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Hidden Markov Model (HMM):
A Brief Overview

History
– Published in papers of Baum in late 1960s and early 1970s
– Introduced to speech processing by Baker (CMU) and Jelinek 

(IBM) in the 1970s  (discrete HMMs)
– Then extended to continuous HMMs by Bell Labs

Assumptions
– Speech signal can be characterized as a parametric random 

(stochastic) process
– Parameters can be estimated in a precise, well-defined manner

Three fundamental problems
– Evaluation of probability (likelihood) of a sequence of 

observations given a specific HMM
– Determination of a best sequence of model states
– Adjustment of model parameters so as to best account for 

observed signals (or discrimination purposes)
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Stochastic Process

• A stochastic process is a mathematical model of a 
probabilistic experiment that evolves in time and 
generates a sequence of numeric values
– Each numeric value in the sequence is modeled by a random 

variable
– A stochastic process is just a (finite/infinite) sequence of random 

variables

• Examples
(a) The sequence of recorded values of a speech utterance
(b) The sequence of daily prices of a stock
(c) The sequence of hourly traffic loads at a node of a 

communication network
(d) The sequence of radar measurements of the position of an 

airplane
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Observable Markov Model

• Observable Markov Model (Markov Chain)
– First-order Markov chain of N states is a triple (S,A,)

• S is a set of N states
• A is the NN matrix of transition probabilities between states

P(st=j|st-1=i, st-2=k, ……) ≈ P(st=j|st-1=i) ≈ Aij

•  is the vector of initial state probabilities
j =P(s1=j)

– The output of the process is the set of 
states at each instant of time, 
when each state corresponds to an 
observable event

– The output in any given state is 
not random  (deterministic!)

– Too simple to describe the speech 
signal characteristics

First-order and time-invariant assumptions



SP - Berlin Chen   5

Observable Markov Model (cont.)
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Observable Markov Model (cont.)

• Example 1: A 3-state Markov Chain 
State 1 generates symbol A only, 
State 2 generates symbol B only, 

and State 3 generates symbol C only

– Given a sequence of observed symbols O={CABBCABC}, the only 
one corresponding state sequence is {S3S1S2S2S3S1S2S3}, and the 
corresponding probability is

P(O|)
=P(S3)P(S1|S3)P(S2|S1)P(S2|S2)P(S3|S2)P(S1|S3)P(S2|S1)P(S3|S2)
=0.10.30.30.70.20.30.30.2=0.00002268
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Observable Markov Model (cont.)

• Example 2: A three-state Markov chain for the Dow 
Jones Industrial average
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Observable Markov Model (cont.)

• Example 3: Given a Markov model, what is the mean 
occupancy duration of each state i
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Hidden Markov Model
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Hidden Markov Model (cont.)

• HMM, an extended version of Observable Markov Model
– The observation is turned to be a probabilistic function (discrete or 

continuous) of a state instead of an one-to-one correspondence of a 
state

– The model is a doubly embedded stochastic process with an 
underlying stochastic process that is not directly observable (hidden)

• What is hidden? The State Sequence!
According to the observation sequence, we are not sure which 
state sequence generates it!

• Elements of an HMM (the State-Output HMM) ={S,A,B,}
– S is a set of N states
– A is the NN matrix of transition probabilities between states
– B is a set of N probability functions, each describing the observation 

probability with respect to a state
–  is the vector of initial state probabilities
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Hidden Markov Model (cont.)

• Two major assumptions 
– First order (Markov) assumption

• The state transition depends only on the origin and destination
• Time-invariant 

– Output-independent assumption
• All observations are dependent on the state that generated them, 

not on neighboring observations

      jitt AijPisjsPisjsP ,11   

   tttttttt sPsP oooooo   2112 ,,,,,
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Hidden Markov Model (cont.)

• Two major types of HMMs according to the observations
– Discrete and finite observations:

• The observations that all distinct states generate are finite in 
number
V={v1, v2, v3, ……, vM}, vkRL

• In this case, the set of observation probability distributions 
B={bj(vk)}, is defined as  bj(vk)=P(ot=vk|st=j), 1kM, 1jN
ot : observation at time t, st : state at time t
 for state j, bj(vk) consists of only M probability values

A left-to-right HMM
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Hidden Markov Model (cont.)

• Two major types of HMMs according to the observations
– Continuous and infinite observations:

• The observations that all distinct states generate are infinite 
and continuous, that is, V={v| vRd}

• In this case, the set of observation probability distributions 
B={bj(v)}, is defined as  bj(v)=fO|S(ot=v|st=j), 1jN
 bj(v) is a continuous probability density function (pdf)
and is often a mixture of Multivariate Gaussian (Normal)
Distributions
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Hidden Markov Model (cont.)

• Multivariate Gaussian Distributions
– When X=(x1, x2,…, xd) is a d-dimensional random vector, the 

multivariate Gaussian pdf has the form:

– If x1, x2,…, xd are independent, the covariance matrix is reduced 
to diagonal covariance 

• Viewed as d independent scalar Gaussian distributions 
• Model complexity is significantly reduced
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Hidden Markov Model (cont.)

• Multivariate Gaussian Distributions
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Hidden Markov Model (cont.)

• Covariance matrix of the 
correlated feature vectors 
(Mel-frequency filter bank 
outputs)

• Covariance matrix of the 
partially de-correlated feature 
vectors (MFCC without C0)
– MFCC: Mel-frequency cepstral 

coefficients
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Hidden Markov Model (cont.)

• Multivariate Mixture Gaussian Distributions (cont.)
– More complex distributions with multiple local maxima can be 

approximated by Gaussian (a unimodal distribution) mixture

– Gaussian mixtures with enough mixture components can 
approximate any distribution
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Hidden Markov Model (cont.)

• Example 4: a 3-state discrete HMM 

– Given a sequence of observations O={ABC}, there are 27 
possible corresponding state sequences, and therefore the 
corresponding probability is
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Hidden Markov Model (cont.)

• Notations:
– O={o1o2o3……oT}: the observation (feature) sequence
– S= {s1s2s3……sT} : the state sequence
–  : model, for HMM, ={A,B,} 
– P(O|) :  The probability of observing O given the model 
– P(O|S,) : The probability of observing O given  and a state 

sequence S of 
– P(O,S|) : The probability of observing O and S given 
– P(S|O,) : The probability of observing S given O and 

• Useful formulas
– Bayes’ Rule : 
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Hidden Markov Model (cont.)

• Useful formulas (Cont.):
– Total Probability Theorem
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Three Basic Problems for HMM

• Given an observation sequence O=(o1,o2,…..,oT),
and an HMM =(S,A,B,)
– Problem 1:

How to efficiently compute P(O|) ?
 Evaluation problem

– Problem 2:
How to choose an optimal state sequence S=(s1,s2,……, sT) ?
 Decoding Problem

– Problem 3:
How to adjust the model parameter =(A,B,) to maximize P(O|)?
 Learning / Training Problem
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Basic Problem 1 of HMM (cont.)

Given  O and , find P(O|)= Prob[observing O given ]
• Direct Evaluation

– Evaluating all possible state sequences of length T that generating 
observation sequence O

– : The probability of each path S
• By Markov assumption (First-order HMM)
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Basic Problem 1 of HMM (cont.)

• Direct Evaluation (cont.)
– : The joint output probability along the path S

• By output-independent assumption
– The probability that a particular observation symbol/vector is 

emitted at time t depends only on the state st and is 
conditionally independent of the past observations 
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Basic Problem 1 of HMM (cont.)

• Direct Evaluation (Cont.)

– Huge Computation Requirements: O(NT)
• Exponential computational complexity

• A more efficient algorithms can be used to evaluate                
– Forward/Backward Procedure/Algorithm
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Basic Problem 1 of HMM (cont.)
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Basic Problem 1 of HMM
- The Forward Procedure

• Base on the HMM assumptions, the calculation of
and                    involves only        ,          

and        , so it is possible to compute the likelihood               
with recursion on 

• Forward variable :  
– The probability that the HMM is in state i at time t having 

generating partial observation o1o2…ot

 ,ssP 1tt   ,tt sP o 1ts  ts
to

t

   λis,o...ooPi tt21t 
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Basic Problem 1 of HMM
- The Forward Procedure (cont.)

• Algorithm

– Complexity: O(N2T)

• Based on the lattice (trellis) structure
– Computed in a time-synchronous fashion from left-to-right, where 

each cell for time t is completely computed before proceeding to 
time t+1

• All state sequences, regardless how long previously, 
merge to N nodes (states) at each time instance t
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Basic Problem 1 of HMM
- The Forward Procedure (cont.)
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Basic Problem 1 of HMM
- The Forward Procedure (cont.)

• 3(3)=P(o1,o2,o3,s3=3|)
=[2(1)*a13+ 2(2)*a23 +2(3)*a33]b3(o3)
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Basic Problem 1 of HMM
- The Forward Procedure (cont.)

• A three-state Hidden Markov Model for the Dow Jones 
Industrial average

0.6

0.5
0.4

0.7

0.1

0.3

(0.6*0.35+0.5*0.02+0.4*0.009)*0.7
=0.1792
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Basic Problem 1 of HMM
- The Backward Procedure

• Backward variable : t(i)=P(ot+1,ot+2,…..,oT|st=i , )
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Basic Problem 1 of HMM
- Backward Procedure (cont.)

• Why                                             ?

•
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Basic Problem 1 of HMM
- The Backward Procedure (cont.)

• 2(3)=P(o3,o4,…, oT|s2=3,)
=a31* b1(o3)*3(1) +a32* b2(o3)*3(2)+a33* b1(o3)*3(3)
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Basic Problem 2 of HMM

How to choose an optimal state sequence S=(s1,s2,……, sT)?
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Basic Problem 2 of HMM (cont.)

• P(s3 = 3 ,O | )=3(3)*3(3)
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Basic Problem 2 of HMM
- The Viterbi Algorithm

• The second optimal criterion: The Viterbi algorithm can 
be regarded as the dynamic programming algorithm 
applied to the HMM or as a modified forward algorithm

– Instead of summing up probabilities from different 
paths coming to the same destination state, the Viterbi 
algorithm picks and remembers the best path

• Find a single optimal state sequence S=(s1,s2,……, sT)

– How to find the second, third, etc., optimal state 
sequences (difficult ?)

– The Viterbi algorithm also can be illustrated in a trellis 
framework similar to the one for the forward algorithm

• State-time trellis diagram
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Basic Problem 2 of HMM
- The Viterbi Algorithm (cont.)

• Algorithm

– Complexity: O(N2T)
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Basic Problem 2 of HMM
- The Viterbi Algorithm (cont.)
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Basic Problem 2 of HMM
- The Viterbi Algorithm (cont.)

• A three-state Hidden Markov Model for the Dow Jones 
Industrial average

0.6

0.5

0.4
0.7

0.1

0.3

(0.6*0.35)*0.7
=0.147
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Basic Problem 2 of HMM
- The Viterbi Algorithm (cont.)

• Algorithm in the logarithmic form 
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Exercise
• A three-state Hidden Markov Model for the Dow Jones 

Industrial average

– Find the probability:  
P(up, up, unchanged, down, unchanged, down, up|)

– Fnd the optimal state sequence of the model which generates the 
observation sequence: (up, up, unchanged, down, unchanged, down, up)
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Probability Addition in F-B Algorithm

• In Forward-backward algorithm, operations usually 
implemented in logarithmic domain

• Assume that we want to add       and1P 2P
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Probability Addition in F-B Algorithm (cont.)

• An example code
#define LZERO  (-1.0E10)   // ~log(0) 
#define LSMALL (-0.5E10)   // log values < LSMALL are set to LZERO
#define minLogExp  -log(-LZERO) // ~=-23
double LogAdd(double x, double y)
{
double temp,diff,z;   
if (x<y)
{

temp = x; x = y; y = temp;
}
diff = y-x; //notice that diff <= 0
if (diff<minLogExp) // if y’ is far smaller than x’

return (x<LSMALL) ?  LZERO:x;
else
{
z = exp(diff);
return x+log(1.0+z);

}
}
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Basic Problem 3 of HMM
Intuitive View

• How to adjust (re-estimate) the model parameter =(A,B,) 
to maximize P(O1,…, OL|) or logP(O1,…, OL |)?
– Belonging to a typical problem of “inferential statistics”
– The most difficult of the three problems, because there is no  known 

analytical method that maximizes the joint probability of the training 
data in a close form

– The data is incomplete because of the hidden state sequences
– Well-solved by the Baum-Welch (known as forward-backward) 

algorithm and EM (Expectation-Maximization) algorithm
• Iterative update and improvement
• Based on Maximum Likelihood (ML) criterion 
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Maximum Likelihood (ML) Estimation: 
A Schematic Depiction  (1/2)

• Hard Assignment
– Given the data follow a multinomial distribution

State S1

P(B| S1)=2/4=0.5

P(W| S1)=2/4=0.5
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Maximum Likelihood (ML) Estimation: 
A Schematic Depiction  (1/2)

• Soft Assignment
– Given the data follow a multinomial distribution
– Maximize the likelihood of the data given the alignment

State S1 State S2

0.7 0.3

0.4 0.6

0.9 0.1

0.5 0.5

P(B| S1)=(0.7+0.9)/
(0.7+0.4+0.9+0.5)

=1.6/2.5=0.64

P(W| S1)=(0.4+0.5)/
(0.7+0.4+0.9+0.5)

=0.9/2.5=0.36

P(B| S2)=(0.3+0.1)/
(0.3+0.6+0.1+0.5)

=0.4/1.5=0.27

P(W| S2)=( 0.6+0.5)/
(0.3+0.6+0.1+0.5)

=0.11/1.5=0.73

    ,1 1 OssP tt      ,2 2 OssP tt 

    121   tt 
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Basic Problem 3 of HMM
Intuitive View (cont.)

• Relationship between the forward and backward variables
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Basic Problem 3 of HMM
Intuitive View (cont.)

• Define a new variable:

– Probability being at state i at time t and at state j at time t+1

• Recall the posteriori probability variable:
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Basic Problem 3 of HMM
Intuitive View (cont.)

• P(s3 = 3, s4 = 1,O | )=3(3)*a31*b1(o4)*1(4)

O1

s2

s1

s3

s2

s1

s3

s2

s1

s1

State

O2 O3 OT

1            2             3            4                        T-1         T     time

OT-1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s1

s3
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Basic Problem 3 of HMM
Intuitive View (cont.)

•

•

• A set of reasonable re-estimation formula for {A,} is
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Basic Problem 3 of HMM
Intuitive View (cont.)

• A set of reasonable re-estimation formula for {B} is
– For discrete and finite observation bj(vk)=P(ot=vk|st=j)

– For continuous and infinite observation bj(v)=fO|S(ot=v|st=j),
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Basic Problem 3 of HMM
Intuitive View (cont.)

– For continuous and infinite observation (Cont.)
• Define a new variable 

– is the probability of being in state j at time t
with the k-th mixture component accounting for ot
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Basic Problem 3 of HMM
Intuitive View (cont.)

– For continuous and infinite observation (Cont.)
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Basic Problem 3 of HMM
Intuitive View (cont.)

• Multiple Training Utterances

台師大
s2

s1

s3

F/B F/B F/B
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Basic Problem 3 of HMM
Intuitive View (cont.)

– For continuous and infinite observation (Cont.)
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Basic Problem 3 of HMM
Intuitive View (cont.)

– For discrete and finite observation (cont.) 
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Semicontinuous HMMs 
• The HMM state mixture density functions are tied 

together across all the models to form a set of 
shared kernels
– The semicontinuous or tied-mixture HMM

– A combination of the discrete HMM and the continuous HMM
• A combination of discrete model-dependent weight coefficients and 

continuous model-independent codebook probability density functions
– Because M is large, we can simply use the L most significant 

values
• Experience showed that L is 1~3% of M is adequate

– Partial tying of                for different phonetic class

         kk
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state output  
Probability of state j k-th mixture weight

t of state j
(discrete, model-dependent)
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(shared across HMMs, M is very large)
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Semicontinuous HMMs (cont.)
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HMM Topology

• Speech is time-evolving non-stationary signal
– Each HMM state has the ability to capture some quasi-stationary 

segment in the non-stationary speech signal
– A left-to-right topology is a natural candidate to model the 

speech signal (also called the “beads-on-a-string” model)

– It is general to represent a phone using 3~5 states (English) and 
a syllable using 6~8 states (Mandarin Chinese)
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Initialization of HMM
• A good initialization of HMM training :

Segmental K-Means Segmentation into States
– Assume that we have a training set of observations and an initial estimate of all 

model parameters
– Step 1 : The set of training observation sequences is segmented into states, based 

on the initial model (finding the optimal state sequence by Viterbi Algorithm)
– Step 2 :

• For discrete density HMM (using M-codeword codebook)

• For continuous density HMM (M Gaussian mixtures per state)

– Step 3: Evaluate the model score
If the difference between the previous and current model scores is greater than a 
threshold, go back to Step 1, otherwise stop, the initial model is generated
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Initialization of HMM (cont.)

Training Data

Initial 
Model

Model 
Reestimation

StateSequence
Segmemtation

Estimate parameters 
of Observation via

Segmental K-means

Model 
Convergence

?

NO

Model Parameters

YES
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Initialization of HMM (cont.)

• An example for discrete HMM
– 3 states and 2 codeword

• b1(v1)=3/4, b1(v2)=1/4
• b2(v1)=1/3, b2(v2)=2/3
• b3(v1)=2/3, b3(v2)=1/3

O1

State

O2 O3

1         2          3         4        5        6         7         8         9        10
O4

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

O5 O6 O9O8O7 O10

v1

v2

s2s1 s3
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Initialization of HMM (cont.)

• An example for Continuous HMM
– 3 states and 4 Gaussian mixtures per state

O1

State

O2

1         2                         N
ON

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

Global mean Cluster 1 mean

Cluster 2mean

K-means {11,11,11}{12,12,12}

{13,13,13} {14,14,14}

s2s1 s3
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Known Limitations of HMMs (1/3)

• The assumptions of conventional HMMs in Speech 
Processing
– The state duration follows an exponential distribution

• Don’t provide adequate representation of the temporal structure of 
speech

– First-order (Markov) assumption: the state transition depends 
only on the origin and destination

– Output-independent assumption: all observation frames are 
dependent on the state that generated them, not on neighboring 
observation frames

Researchers have proposed a number of techniques to address 
these limitations, albeit these solution have not significantly 
improved speech recognition accuracy for practical applications.
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Known Limitations of HMMs (2/3)

• Duration modeling

geometric/
exponential
distribution

empirical 
distribution

Gaussian 
distribution

Gamma
distribution
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Known Limitations of HMMs (3/3)

• The HMM parameters trained by the Baum-Welch 
algorithm (or EM algorithm) were only locally optimized

Current  Model Configuration Model Configuration Space

Likelihood


