Review of Probability Axioms and Laws

Berlin Chen
Department of Computer Science \& Information Engineering
National Taiwan Normal University

Reference:

1. D. P. Bertsekas, J. N. Tsitsiklis, "Introduction to Probability," Athena Scientific, 2008.

What is "Probability" ?

- Probability was developed to describe phenomena that cannot be predicted with certainty
- Frequency of occurrences
- Subjective beliefs
- Everyone accepts that the probability (of a certain thing to happen) is a number between 0 and 1 (?)
- Measures deduced from probability axioms and theories (laws/rules) can help us deal with and quantify "information"

Sets (1/2)

- A set is a collection of objects which are the elements of the set
- If x is an element of set S, denoted by $x \in S$
- Otherwise denoted by $x \notin S$
- A set that has no elements is called empty set is denoted by \varnothing
- Set specification
- Countably finite: $\{1,2,3,4,5,6\}$
- Countably infinite: $\{0,2,-2,4,-4, \ldots\}$
- With a certain property: $\{k \mid k / 2$ is integer $\}$ $\{x \mid 0 \leq x \leq 1\}$
$\{x \mid x$ satisfies $P\}$
such that

Sets (2/2)

- If every element of a set S is also an element of a set T, then S is a subset of T
- Denoted by $S \subset T$ or $T \supset S$
- If $S \subset T$ and $T \subset S$, then the two sets are equal
- Denoted by $S=T$
- The universal set, denoted by Ω, which contains all objects of interest in a particular context
- After specifying the context in terms of universal set Ω, we only consider sets S that are subsets of Ω

Set Operations (1/3)

- Complement
- The complement of a set S with respect to the universe Ω, is the set $\{x \in \Omega \mid x \notin S\}$, namely, the set of all elements that do not belong to S, denoted by S^{c}
- The complement of the universe $\Omega^{c}=\varnothing$
- Union
- The union of two sets S and T is the set of all elements that belong to S or T, denoted by $S \cup T$ $S \cup T=\{x \mid x \in S$ or $x \in T\}$
- Intersection
- The intersection of two sets S and T is the set of all elements that belong to both S and T, denoted by $S \cap T$ $S \cap T=\{x \mid x \in S$ and $x \in T\}$

Set Operations (2/3)

- The union or the intersection of several (or even infinite many) sets

$$
\begin{aligned}
& \bigcup_{n=1}^{\infty} S_{n}=S_{1} \cup S_{2} \cup \cdots=\left\{x \mid x \in S_{n} \text { for some } n\right\} \\
& \bigcap_{n=1}^{\infty} S_{n}=S_{1} \cap S_{2} \cap \cdots=\left\{x \mid x \in S_{n} \text { for all } n\right\}
\end{aligned}
$$

- Disjoint
- Two sets are disjoint if their intersection is empty (e.g., $S \cap T=$ Ø)
- Partition
- A collection of sets is said to be a partition of a set S if the sets in the collection are disjoint and their union is S

Set Operations (3/3)

- Visualization of set operations with Venn diagrams

(a)

(d)

(b)

(e)

(c)

(f)

Figure 1.1: Examples of Venn diagrams. (a) The shaded region is $S \cap T$. (b) The shaded region is $S \cup T$. (c) The shaded region is $S \cap T^{c}$. (d) Here, $T \subset S$. The shaded region is the complement of S. (e) The sets S, T, and U are disjoint. (f) The sets S, T, and U form a partition of the set Ω.

The Algebra of Sets

- The following equations are the elementary consequences of the set definitions and operations

```
commutative
S\cupT=T\cupS,
distributive
S\cap(T\cupU)=(S\capT)\cup(S\capU),
(S c}\mp@subsup{)}{}{c}=S
S\cup\Omega=\Omega,
associative
S\cup(T\cupU)=(S\cupT)\cupU
distributive
S\cup(T\capU)=(S\cupT)\cap(S\cupU),
S\cap S
S\cap\Omega=S.
```

- De Morgan's law

$$
\left(\bigcup_{n} S_{n}\right)^{c}=\bigcap_{n} S_{n}^{c} \quad\left(\bigcap_{n} S_{n}\right)^{c}=\bigcup_{n} S_{n}^{c}
$$

Probabilistic Models (1/2)

- A probabilistic model is a mathematical description of an uncertainty situation
- It has to be in accordance with a fundamental framework to be discussed shortly
- Elements of a probabilistic model
- The sample space
- The set of all possible outcomes of an experiment
- The probability law
- Assign to a set A of possible outcomes (also called an event) a nonnegative number $\mathbf{P}(A)$ (called the probability of A) that encodes our knowledge or belief about the collective "likelihood" of the elements of A

Probability Axioms

1. (Nonnegativity) $\mathbf{P}(A) \geq 0$, for every event A.
2. (Additivity) If A and B are two disjoint events, then the probability of their union satisfies

$$
\mathbf{P}(A \cup B)=\mathbf{P}(A)+\mathbf{P}(B)
$$

Furthermore, if the sample space has an infinite number of elements and A_{1}, A_{2}, \ldots is a sequence of disjoint events, then the probability of their union satisfies

$$
\mathbf{P}\left(A_{1} \cup A_{2} \cup \cdots\right)=\mathbf{P}\left(A_{1}\right)+\mathbf{P}\left(A_{2}\right)+\cdots
$$

3. (Normalization) The probability of the entire sample space Ω is equal to 1 , that is, $\mathbf{P}(\Omega)=1$.

Probabilistic Models (2/2)

- The main ingredients of a probabilistic model

Sample Spaces and Events

- Each probabilistic model involves an underlying process, called the experiment
- That produces exactly one out of several possible outcomes
- The set of all possible outcomes is called the sample space of the experiment, denoted by
- A subset of the sample space (a collection of possible outcomes) is called an event
- Examples of the experiment
- A single toss of a coin (finite outcomes)
- Three tosses of two dice (finite outcomes)
- An infinite sequences of tosses of a coin (infinite outcomes)
- Throwing a dart on a square (infinite outcomes), etc.

Sample Spaces and Events (2/2)

- Properties of the sample space
- Elements of the sample space must be mutually exclusive
- The sample space must be collectively exhaustive
- The sample space should be at the "right" granularity (avoiding irrelevant details)

Probability Laws

- Discrete Probability Law
- If the sample space consists of a finite number of possible outcomes, then the probability law is specified by the probabilities of the events that consist of a single element. In particular, the probability of any event $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ is the sum of the probabilities of its elements:

$$
\begin{aligned}
\mathbf{P}\left(\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}\right) & =\mathbf{P}\left(\left\{s_{1}\right\}\right)+\mathbf{P}\left(\left\{s_{2}\right\}\right)+\cdots+\mathbf{P}\left(\left\{s_{n}\right\}\right) \\
& =\mathbf{P}\left(s_{1}\right)+\mathbf{P}\left(s_{2}\right)+\cdots+\mathbf{P}\left(s_{n}\right)
\end{aligned}
$$

- Discrete Uniform Probability Law
- If the sample space consists of n possible outcomes which are equally likely (i.e., all single-element events have the same probability), then the probability of any event A is given by

$$
\mathbf{P}(A)=\frac{\text { number of element of } A}{n}
$$

Continuous Models

- Probabilistic models with continuous sample spaces
- It is inappropriate to assign probability to each single-element event (?)
- Instead, it makes sense to assign probability to any interval (onedimensional) or area (two-dimensional) of the sample space
- Example: Wheel of Fortune

$$
\begin{aligned}
& \mathbf{P}(\{0.3\})=? \\
& \mathbf{P}(\{0.33\})=? \\
& \mathbf{P}(\{0.333\})=?
\end{aligned}
$$

$$
\mathbf{P}(\{x \mid a \leq x \leq b\})=?
$$

Properties of Probability Laws

- Probability laws have a number of properties, which can be deduced from the axioms. Some of them are summarized below

Some Properties of Probability Laws
Consider a probability law, and let A, B, and C be events.
(a) If $A \subset B$, then $\mathbf{P}(A) \leq \mathbf{P}(B)$.
(b) $\mathbf{P}(A \cup B)=\mathbf{P}(A)+\mathbf{P}(B)-\mathbf{P}(A \cap B)$.
(c) $\mathbf{P}(A \cup B) \leq \mathbf{P}(A)+\mathbf{P}(B)$.
(d) $\mathbf{P}(A \cup B \cup C)=\mathbf{P}(A)+\mathbf{P}\left(A^{c} \cap B\right)+\mathbf{P}\left(A^{c} \cap B^{c} \cap C\right)$.

Conditional Probability (1/2)

- Conditional probability provides us with a way to reason about the outcome of an experiment, based on partial information
- Suppose that the outcome is within some given event B, we wish to quantify the likelihood that the outcome also belongs some other given event A
- Using a new probability law, we have the conditional probability of A given B, denoted by $\mathbf{P}(A \mid B)$, which is defined as:

$$
\mathbf{P}(A \mid B)=\frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}
$$

- If $\mathbf{P}(B)$ has zero probability, $\mathbf{P}(A \mid B)$ is undefined
- We can think of $\mathbf{P}(A \mid B)$ as out of the total probability of the elements of B, the fraction that is assigned to possible outcomes that also belong to A

Conditional Probability (2/2)

- When all outcomes of the experiment are equally likely, the conditional probability also can be defined as

$$
\mathbf{P}(A \mid B)=\frac{\text { number of elements of } A \cap B}{\text { number of elements of } B}
$$

- Some examples having to do with conditional probability

1. In an experiment involving two successive rolls of a die, you are told that the sum of the two rolls is 9 . How likely is it that the first roll was a 6 ?
2. In a word guessing game, the first letter of the word is a "t". What is the likelihood that the second letter is an " h "?
3. How likely is it that a person has a disease given that a medical test was negative?
4. A spot shows up on a radar screen. How likely is it that it corresponds to an aircraft?

Conditional Probabilities Satisfy the Three Axioms

- Nonnegative:

$$
\mathbf{P}(A \mid B) \geq 0
$$

- Normalization:

$$
\mathbf{P}(\Omega \mid B)=\frac{\mathbf{P}(\Omega \cap B)}{\mathbf{P}(B)}=\frac{\mathbf{P}(B)}{\mathbf{P}(B)}=1
$$

- Additivity:If A_{1} and A_{2} are two disjoint events

Multiplication (Chain) Rule

- Assuming that all of the conditioning events have positive probability, we have

$$
\mathbf{P}\left(\bigcap_{i=1}^{n} A_{i}\right)=\mathbf{P}\left(A_{1}\right) \mathbf{P}\left(A_{2} \mid A_{1}\right) \mathbf{P}\left(A_{3} \mid A_{1} \cap A_{2}\right) \cdots \mathbf{P}\left(A_{n} \mid \bigcap_{i=1}^{n-1} A_{i}\right)
$$

- The above formula can be verified by writing

$$
\mathbf{P}\left(\bigcap_{i=1}^{n} A_{i}\right)=\mathbf{P}\left(A_{1}\right) \frac{\mathbf{P}\left(A_{1} \cap A_{2}\right)}{\mathbf{P}\left(A_{1}\right)} \frac{\mathbf{P}\left(A_{1} \cap A_{2} \cap A_{3}\right)}{\mathbf{P}\left(A_{1} \cap A_{2}\right)} \cdots \frac{\mathbf{P}\left(\bigcap_{i=1}^{n} A_{i}\right)}{\mathbf{P}\left(\bigcap_{i=1}^{n-1} A_{i}\right)}
$$

- For the case of just two events, the multiplication rule is simply the definition of conditional probability

$$
\mathbf{P}\left(A_{1} \cap A_{2}\right)=\mathbf{P}\left(A_{1}\right) \mathbf{P}\left(A_{2} \mid A_{1}\right)
$$

Total Probability Theorem

- Let A_{1}, \cdots, A_{n} be disjoint events that form a partition of the sample space and assume that $P\left(A_{i}\right)>0$, for all i. Then, for any event B, we have

$$
\begin{aligned}
\mathbf{P}(B) & =\mathbf{P}\left(A_{1} \cap B\right)+\cdots+\mathbf{P}\left(A_{n} \cap B\right) \\
& =\mathbf{P}\left(A_{1}\right) \mathbf{P}\left(B \mid A_{1}\right)+\cdots+\mathbf{P}\left(A_{n}\right) \mathbf{P}\left(B \mid A_{n}\right)
\end{aligned}
$$

- Note that each possible outcome of the experiment (sample space) is included in one and only one of the events $A_{1}, \cdots, A_{n_{\text {Berin Chen } 21}}$

Bayes' Rule

- Let $A_{1}, A_{2}, \ldots, A_{n}$ be disjoint events that form a partition of the sample space, and assume that $\mathbf{P}\left(A_{i}\right) \geq 0$, for all i. Then, for any event B such that $\mathbf{P}(B)>0$ we have

$$
\begin{aligned}
\boldsymbol{P}\left(A_{i} \mid B\right) & =\frac{\boldsymbol{P}\left(A_{i} \cap B\right)}{\boldsymbol{P}(B)} \\
& =\frac{\boldsymbol{P}\left(A_{i}\right) \boldsymbol{P}\left(B \mid A_{i}\right)}{\boldsymbol{P}(B)} \\
& =\frac{\boldsymbol{P}\left(A_{i}\right) \boldsymbol{P}\left(B \mid A_{i}\right)}{\sum_{k=1}^{n} \boldsymbol{P}\left(A_{k}\right) \boldsymbol{P}\left(B \mid A_{k}\right)} \\
& =\frac{\boldsymbol{P}\left(A_{i}\right) \boldsymbol{P}\left(B \mid A_{i}\right)}{\boldsymbol{P}\left(A_{1}\right) \boldsymbol{P}\left(B \mid A_{1}\right)+\cdots+\boldsymbol{P}\left(A_{n}\right) \boldsymbol{P}\left(B \mid A_{n}\right)}
\end{aligned}
$$

Independence (1/2)

- Recall that conditional probability $\mathbf{P}(A \mid B)$ captures the partial information that event B provides about event A
- A special case arises when the occurrence of B provides no such information and does not alter the probability that A has occurred

$$
\mathbf{P}(A \mid B)=\mathbf{P}(A)
$$

- A is independent of B (B also is independent of A)

$$
\begin{aligned}
& \Rightarrow \mathbf{P}(A \mid B)=\frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}=\mathbf{P}(A) \\
& \Rightarrow \mathbf{P}(A \cap B)=\mathbf{P}(A) \mathbf{P}(B)
\end{aligned}
$$

Independence (2/2)

- A and B are independent $=>A$ and B are disjoint (?)
- No ! Why?
- A and B are disjoint then $\mathbf{P}(A \cap B)=0$
- However, if $\mathbf{P}(A)>0$ and $\mathbf{P}(B)>0$

$$
\Rightarrow \mathbf{P}(A \cap B) \neq \mathbf{P}(A) \mathbf{P}(B)
$$

- Two disjoint events A and B with $\mathbf{P}(A)>0$ and $\mathbf{P}(B)>0$ are never independent

Conditional Independence (1/2)

- Given an event C, the events A and B are called conditionally independent if

$$
\mathbf{P}(A \cap B \mid C)=\mathbf{P}(A \mid C) \mathbf{P}(B \mid C)
$$

- We also know that

$$
\begin{aligned}
\mathbf{P}(A \cap B \mid C) & =\frac{\mathbf{P}(A \cap B \cap C)}{\mathbf{P}(C)} \text { multiplication rule } \\
& =\frac{\stackrel{\mathbf{P}}{ }(C) \mathbf{P}(B \mid C) \mathbf{P}(A \mid B \cap C)^{2}}{\grave{\mathbf{P}}(C)}
\end{aligned}
$$

- If $\quad \mathbf{P}(B \mid C)>0$, we have an alternative way to express conditional independence

$$
\mathbf{P}(A \mid B \cap C)=\mathbf{P}(A \mid C)^{3}
$$

Conditional Independence (2/2)

- Notice that independence of two events A and B with respect to the unconditionally probability law does not imply conditional independence, and vice versa

$$
\mathbf{P}(A \cap B)=\mathbf{P}(A) \mathbf{P}(B) \quad \mathbf{P}(A \cap B \mid C)=\mathbf{P}(A \mid C) \mathbf{P}(B \mid C)
$$

- If A and B are independent, the same holds for
(i) A and B^{c}
(ii) A^{c} and B
(iii) A^{c} and B^{c}

Independence of a Collection of Events

- We say that the events $A_{1}, A_{2}, \ldots, A_{n}$ are independent if

$$
\mathbf{P}\left(\bigcap_{i \in S} A_{i}\right)=\prod_{i \in S} \mathbf{P}\left(A_{i}\right) \text {, for every subset } S \text { of }\{1,2, \ldots, n\}
$$

- For example, the independence of three events A_{1}, A_{2}, A_{3} amounts to satisfying the four conditions

$$
\begin{align*}
& \mathbf{P}\left(A_{1} \cap A_{2}\right)=\mathbf{P}\left(A_{1}\right) \mathbf{P}\left(A_{2}\right) \\
& \mathbf{P}\left(A_{1} \cap A_{3}\right)=\mathbf{P}\left(A_{1}\right) \mathbf{P}\left(A_{3}\right) \tag{n}\\
& \mathbf{P}\left(A_{2} \cap A_{3}\right)=\mathbf{P}\left(A_{2}\right) \mathbf{P}\left(A_{3}\right) \\
& \mathbf{P}\left(A_{1} \cap A_{2} \cap A_{3}\right)=\mathbf{P}\left(A_{1}\right) \mathbf{P}\left(A_{2}\right) \mathbf{P}\left(A_{3}\right)
\end{align*}
$$

Random Variables

- Given an experiment and the corresponding set of possible outcomes (the sample space), a random variable associates a particular number with each outcome
- This number is referred to as the (numerical) value of the random variable
- We can say a random variable is a real-valued function of the experimental outcome

Random Variables: Example

- An experiment consists of two rolls of a 4-sided die, and the random variable is the maximum of the two rolls
- If the outcome of the experiment is $(4,2)$, the value of this random variable is 4
- If the outcome of the experiment is $(3,3)$, the value of this random variable is 3

- Can be one-to-one or many-to-one mapping

Discrete/Continuous Random Variables

- A random variable is called discrete if its range (the set of values that it can take) is finite or at most countably infinite

$$
\text { finite : }\{1,2,3,4\} \text {, countably infinite : }\{1,2, \cdots\}
$$

- A random variable is called continuous (not discrete) if its range (the set of values that it can take) is uncountably infinite
- E.g., the experiment of choosing a point a from the interval [-1, 1]
- A random variable that associates the numerical value a^{2} to the outcoma is not discrete

Concepts Related to Discrete Random Variables

- For a probabilistic model of an experiment
- A discrete random variable is a real-valued function of the outcome of the experiment that can take a finite or countably infinite number of values
- A (discrete) random variable has an associated probability mass function (PMF), which gives the probability of each numerical value that the random variable can take
- A function of a random variable defines another random variable, whose PMF can be obtained from the PMF of the original random variable

Probability Mass Function

- A (discrete) random variable X is characterized through the probabilities of the values that it can take, which is captured by the probability mass function (PMF) of X, denoted $p_{X}(x)$

$$
p_{X}(x)=\mathbf{P}(\{X=x\}) \text { or } p_{X}(x)=\mathbf{P}(X=x)
$$

- The sum of probabilities of all outcomes that give rise to a value of X equal to x
- Upper case characters (e.g., X) denote random variables, while lower case ones (e.g., x) denote the numerical values of a random variable
- The summation of the outputs of the PMF function of a random variable over all it possible numerical values is equal to one $\sum_{x} p_{X}(x)=1$

Calculation of the PMF

- For each possible value x of a random variable X :

1. Collect all the possible outcomes that give rise to the event $\{X=x\}$
2. Add their probabilities to obtain $p_{X}(x)$

- An example: the PMF $p_{X}(x)$ of the random variable $X=$ maximum roll in two independent rolls of a fair 4-sided die

(a)

Sample Space:
Pairs of Rolls

(b)

Expectation

- The expected value (also called the expectation or the mean) of a random variable X, with PMF p_{X}, is defined by

$$
\mathbf{E}[X]=\sum_{x} x p_{X}(x)
$$

- Can be interpreted as the center of gravity of the PMF (Or a weighted average, in proportion to probabilities, of the possible values of X)
- The expectation is well-defined

$$
\sum_{x}|x| p_{X}(x)<\infty
$$

- That is, $\sum_{x} x p_{X}(x)$ converges to a finite value

Expectations for Functions of Random Variables

- Let X be a random variable with PMF p_{X}, and let $g(X)$ be a function of X. Then, the expected value of the random variable $g(X)$ is given by

$$
\mathbf{E}[g(X)]=\sum_{x} g(x) p_{X}(x)
$$

- To verify the above rule
- Let $Y=g(X)$, and therefore $p_{Y}(y)=\sum_{\{x \mid g(x)=y\}} p_{X}(x)$

$$
\begin{aligned}
& \mathbf{E}[g(X)]=\mathbf{E}[Y]=\sum_{y} y p_{Y}(y) \\
& =\sum_{y} y \sum_{\{x \mid g(x)=y\}} p_{X}(x)=\sum_{y} \sum_{\{x \mid g(x)=v\}} g(x) p_{X}(x) \\
& =\sum_{X} g(x) p_{X}(x) \quad ?
\end{aligned}
$$

Variance

- The variance of a random variable X is the expected value of a random variable $(X-\mathbf{E}(X))^{2}$

$$
\begin{aligned}
\operatorname{var}(X) & =\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right] \\
& =\sum_{x}(x-\mathbf{E}[X])^{2} p_{X}(x)
\end{aligned}
$$

- The variance is always nonnegative (why?)
- The variance provides a measure of dispersion of X around its mean
- The standard derivation is another measure of dispersion, which is defined as (a square root of variance)

$$
\sigma_{X}=\sqrt{\operatorname{var}(X)}
$$

- Easier to interpret, because it has the same units as X

Properties of Mean and Variance

- Let X be a random variable and let

$$
Y=a X+b \quad \text { a linear function of } x
$$

where a and b are given scalars
Then,

$$
\begin{aligned}
& \mathbf{E}[Y]=a \mathbf{E}[X]+b \\
& \operatorname{var}(Y)=a^{2} \operatorname{var}(X)
\end{aligned}
$$

- If $g(X)$ is a linear function of X, then

$$
\mathbf{E}[g(X)]=g(\mathbf{E}[X]) \text { How to verify it? }
$$

Joint PMF of Random Variables

- Let X and Y be random variables associated with the same experiment (also the same sample space and probability laws), the joint PMF of X and Y is defined by

$$
p_{X, Y}(x, y)=\mathbf{P}(\{X=x\} \cap\{Y=y\})=\mathbf{P}(X=x, Y=y)
$$

- if event A is the set of all pairs (x, y) that have a certain property, then the probability of A can be calculated by

$$
\mathbf{P}((X, Y) \in A)=\sum_{(x, y) \in A} p_{X, Y}(x, y)
$$

- Namely, A can be specified in terms of X and Y

Marginal PMFs of Random Variables

- The PMFs of random variables X and Y can be calculated from their joint PMF

$$
p_{X}(x)=\sum_{y} p_{X, Y}(x, y), \quad p_{Y}(y)=\sum_{x} p_{X, Y}(x, y)
$$

- $p_{X}(x)$ and $p_{Y}(y)$ are often referred to as the marginal PMFs
- The above two equations can be verified by

$$
\begin{aligned}
p_{X}(x) & =\mathbf{P}(X=x) \\
& =\sum_{y} \mathbf{P}(X=x, Y=y) \\
& =\sum_{y} p_{X, Y}(x, y)
\end{aligned}
$$

Conditioning

- Recall that conditional probability provides us with a way to reason about the outcome of an experiment, based on partial information
- In the same spirit, we can define conditional PMFs, given the occurrence of a certain event or given the value of another random variable

Conditioning a Random Variable on an Event (1/2)

- The conditional PMF of a random variable X, conditioned on a particular event A with $\mathbf{P}(A)>0$, is defined by (where X and A are associated with the same experiment)

$$
P_{X \mid A}(x)=\mathbf{P}(X=x \mid A)=\frac{\mathbf{P}(\{X=x\} \cap A)}{\mathbf{P}(A)}
$$

- Normalization Property
- Note that the events $\mathbf{P}(\{X=x\} \cap A)$ are disjoint for different values of X, their union is A

$$
\mathbf{P}(A)=\sum_{x} \mathbf{P}(\{X=x\} \cap A)^{\text {Total probability theorem }}
$$

$$
\therefore \sum_{x} P_{X \mid A}(x)=\sum_{x} \frac{\mathbf{P}(\{X=x\} \cap A)}{\mathbf{P}(A)}=\frac{\sum_{x} \mathbf{P}(\{X=x\} \cap A)}{\mathbf{P}(A)}=\frac{\mathbf{P}(A)}{\mathbf{P}(A)}=1
$$

Conditioning a Random Variable on an Event (2/2)

- A graphical illustration

Figure 2.12: Visualization and calculation of the conditional PMF $p_{X \mid A}(x)$. For each x, we add the probabilities of the outcomes in the intersection $\{X=x\} \cap A$ and normalize by diving with $\mathbf{P}(A)$.
$P_{X \mid A}(x)$ Is obtained by adding the probabilities of the outcomes that give rise to $X=x$ and be long to the conditioning event A

Conditioning a Random Variable on Another (1/2)

- Let X and Y be two random variables associated with the same experiment. The conditional PMF $p_{X \mid Y}$ of X given Y is defined as

$$
\begin{aligned}
p_{X \mid Y}(x \mid y) & =\mathbf{P}(X=x \mid Y=y)=\frac{\mathbf{P}(X=x, Y=y)}{\mathbf{P}(Y=y)} \\
& =\frac{p_{X, Y}(x, y)}{p_{Y}(y)} \quad \quad Y \text { is fixed on some value } y
\end{aligned}
$$

- Normalization Property $\sum_{x} p_{X \mid Y}(x \mid y)=1$
- The conditional PMF is often convenient for the calculation of the joint PMF
multiplication (chain) rule

$$
p_{X, Y}(x, y)=p_{Y}(y) p_{X \mid Y}(x \mid y)\left(=p_{X}(x) p_{Y \mid X}(y \mid x)\right)
$$

Conditioning a Random Variable on Another (2/2)

- The conditional PMF can also be used to calculate the marginal PMFs

$$
p_{X}(x)=\sum_{y} p_{X, Y}(x, y)=\sum_{y} p_{Y}(y) p_{X \mid Y}(x \mid y)
$$

- Visualization of the conditional PMF $p_{X \mid Y}$

Independence of a Random Variable from an Event

- A random variable X is independent of an event A if

$$
\mathbf{P}(X=x \text { and } A)=\mathbf{P}(X=x) \mathbf{P}(A), \text { for all } x
$$

- Require two events $\{x=x\}$ and A be independent for all x
- If a random variable X is independent of an event A and $\mathbf{P}(A)>0$

$$
\begin{aligned}
p_{X \mid A}(x) & =\frac{\mathbf{P}(X=x \text { and } A)}{\mathbf{P}(A)} \\
& =\frac{\mathbf{P}(X=x) \mathbf{P}(A)}{\mathbf{P}(A)} \\
& =\mathbf{P}(X=x) \\
& =p_{X}(x), \text { for all } x
\end{aligned}
$$

Independence of Random Variables (1/2)

- Two random variables X and Y are independent if

$$
\begin{aligned}
& p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y), \text { for all } x, y \\
\text { or } & \mathbf{P}(X=x, Y=y)=\mathbf{P}(X=x) \mathbf{P}(Y=y) \text {, for all } x, y
\end{aligned}
$$

- If a random variable X is independent of an random variable Y

$$
\begin{aligned}
p_{X \mid Y}(x \mid y) & =p_{X}(x), \text { for all } y \text { with } p_{Y}(y)>0 \text { all } x \\
p_{X \mid Y}(x \mid y) & =\frac{p_{X, Y}(x, y)}{p_{Y}(y)} \\
& =\frac{p_{X}(x) p_{Y}(y)}{p_{Y}(y)} \\
& =p_{X}(x), \text { for all } y \text { with } p(y)>0 \text { and all } x
\end{aligned}
$$

Independence of Random Variables (2/2)

- Random variables X and Y are said to be conditionally independent, given a positive probability event A, if

$$
p_{X, Y \mid A}(x, y)=p_{X \mid A}(x) p_{Y \mid A}(y), \text { for all } x, y
$$

- Or equivalently,

$$
p_{X \mid Y, A}(x \mid y)=p_{X \mid A}(x), \text { for all } y \text { with } p_{Y \mid A}(y)>0 \text { and all } x
$$

- Note here that, as in the case of events, conditional independence may not imply unconditional independence and vice versa

Entropy (1/3)

- Three interpretations for quantity of information

1. The amount of uncertainty before seeing an event
2. The amount of surprise when seeing an event
3. The amount of information after seeing an event

- The definition of information: define $0 \log _{2} 0=0$

$$
I\left(x_{i}\right)=\log _{2} \frac{1}{P\left(x_{i}\right)}=-\log _{2} P\left(x_{i}\right)
$$

$-P\left(x_{i}\right)$ the probability of an event x_{i}

- Entropy: the average amount of information

$$
H(X)=E[I(X)]_{X}=E\left[-\log _{2} P\left(x_{i}\right)\right]_{X}=\sum_{x_{i}}-P\left(x_{i}\right) \cdot \log _{2} P\left(x_{i}\right)
$$

- Have maximum value when the probability

Entropy (2/3)

- For Boolean classification (0 or 1)

$$
P_{X}(x)= \begin{cases}p_{1}, & x=1 \\ p_{2}=1-p_{1}, & x=0\end{cases}
$$

Entropy $(X)=-p_{1} \log _{2} p_{1}-p_{2} \log _{2} p_{2}$

- Entropy can be expressed as the minimum number of bits of information needed to encode the classification of an arbitrary number of examples
- If c classes are generated, the maximum of entropy can be

$$
\text { Entropy }(X)=\log _{2} c
$$

