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Sample Statistics and Population Parameters 

• A Schematic Depiction
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Introduction

• Statistic
– Any value (or function) that is calculated from a given sample
– Statistical inference: make a decision using the information 

provided by a sample (or a set of examples/instances)

• Parametric methods
– Assume that examples are drawn from some distribution that 

obeys a known model

– Advantage: the model is well defined up to a small number of 
parameters

• E.g., mean and variance are sufficient statistics for the 
Gaussian distribution

– Model parameters are typically estimated by either maximum 
likelihood estimation or Bayesian (MAP) estimation
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Maximum Likelihood Estimation (MLE) (1/2)

• Assume the instances                          are independent 
and identically distributed (iid), and drawn from some 
known probability distribution 

–
– : model parameters (assumed to be fixed but unknown here)

• MLE attempts to find      that make      the most likely to 
be drawn
– Namely, maximize the likelihood of the instances
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MLE (2/2)

• Because logarithm will not change the value of       when 
it take its maximum (monotonically increasing/decreasing)
– Finding       that maximizes the likelihood of the instances is 

equivalent to finding       that maximizes the log likelihood of the 
samples 

– As we shall see, logarithmic operation can further simplify the 
computation when estimating the parameters of those 
distributions that have exponents 
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MLE: Bernoulli Distribution (1/3)

• Bernoulli Distribution
– A random variable       takes either the value          (with 

probability      ) or the value          (with probability           )
• Can be thought of as      is generated form two distinct states

– The associated probability distribution

• The log likelihood for a set of iid instances      drawn from 
Bernoulli distribution
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MLE: Bernoulli Distribution (2/3)

• MLE of the distribution parameter

– The estimate for       is the ratio of the number of occurrences of 
the event (           ) to the number of experiments

• The expected value for 

• The variance value for 
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MLE: Bernoulli Distribution (3/3)

• Appendix A
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MLE: Multinomial Distribution (1/4)

• Multinomial Distribution
– A generalization of Bernoulli distribution
– The value of a random variable         can be one of K mutually 

exclusive and exhaustive states                                  with 
probabilities                     , respectively

– The associated probability distribution

• The log likelihood for a set of iid instances      drawn from a 
multinomial distribution
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MLE: Multinomial Distribution (2/4)

• MLE of the distribution parameter

– The estimate for         is the ratio of the number of experiments 
with outcome of state      (           ) to the number of experiments
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MLE: Multinomial Distribution (3/4)

• Appendix B
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MLE: Multinomial Distribution (4/4)

Urn

P(W)=4/10

P(B)=3/10

P(R)=3/10
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MLE: Gaussian Distribution (1/3)

• Also called Normal Distribution
– Characterized with mean       and variance

– Recall that mean and variance are sufficient statistics for 
Gaussian

• The log likelihood for a set of iid instances drawn from 
Gaussian distribution
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MLE: Gaussian Distribution (2/3)

• MLE of the distribution parameters      and    

• Remind that          and         are still fixed but unknown
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MLE: Gaussian Distribution (3/3)

• Appendix C
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Evaluating an Estimator : Bias and Variance (1/6)

• The mean square error of the estimator      can be further 
decomposed into two parts respectively composed of 
bias and variance
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Evaluating an Estimator : Bias and Variance (2/6)
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Evaluating an Estimator : Bias and Variance (3/6)

• Example 1: sample average and sample variance
– Assume samples                                are independent and 

identically distributed (iid), and drawn from some known 
probability distribution      with mean      and variance

• Mean

• Variance

• Sample average (mean) for the observed samples

• Sample variance for the observed samples   
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Evaluating an Estimator : Bias and Variance (4/6)

• Example 1 (count.)
– Sample average       is an unbiased estimator of the mean

• is also a consistent estimator: 
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Evaluating an Estimator : Bias and Variance (5/6)

• Example 1 (count.)
– Sample variance       is an asymptotically unbiased estimator of 

the variance 2
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Evaluating an Estimator : Bias and Variance (6/6)

• Example 1 (count.)
– Sample variance       is an asymptotically unbiased estimator of 

the variance 2
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Bias and Variance: Example 2

1x

   xFy

different 
samples 

for an unknown
population  
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Simple is Elegant ?
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