter bankpp
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Linear Discriminative Analysisy

• Linear Discriminative Analysis (LDA)y ( )
– Widely applied for the pattern classification 
– In order to derive the most “discriminative” feature
– Criterion : assume wj, μj and Σj are the weight, mean and 

covariance of class j, j=1……N. Two matrices are defined as:
( )( )∑ −−= N

j
T

b w1:covarianceclass-Between μμμμS

Find W=[w1 w2 wk]

( )( )
∑

∑

=

=

=

=
N
j jjw

j jjjb

w

w

1

1

 : covariance class-Within

:covarianceclassBetween

ΣS

μμμμS

Find W [w1 w2 ……wk]
such that

WSW

WSW
W

W T

b
T

maxargˆ =

– The columns wj of W are the 
eigenvectors of Sw

-1SB

WSWW
w
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g w B
having the largest eigenvalues



Linear Discriminative Analysis (cont.)y ( )

The frequency responses of the 15 LDA-derived temporal filters
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Minimum Classification Error

• Minimum Classification Error (MCE):( )
– General Objective : find an optimal feature presentation or an 

optimal recognition model to minimize the expected error of 
classificationclassification

– The recognizer is often operated under the following decision rule :
C(X)=Ci if gi(X,Λ)=maxj gj(X,Λ)C(X) Ci gi(X, ) a j gj(X, )
Λ={λ(i)}i=1……M (M models, classes), X : observations,
gi(X,Λ): class conditioned likelihood function, for example,

gi(X,Λ)=P(X|λ(i))
– Traditional Training Criterion : 

find λ(i) such that P(X|λ(i)) is maximum (Maximum Likelihood) if X find λ( ) such that P(X|λ( )) is maximum (Maximum Likelihood) if X 
∈Ci

• This criterion does not always lead to minimum classification error, 
i it d 't id th t l l ti hi b t
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since it doesn't consider the mutual relationship between 
different classes

• For example, it’s possible that P(X|λ(i)) is maximum but X ∉Ci



Minimum Classification Error (cont.)( )

( )( )kCXXLRP ∉ ( )( )CXXLRP ∈

kτThreshold

Type I 
error

Type II 
error

( )( )kCXXLRP ∉ ( )( )kCXXLRP ∈

error

( )kLR

Example showing histograms of the likelihood ratio             
when the observation                   and                                                kCX ∉kCX ∈

( )XLR

Type I error: False Rejection
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Type II error: False Alarm/False Acceptance



Minimum Classification Error (cont.)( )

• Minimum Classification Error (MCE) (Cont.):( ) ( )
– One form of the class misclassification measure : 

( )( ) ( )( )( )1
1

⎤⎡ α( ) ( )( ) ( )( )( )
( ) 1)(erroricationmisclassifaimplies0

      ,exp
1

1log,

=≥

∈⎥⎦
⎤

⎢⎣
⎡

−
+−= ∑

≠

Xd

CXXg
M

XgXd

i

i
ij

ii
i

α
αλλ

– A continuous loss function is defined as follows : 

( )
( ) 0)(error tion classificacorrect  a implies 0

1)(errorication misclassifaimplies 0
=<

≥
Xd
Xd

i

i

( ) ( )( )

( ) ( )=

∈=Λ

dlfunctionsigmoidthewhere

CXXdlXl iii

1
     ,

– Classifier performance measure :

( ) ( )θγ +−+ d
dlfunctionsigmoidthewhere

exp1
  

M
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Minimum Classification Error (cont.)( )

• Using MCE in model training : g g
– Find Λ such that

( ) ( )[ ]Λ=Λ=Λ ,minargminargˆ XLEL X

the above objective function in general cannot be minimized 
di tl b t th l l i i b hi d i di t

( ) ( )[ ]
ΛΛ

,gg X

directly but the local minimum can be achieved using gradient 
decent algorithm

( )
Λ

Λ∂ ftbitL

• Using MCE in robust feature representation

( ) :,1 Λ
∂

−=+ ofparameterarbitraryanw
w

ww tt ε

( ) ( )( )[ ]
featureoriginaltheofma transfor :

,minargˆ

Xf

XfLEf f
Xf

Λ=
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yaccordingl changed also is model  thechanged, is onpresentati feature  while:
g

Note
f


