Review of Probability Axioms and Laws

Berlin Chen
Department of Computer Science & Information Engineering
National Taiwan Normal University

Reference:

1. D. P. Bertsekas, J. N. Tsitsiklis, "Introduction to Probability," Athena Scientific, 2008.

What is "Probability"?

- Probability was developed to describe phenomena that cannot be predicted with certainty
 - Frequency of occurrences
 - Subjective beliefs
- Everyone accepts that the probability (of a certain thing to happen) is a number between 0 and 1 (?)
- Measures deduced from probability axioms and theories (laws/rules) can help us deal with and quantify "information"

Sets (1/2)

 A set is a collection of objects which are the elements of the set

such that

- If χ is an element of set S, denoted by $\chi \in S$
- Otherwise denoted by $x \notin S$
- A set that has no elements is called empty set is denoted by Ø
- Set specification
 - Countably finite: $\{1,2,3,4,5,6\}$
 - Countably infinite: $\{0, 2, -2, 4, -4, ...\}$
 - With a certain property: $\begin{cases} k | k/2 \text{ is integer} \end{cases}$ $\begin{cases} x | 0 \le x \le 1 \end{cases}$ $\{x|x \text{ satisfies } P\}$

Sets (2/2)

- If every element of a set S is also an element of a set T, then S is a subset of T
 - Denoted by $S \subset T$ or $T \supset S$
- If $S \subset T$ and $T \subset S$, then the two sets are **equal**
 - Denoted by S = T
- The universal set, denoted by Ω , which contains all objects of interest in a particular context
 - After specifying the context in terms of universal set Ω , we only consider sets S that are subsets of Ω

Set Operations (1/3)

Complement

- The **complement** of a set S with respect to the universe Ω , is the set $\{x \in \Omega \mid x \notin S\}$, namely, the set of all elements that do not belong to S, denoted by S^c
- The complement of the universe $\Omega^c = \emptyset$

Union

- The **union** of two sets S and T is the set of all elements that belong to S or T, denoted by $S \cup T$ $S \cup T = \{x | x \in S \text{ or } x \in T\}$

Intersection

- The **intersection** of two sets S and T is the set of all elements that belong to both S and T, denoted by $S \cap T$ $S \cap T = \{x | x \in S \text{ and } x \in T\}$

Set Operations (2/3)

 The union or the intersection of several (or even infinite many) sets

$$\bigcup_{n=1}^{\infty} S_n = S_1 \cup S_2 \cup \dots = \{x | x \in S_n \text{ for some } n\}$$

$$\bigcap_{n=1}^{\infty} S_n = S_1 \cap S_2 \cap \dots = \{x | x \in S_n \text{ for all } n\}$$

- Disjoint
 - Two sets are **disjoint** if their intersection is empty (e.g., $S \cap T = \emptyset$)
- Partition
 - A collection of sets is said to be a **partition** of a set S if the sets in the collection are disjoint and their union is S

Set Operations (3/3)

Visualization of set operations with Venn diagrams

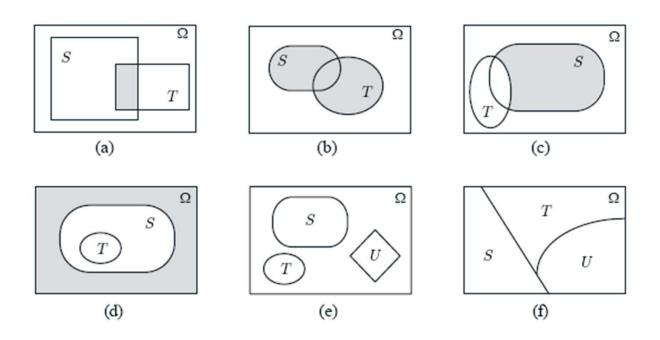
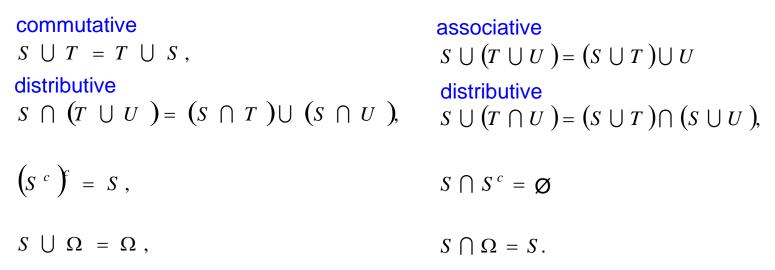


Figure 1.1: Examples of Venn diagrams. (a) The shaded region is $S \cap T$. (b) The shaded region is $S \cup T$. (c) The shaded region is $S \cap T^c$. (d) Here, $T \subset S$. The shaded region is the complement of S. (e) The sets S, T, and U are disjoint. (f) The sets S, T, and U form a partition of the set Ω .

The Algebra of Sets

 The following equations are the elementary consequences of the set definitions and operations



De Morgan's law

$$\left(\bigcup_{n} S_{n}\right)^{c} = \bigcap_{n} S_{n}^{c} \qquad \left(\bigcap_{n} S_{n}\right)^{c} = \bigcup_{n} S_{n}^{c}$$

Probabilistic Models (1/2)

- A probabilistic model is a mathematical description of an uncertainty situation
 - It has to be in accordance with a fundamental framework to be discussed shortly
- Elements of a probabilistic model
 - The sample space
 - The set of all possible outcomes of an experiment
 - The probability law
 - Assign to a set A of possible outcomes (also called an **event**) a nonnegative number $\mathbf{P}(A)$ (called the **probability** of A) that encodes our knowledge or belief about the collective "likelihood" of the elements of A

Probability Axioms

- 1. (Nonnegativity) $P(A) \ge 0$, for every event A.
- 2. (Additivity) If A and B are two disjoint events, then the probability of their union satisfies

$$\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B).$$

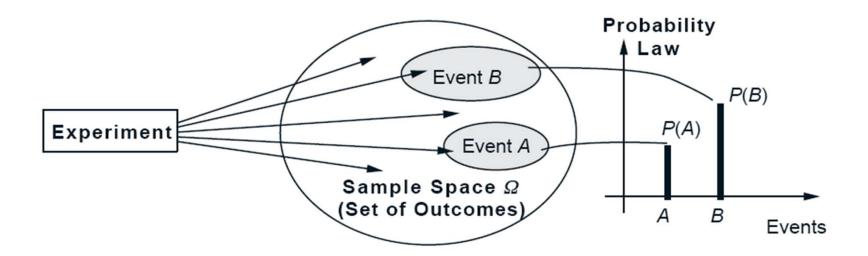
Furthermore, if the sample space has an infinite number of elements and A_1, A_2, \ldots is a sequence of disjoint events, then the probability of their union satisfies

$$\mathbf{P}(A_1 \cup A_2 \cup \cdots) = \mathbf{P}(A_1) + \mathbf{P}(A_2) + \cdots$$

3. (Normalization) The probability of the entire sample space Ω is equal to 1, that is, $\mathbf{P}(\Omega) = 1$.

Probabilistic Models (2/2)

The main ingredients of a probabilistic model



Sample Spaces and Events

- Each probabilistic model involves an underlying process, called the experiment
 - That produces exactly one out of several possible outcomes
 - The set of all possible outcomes is called the sample space of the experiment, denoted by
 - A subset of the sample space (a collection of possible outcomes) is called an event
- Examples of the experiment
 - A single toss of a coin (finite outcomes)
 - Three tosses of two dice (finite outcomes)
 - An infinite sequences of tosses of a coin (infinite outcomes)
 - Throwing a dart on a square (infinite outcomes), etc.

Sample Spaces and Events (2/2)

- Properties of the sample space
 - Elements of the sample space must be mutually exclusive
 - The sample space must be collectively exhaustive
 - The sample space should be at the "right" granularity (avoiding irrelevant details)

Probability Laws

Discrete Probability Law

– If the sample space consists of a finite number of possible outcomes, then the probability law is specified by the probabilities of the events that consist of a single element. In particular, the probability of any event $\{s_1, s_2, ..., s_n\}$ is the sum of the probabilities of its elements:

$$\mathbf{P}(\lbrace s_1, s_2, \dots, s_n \rbrace) = \mathbf{P}(\lbrace s_1 \rbrace) + \mathbf{P}(\lbrace s_2 \rbrace) + \dots + \mathbf{P}(\lbrace s_n \rbrace)$$
$$= \mathbf{P}(s_1) + \mathbf{P}(s_2) + \dots + \mathbf{P}(s_n)$$

Discrete Uniform Probability Law

- If the sample space consists of n possible outcomes which are equally likely (i.e., all single-element events have the same probability), then the probability of any event A is given by

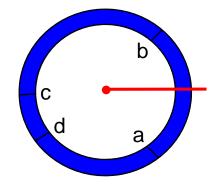
$$\mathbf{P}(A) = \frac{\text{number of element of } A}{n}$$

Continuous Models

- Probabilistic models with continuous sample spaces
 - It is inappropriate to assign probability to each single-element event (?)
 - Instead, it makes sense to assign probability to any interval (onedimensional) or area (two-dimensional) of the sample space
- Example: Wheel of Fortune

$$P({0.3}) = ?$$

 $P({0.33}) = ?$
 $P({0.333}) = ?$



$$\mathbf{P}(\{x | a \le x \le b\}) = ?$$

. . .

Properties of Probability Laws

 Probability laws have a number of properties, which can be deduced from the axioms. Some of them are summarized below

Some Properties of Probability Laws

Consider a probability law, and let A, B, and C be events.

- (a) If $A \subset B$, then $\mathbf{P}(A) \leq \mathbf{P}(B)$.
- (b) $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- (c) $P(A \cup B) \le P(A) + P(B)$.
- (d) $\mathbf{P}(A \cup B \cup C) = \mathbf{P}(A) + \mathbf{P}(A^c \cap B) + \mathbf{P}(A^c \cap B^c \cap C)$.

Conditional Probability (1/2)

- Conditional probability provides us with a way to reason about the outcome of an experiment, based on partial information
 - Suppose that the outcome is within some given event $\,B\,$, we wish to quantify the likelihood that the outcome also belongs some other given event $\,A\,$
 - Using a new probability law, we have the **conditional probability of** A **given** B, denoted by $\mathbf{P}(A|B)$, which is defined as:

$$\mathbf{P}(A|B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}$$

- If $\mathbf{P}(B)$ has zero probability, $\mathbf{P}(A|B)$ is undefined
- We can think of $\mathbf{P}(A|B)$ as out of the total probability of the elements of B, the fraction that is assigned to possible outcomes that also belong to A

Conditional Probability (2/2)

 When all outcomes of the experiment are equally likely, the conditional probability also can be defined as

$$\mathbf{P}(A|B) = \frac{\text{number of elements of } A \cap B}{\text{number of elements of } B}$$

- Some examples having to do with conditional probability
 - 1. In an experiment involving two successive rolls of a die, you are told that the sum of the two rolls is 9. How likely is it that the first roll was a 6?
 - 2. In a word guessing game, the first letter of the word is a "t". What is the likelihood that the second letter is an "h"?
 - 3. How likely is it that a person has a disease given that a medical test was negative?
 - 4. A spot shows up on a radar screen. How likely is it that it corresponds to an aircraft?

Conditional Probabilities Satisfy the Three Axioms

Nonnegative:

$$\mathbf{P}(A|B) \ge 0$$

Normalization:

$$\mathbf{P}(\Omega|B) = \frac{\mathbf{P}(\Omega \cap B)}{\mathbf{P}(B)} = \frac{\mathbf{P}(B)}{\mathbf{P}(B)} = 1$$

• Additivity:If A_1 and A_2 are two disjoint events

$$\mathbf{P}(A_1 \cup A_2 | B) = \frac{\mathbf{P}((A_1 \cup A_2) \cap B)}{\mathbf{P}(B)}$$

$$= \frac{\mathbf{P}((A_1 \cap B) \cup (A_2 \cap B))}{\mathbf{P}(B)}$$

$$= \frac{\mathbf{P}(A_1 \cap B) + \mathbf{P}(A_2 \cap B)}{\mathbf{P}(B)}$$

 $= \mathbf{P}(A_1|B) + \mathbf{P}(A_2|B)$

Berlin Chen 19

distributive

disjoint sets

Multiplication (Chain) Rule

 Assuming that all of the conditioning events have positive probability, we have

$$\mathbf{P}(\bigcap_{i=1}^{n} A_i) = \mathbf{P}(A_1)\mathbf{P}(A_2|A_1)\mathbf{P}(A_3|A_1 \cap A_2) \cdots \mathbf{P}(A_n|\bigcap_{i=1}^{n-1} A_i)$$

The above formula can be verified by writing

$$\mathbf{P}\left(\bigcap_{i=1}^{n} A_{i}\right) = \mathbf{P}\left(A_{1}\right) \frac{\mathbf{P}\left(A_{1} \cap A_{2}\right)}{\mathbf{P}\left(A_{1}\right)} \frac{\mathbf{P}\left(A_{1} \cap A_{2} \cap A_{3}\right)}{\mathbf{P}\left(A_{1} \cap A_{2}\right)} \cdots \frac{\mathbf{P}\left(\bigcap_{i=1}^{n} A_{i}\right)}{\mathbf{P}\left(\bigcap_{i=1}^{n-1} A_{i}\right)}$$

 For the case of just two events, the multiplication rule is simply the definition of conditional probability

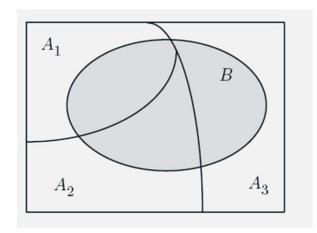
$$\mathbf{P}(A_1 \cap A_2) = \mathbf{P}(A_1)\mathbf{P}(A_2|A_1)$$

Total Probability Theorem

• Let A_1, \dots, A_n be disjoint events that form a partition of the sample space and assume that $P(A_i) > 0$, for all i. Then, for any event B, we have

$$\mathbf{P}(B) = \mathbf{P}(A_1 \cap B) + \dots + \mathbf{P}(A_n \cap B)$$

$$= \mathbf{P}(A_1)\mathbf{P}(B|A_1) + \dots + \mathbf{P}(A_n)\mathbf{P}(B|A_n)$$



– Note that each possible outcome of the experiment (sample space) is included in one and only one of the events $A_1, \cdots, A_{n_{\text{Berlin Chen}}}$

Bayes' Rule

• Let $A_1, A_2, ..., A_n$ be disjoint events that form a partition of the sample space, and assume that $\mathbf{P}(A_i) \ge 0$ for all i. Then, for any event B such that $\mathbf{P}(B) > 0$ we have

$$P(A_{i}|B) = \frac{P(A_{i} \cap B)}{P(B)}$$
Multiplication rule
$$= \frac{P(A_{i})P(B|A_{i})}{P(B)}$$
Total probability theorem
$$= \frac{P(A_{i})P(B|A_{i})}{\sum_{k=1}^{n} P(A_{k})P(B|A_{k})}$$

$$= \frac{P(A_{i})P(B|A_{k})}{P(A_{1})P(B|A_{1}) + \dots + P(A_{n})P(B|A_{n})}$$

Independence (1/2)

- Recall that conditional probability $\mathbf{P}(A|B)$ captures the partial information that event B provides about event A
- A special case arises when the occurrence of B
 provides no such information and does not alter the
 probability that A has occurred

$$\mathbf{P}(A|B) = \mathbf{P}(A)$$

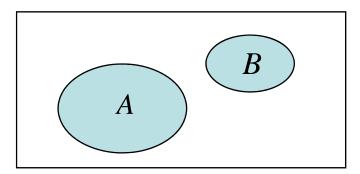
-A is independent of B (B also is independent of A)

$$\Rightarrow \mathbf{P}(A|B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)} = \mathbf{P}(A)$$
$$\Rightarrow \mathbf{P}(A \cap B) = \mathbf{P}(A)\mathbf{P}(B)$$

Independence (2/2)

- •A and B are independent \Rightarrow A and B are disjoint (?)
 - No! Why?
 - A and B are disjoint then $P(A \cap B) = 0$
 - However, if P(A) > 0 and P(B) > 0

$$\Rightarrow \mathbf{P}(A \cap B) \neq \mathbf{P}(A)\mathbf{P}(B)$$



• Two disjoint events A and B with $\mathbf{P}(A) > 0$ and $\mathbf{P}(B) > 0$ are never independent

Conditional Independence (1/2)

 Given an event C, the events A and B are called conditionally independent if

$$\mathbf{P}(A \cap B | C) = \mathbf{P}(A | C) \mathbf{P}(B | C)$$

We also know that

$$\mathbf{P}(A \cap B | C) = \frac{\mathbf{P}(A \cap B \cap C)}{\mathbf{P}(C)}$$
 multiplication rule
$$= \frac{\mathbf{P}(C)\mathbf{P}(B | C)\mathbf{P}(A | B \cap C)}{\mathbf{P}(C)}$$

- If $\mathbf{P}(B|C) > 0$, we have an alternative way to express conditional independence

$$\mathbf{P}(A|B\cap C) = \mathbf{P}(A|C)^{3}$$

Conditional Independence (2/2)

 Notice that independence of two events A and B with respect to the unconditionally probability law does not imply conditional independence, and vice versa

$$\mathbf{P}(A \cap B) = \mathbf{P}(A)\mathbf{P}(B) \quad \Leftrightarrow \quad \mathbf{P}(A \cap B|C) = \mathbf{P}(A|C)\mathbf{P}(B|C)$$

- If A and B are independent, the same holds for
 - (i) A and B^c
 - (ii) A^c and B
 - (iii) A^c and B^c

Independence of a Collection of Events

• We say that the events A_1, A_2, \dots, A_n are **independent** if

$$\mathbf{P}\left(\bigcap_{i\in S}A_i\right) = \prod_{i\in S}\mathbf{P}(A_i), \text{ for every subset } S \text{ of } \{1,2,\ldots,n\}$$

• For example, the independence of three events A_1, A_2, A_3 amounts to satisfying the four conditions

$$\mathbf{P}(A_1 \cap A_2) = \mathbf{P}(A_1)\mathbf{P}(A_2)$$

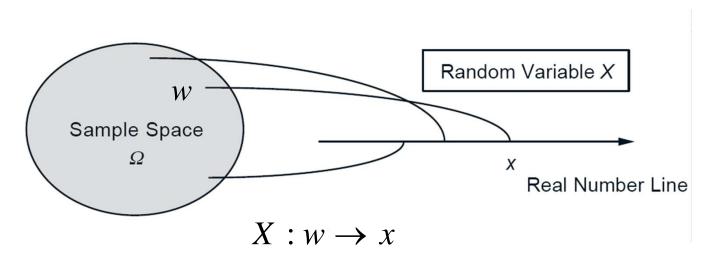
$$\mathbf{P}(A_1 \cap A_3) = \mathbf{P}(A_1)\mathbf{P}(A_3)$$

$$\mathbf{P}(A_2 \cap A_3) = \mathbf{P}(A_2)\mathbf{P}(A_3)$$

$$\mathbf{P}(A_1 \cap A_2 \cap A_3) = \mathbf{P}(A_1)\mathbf{P}(A_2)\mathbf{P}(A_3)$$

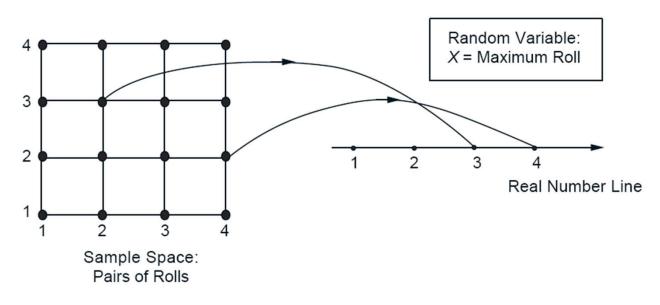
Random Variables

- Given an experiment and the corresponding set of possible outcomes (the sample space), a random variable associates a particular number with each outcome
 - This number is referred to as the (numerical) value of the random variable
 - We can say a random variable is a real-valued function of the experimental outcome



Random Variables: Example

- An experiment consists of two rolls of a 4-sided die, and the random variable is the maximum of the two rolls
 - If the outcome of the experiment is (4, 2), the value of this random variable is 4
 - If the outcome of the experiment is (3, 3), the value of this random variable is 3



Can be one-to-one or many-to-one mapping

Discrete/Continuous Random Variables

 A random variable is called discrete if its range (the set of values that it can take) is finite or at most countably infinite

finite:
$$\{1, 2, 3, 4\}$$
, countably infinite: $\{1, 2, \cdots\}$

- A random variable is called continuous (not discrete) if its range (the set of values that it can take) is uncountably infinite
 - E.g., the experiment of choosing a point a from the interval
 [-1, 1]
 - A random variable that associates the numerical value a^2 to the outcom \mathbf{e} is not discrete

Concepts Related to Discrete Random Variables

- For a probabilistic model of an experiment
 - A discrete random variable is a real-valued function of the outcome of the experiment that can take a finite or countably infinite number of values
 - A (discrete) random variable has an associated probability mass function (PMF), which gives the probability of each numerical value that the random variable can take
 - A function of a random variable defines another random variable, whose PMF can be obtained from the PMF of the original random variable

Probability Mass Function

• A (discrete) random variable X is characterized through the probabilities of the values that it can take, which is captured by the probability mass function (PMF) of X, denoted $p_X(x)$

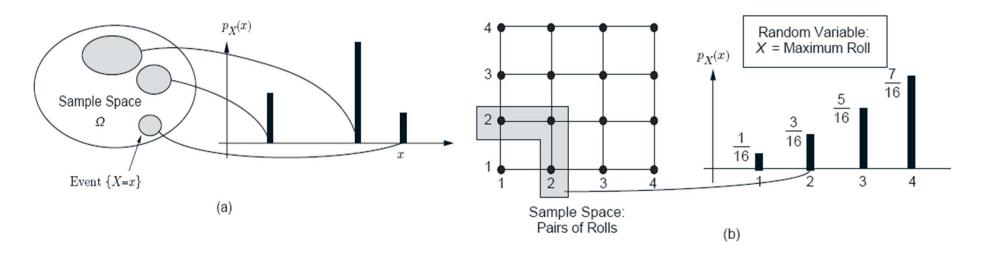
$$p_X(x) = \mathbf{P}(\lbrace X = x \rbrace) \text{ or } p_X(x) = \mathbf{P}(X = x)$$

- The sum of probabilities of all outcomes that give rise to a value of X equal to X
- **Upper case** characters (e.g., X) denote random variables, while **lower case** ones (e.g., x) denote the numerical values of a random variable
- The summation of the outputs of the PMF function of a random variable over all it possible numerical values is equal to one $\sum_{x} p_{X}(x) = 1$ $\{X = x\}$'s are disjoint and form a partition of the sample space

Berlin Chen 32

Calculation of the PMF

- For each possible value x of a random variable X:
 - 1. Collect all the possible outcomes that give rise to the event $\{X = x\}$
 - 2. Add their probabilities to obtain $p_X(x)$
- An example: the PMF $p_X(x)$ of the random variable $X = \max$ maximum roll in two independent rolls of a fair 4-sided die



Expectation

• The **expected value** (also called the **expectation** or the **mean**) of a random variable X, with PMF \mathcal{P}_X , is defined by

$$\mathbf{E}[X] = \sum_{X} x p_X(x)$$

- Can be interpreted as the **center of gravity** of the PMF (Or a weighted average, in proportion to probabilities, of the possible values of X)
- The expectation is well-defined

$$\sum_{X} |x| p_X(x) < \infty$$

- That is, $\sum_{x} x p_{X}(x)$ converges to a finite value

$$\sum_{x} (x - c) p_X(x) = 0$$

$$\Rightarrow c = \sum_{x} x \cdot p_X(x)$$

Expectations for Functions of Random Variables

• Let X be a random variable with PMF P_X , and let g(X) be a function of X. Then, the expected value of the random variable g(X) is given by

$$\mathbf{E}[g(X)] = \sum_{x} g(x) p_{X}(x)$$

To verify the above rule

- Let
$$Y = g(X)$$
, and therefore $p_Y(y) = \sum_{\{x \mid g(x) = y\}} p_X(x)$

$$\mathbf{E}[g(X)] = \mathbf{E}[Y] = \sum_{y} y p_{Y}(y)$$

$$= \sum_{y} \sum_{\{x \mid g(x) = y\}} p_{X}(x) = \sum_{y} \sum_{\{x \mid g(x) = y\}} g(x) p_{X}(x)$$

$$= \sum_{x} g(x) p_{X}(x)$$
?

Variance

• The **variance** of a random variable X is the expected value of a random variable $(X - \mathbf{E}(X))^2$

$$\operatorname{var}(X) = \mathbf{E}\left[\left(X - \mathbf{E}\left[X\right]\right)^{2}\right]$$
$$= \sum_{X} \left(X - \mathbf{E}\left[X\right]\right)^{2} p_{X}(X)$$

- The variance is always nonnegative (why?)
- The variance provides a measure of dispersion of $\ X$ around its mean
- The standard derivation is another measure of dispersion, which is defined as (a square root of variance)

$$\sigma_X = \sqrt{\operatorname{var}(X)}$$

Easier to interpret, because it has the same units as X

Properties of Mean and Variance

Let X be a random variable and let

$$Y = aX + b$$
 a linear function of X

where a and b are given scalars

Then,

$$\mathbf{E}[Y] = a\mathbf{E}[X] + b$$

$$\operatorname{var}(Y) = a^{2} \operatorname{var}(X)$$

• If g(X) is a linear function of X, then $\mathbf{E}[g(X)] = g(\mathbf{E}[X])$ How to verify it?

Joint PMF of Random Variables

 Let X and Y be random variables associated with the same experiment (also the same sample space and probability laws), the joint PMF of X and Y is defined by

$$p_{X,Y}(x,y) = \mathbf{P}(\{X=x\} \cap \{Y=y\}) = \mathbf{P}(X=x,Y=y)$$

• if event A is the set of all pairs (x,y) that have a certain property, then the probability of A can be calculated by

$$\mathbf{P}((X,Y) \in A) = \sum_{(x,y) \in A} p_{X,Y}(x,y)$$

- Namely, A can be specified in terms of X and Y

Marginal PMFs of Random Variables

The PMFs of random variables X and Y can be calculated from their joint PMF

$$p_X(x) = \sum_{y} p_{X,Y}(x,y), \qquad p_Y(y) = \sum_{x} p_{X,Y}(x,y)$$

- $p_X(x)$ and $p_Y(y)$ are often referred to as the **marginal PMFs**
- The above two equations can be verified by

$$p_{X}(x) = \mathbf{P}(X=x)$$

$$= \sum_{y} \mathbf{P}(X=x, Y=y)$$

$$= \sum_{y} p_{X,Y}(x,y)$$

Conditioning

- Recall that conditional probability provides us with a way to reason about the outcome of an experiment, based on partial information
- In the same spirit, we can define **conditional PMFs**, given the occurrence of a certain event or given the value of another random variable

Conditioning a Random Variable on an Event (1/2)

The **conditional PMF** of a random variable *X* conditioned on a particular event A with $\mathbf{P}(A) > 0$, is **defined by** (where X and A are associated with the same experiment)

$$P_{X|A}(x) = \mathbf{P}(X = x|A) = \frac{\mathbf{P}(\{X = x\} \cap A)}{\mathbf{P}(A)}$$

- Normalization Property
 - Note that the events $\mathbf{P}(X = x) \cap A$ are disjoint for different values of X, their union is A

$$\mathbf{P}(A) = \sum_{x} \mathbf{P}(\{X = x\} \cap A)$$
 Total probability theorem

$$\mathbf{P}(A) = \sum_{x} \mathbf{P}(\{X = x\} \cap A)$$

$$\therefore \sum_{x} P_{X|A}(x) = \sum_{x} \frac{\mathbf{P}(\{X = x\} \cap A)}{\mathbf{P}(A)} = \frac{\sum_{x} \mathbf{P}(\{X = x\} \cap A)}{\mathbf{P}(A)} = \frac{\mathbf{P}(A)}{\mathbf{P}(A)} = 1$$

Conditioning a Random Variable on an Event (2/2)

A graphical illustration

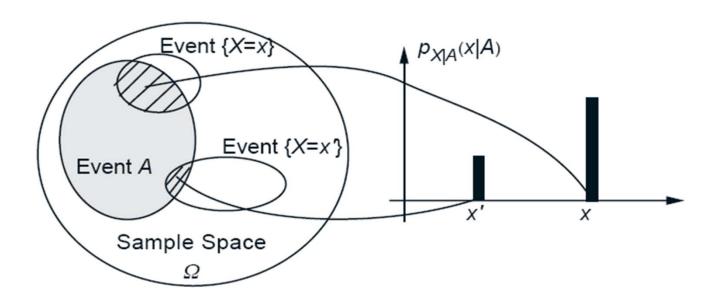


Figure 2.12: Visualization and calculation of the conditional PMF $p_{X|A}(x)$. For each x, we add the probabilities of the outcomes in the intersection $\{X = x\} \cap A$ and normalize by diving with $\mathbf{P}(A)$.

 $P_{X|A}(x)$ Is obtained by adding the probabilities of the outcomes that give rise to X = x and be long to the conditioning event A

Conditioning a Random Variable on Another (1/2)

• Let X and Y be two random variables associated with the same experiment. The conditional PMF $p_{X|Y}$ of X given Y is defined as

$$p_{X|Y}(x|y) = \mathbf{P}(X = x|Y = y) = \frac{\mathbf{P}(X = x, Y = y)}{\mathbf{P}(Y = y)}$$

$$=\frac{p_{X,Y}(x,y)}{p_Y(y)}$$

Y is fixed on some value y

- Normalization Property $\sum_{x} p_{X|Y}(x|y) = 1$
- The conditional PMF is often convenient for the calculation of the joint PMF

multiplication (chain) rule

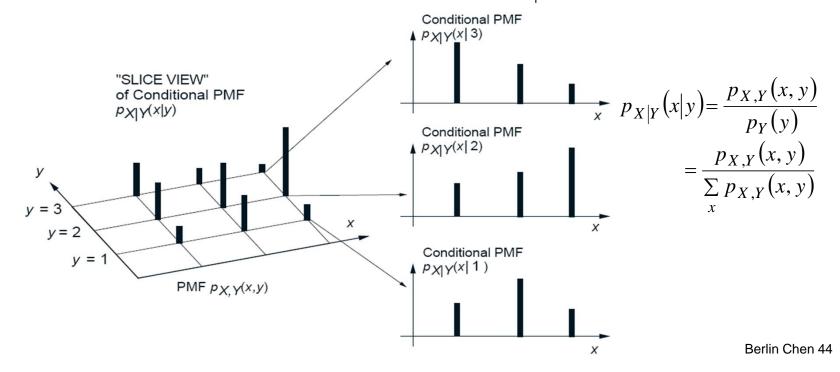
$$p_{X,Y}(x, y) = p_Y(y)p_{X|Y}(x|y) (= p_X(x)p_{Y|X}(y|x))$$

Conditioning a Random Variable on Another (2/2)

The conditional PMF can also be used to calculate the marginal PMFs

$$p_X(x) = \sum_{y} p_{X,Y}(x, y) = \sum_{y} p_Y(y) p_{X|Y}(x|y)$$

• Visualization of the conditional PMF $p_{X|Y}$



Independence of a Random Variable from an Event

• A random variable X is **independent of an event** A if

$$P(X = x \text{ and } A) = P(X = x)P(A)$$
, for all x

- Require two events $\{X = x\}$ and A be independent for all x
- If a random variable X is independent of an event A and $\mathbf{P}(A) > 0$

$$p_{X|A}(x) = \frac{\mathbf{P}(X = x \text{ and } A)}{\mathbf{P}(A)}$$

$$= \frac{\mathbf{P}(X = x)\mathbf{P}(A)}{\mathbf{P}(A)}$$

$$= \mathbf{P}(X = x)$$

$$= p_X(x), \text{ for all } x$$

Independence of Random Variables (1/2)

Two random variables X and Y are independent if

$$p_{X,Y}(x,y) = p_X(x)p_Y(y)$$
, for all x, y
or $\mathbf{P}(X = x, Y = y) = \mathbf{P}(X = x)\mathbf{P}(Y = y)$, for all x, y

 If a random variable X is independent of an random variable Y

$$p_{X|Y}(x|y) = p_X(x)$$
, for all y with $p_Y(y) > 0$ all x

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

$$= \frac{p_X(x)p_Y(y)}{p_Y(y)}$$

$$= p_X(x), \text{ for all } y \text{ with } p(y) > 0 \text{ and all } x$$

Independence of Random Variables (2/2)

Random variables X and Y are said to be conditionally independent, given a positive probability event A, if

$$p_{X,Y|A}(x,y) = p_{X|A}(x)p_{Y|A}(y)$$
, for all x, y

Or equivalently,

$$p_{X|Y,A}(x|y) = p_{X|A}(x)$$
, for all y with $p_{Y|A}(y) > 0$ and all x

 Note here that, as in the case of events, conditional independence may not imply unconditional independence and vice versa

Entropy (1/3)

- Three interpretations for quantity of information
 - 1. The amount of **uncertainty** before seeing an event
 - 2. The amount of **surprise** when seeing an event
 - 3. The amount of **information** after seeing an event
- The definition of information:

define
$$0\log_2 0 = 0$$

$$I(x_i) = \log_2 \frac{1}{P(x_i)} = -\log_2 P(x_i)$$

- $-P(x_i)$ the probability of an event x_i
- Entropy: the average amount of information

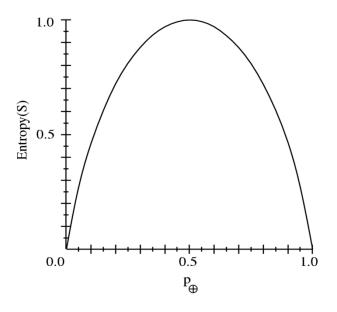
$$H(X) = E[I(X)]_X = E[-\log_2 P(x_i)]_X = \sum_{x_i} -P(x_i) \cdot \log_2 P(x_i)$$

 Have maximum value when the probability (mass) function is a uniform distribution

where
$$X = \{x_1, x_2, ..., x_i, ...\}$$

Entropy (2/3)

For Boolean classification (0 or 1)



$$P_X(x) = \begin{cases} p_1, & x = 1 \\ p_2 = 1 - p_1, & x = 0 \end{cases}$$

$$Entropy(X) = -p_1 \log_2 p_1 - p_2 \log_2 p_2$$

- Entropy can be expressed as the minimum number of bits of information needed to encode the classification of an arbitrary number of examples
 - If c classes are generated, the maximum of entropy can be $Entropy(X) = \log_2 c$