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Source-Filter model

• Source-Filter model: decomposition of speech signals
– A source passed through a linear time-varying filter

• But assume that the filter is short-time time-invariant

– Source (excitation): the air flow at the vocal cord (聲帶)

– Filter: the resonances (共鳴) of the vocal tract (聲道) which 
change over time

• Once the filter has been estimated, the source can be 
obtained by passing the speech signal through the inverse 
filter

h[n] x[n]e[n]
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Source-Filter model (cont.)

• Phone classification is mostly dependent on the 
characteristics of the filter (vocal tract) 
– Speech recognizers estimate the filter characteristics and 

ignore the source
• Speech Production Model: Linear Prediction Coding, 

Cepstral Analysis
• Speech Perception Model: Mel-frequency Cepstrum

– Speech synthesis techniques use a source-filter model to 
allow flexibility in altering the pitch and filter

– Speech coders use a source-filter model to allow a low bit rate
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Characteristics of the Source-Filter Model

• The characteristics of the vocal tract define the current 
uttered phoneme
– Such characteristics are evidenced in the frequency domain by the 

location of the formants
• I.e., the peaks given by resonances of the vocal tract
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Main Considerations in Feature Extraction

• Perceptually Meaningful
– Parameters represent salient aspects of the speech signal

– Parameters are analogous to those used by human auditory system 
(perceptually meaningful)

• Robust Parameters
– Parameters are more robust to variations in environments such as 

channels, speakers and transducers 

• Time-Dynamic Parameters
– Parameters can capture spectral dynamics, or changes of 

spectra with time (temporal correlation)

– Contextual information during articulation
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Typical Procedures for Feature Extraction 

A/D Conversion Preemphasis
Framing 

and
Windowing

Fourier Transform Filter Bank
or 

Linear Prediction (LP)

Cepstral 
Processing

Spectral Shaping 

Spectral AnalysisParametric Transform

Speech
Signal

Parameters

Conditioned
Signal

Measurements
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Spectral Shaping

• A/D conversion
– Convert the signal from a sound pressure wave to a digital signal

• Digital Filtering (e.g., “pre-emphasis”)
– Emphasize important frequency components in the signal

• Framing and Windowing
– Perform short-term (short-time) processing
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Spectral Shaping (cont.)

• Sampling Rate/Frequency and Recognition Error Rate

E.g., Microphone Speech
Mandarin Syllable Recognition
Accuracy: 67% (16KHz)
Accuracy: 63% (8KHz)
Error rate reduction

4/37=10.8%
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Spectral Shaping (cont.)

• Problems for A/D Converter
– Frequency distortion (50-60-Hz hum)
– Nonlinear input-output distortion

• Example:
– Frequency response of a typical 

telephone grade A/D converter
– The sharp attenuation of low 

frequency and high frequency 
response causes problems for 
subsequent parametric spectral 
analysis algorithms

• The Most Popular Sampling Frequency
– Telecommunication: 8KHz
– Non-telecommunication: 10~16KHz
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Pre-emphasis

• A high-pass filter is used
– Most often executed by using Finite Impulse Response filters (FIRs)
– Normally an one-coefficient digital filter (called pre-emphasis filter) 

is used

H(z)=1-a • z-1   0<a≤1

Speech signal
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Pre-emphasis (cont.)

• Implementation and the corresponding effect
– Values close to 1.0 that can be efficiently implemented in fixed 

point hardware are most common (most common is around 0.95)
– Boost the spectrum about 20 dB per decade

20 dB

20 dB

per decade
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Pre-emphasis: Why? 

• Reason 1: Physiological Characteristics
– The component of the glottal signal can be modeled by a simple 

two-real-pole filter whose poles are near z=1

– The lip radiation characteristic, with its zero near z=1, tends to 
cancel the spectral effects of one of the glottal pole

• By introducing a second zero near z=1 (pre-emphasis), we can 
eliminate effectively the larynx and lips spectral contributions

– Analysis can be asserted to be seeking the parameters 
corresponding to the vocal tract only

x[n]e[n]
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lips
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Pre-emphasis: Why? (cont.)

• Reason 2: Prevent Numerical Instability
– If the speech signal is dominated by low frequencies, it is highly 

predictable and a large LP model will result in an ill-conditioned 
autocorrelation matrix

• Reason 3 : Physiological Characteristics Again
– Voiced sections of the speech signal naturally have a negative 

spectral slope (attenuation) of approximately 20 dB per decade 
due to physiological characteristics of the speech production 
system

– High frequency formants have small amplitude with respect to 
low frequency formants. A pre-emphasis of high frequencies is 
therefore required to obtain similar amplitude for all formants
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Pre-emphasis: Why? (cont.)

• Reason 4 :
– Hearing is more sensitive above the 1 kHz region of the 

spectrum
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Pre-emphasis: An Example

No Pre-emphasis

Pre-emphasis

  975.0prea
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Framing and Windowing

• Framing: decompose the speech signal into a series of 
overlapping frames 
– Traditional methods for spectral evaluation are reliable in the case 

of a stationary signal (i.e., a signal whose statistical 
characteristics are invariant with respect to time)

• Imply that the region is short enough for the behavior 
(periodicity or noise-like appearance) of the signal to be 
approximately constant

• Phrased another way, the speech region has to be short 
enough so that it can reasonably be assumed to be stationary

• stationary in that region: i.e., the signal characteristics 
(whether periodicity or noise-like appearance) are uniform in 
that region 
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Framing and Windowing (cont.)
• Terminology Used in Framing

– Frame Duration (N): the length of time over which a set of 
parameters is valid. Frame duration ranges between 10 ~ 25 ms

– Frame Period (L): the length of time between successive 
parameter calculations (“Target Rate” used in HTK)

– Frame Rate: the number of frames computed per second
Frame Duration N

Frame Size

Frame Period (Target Rate) L

frame m frame m+1 ….. etc. 

Speech Vectors or Frames

Parameter
Vector
Size
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Framing and Windowing (cont.)

• Windowing : a window, say w[n], is a real, finite length 
sequence used to select a desired frame of the original 
signal, say xm[n]
– Most commonly used windows are symmetric about the time (N-1)/2

(N is the window duration)  

– Frequency response: 

– Ideally, w[n]=1 for all n, whose frequency response is just
an impulse
• This is invalid since the speech signal is stationary only within

short time intervals 

    110   ,110       ,~ ,...,M-,m,...,N-,nnLmxnxm 

      10     ,~  Nn  nwnxnx mm

      nconvolutio  :   ,~  kWkXkX mm

Framed signal

Multiplied with the
window function

Frequency Response
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Framing and Windowing (cont.)

• Windowing (Cont.)
– Rectangular window (w[n]=1 for 

0≤n≤N-1): 
• Just extract the frame part of 

signal without further processing 
• Whose frequency response has 

high side lobes
– Main lobe: spreads out in a 

wider frequency range in the 
narrow band power of the signal, 
and thus reduces the local 
frequency resolution

– Side lobe: swaps energy from 
different and distant frequencies
of xm[n], which is called leakage 
or spectral leakage

Twice as wide as the rectangle window
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Framing and Windowing (cont.)
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Framing and Windowing (cont.)

31 dB

44 dB

17 dB
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Framing and Windowing (cont.)

• For a designed window, we wish that
– A narrow bandwidth main lobe
– Large attenuation in the magnitudes of the sidelobes

However, this is a trade-off!

Notice that:
1. A narrow main lobe will resolve the sharp details of             

(the frequency response of the framed signal) as the 
convolution proceeds in frequency domain

2. The attenuated sidelobes prevents “noise” from other
parts of the spectrum from corrupting the true spectrum
at a given frequency

 kXm
~
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Framing and Windowing (cont.)

• The most-used window shape is the Hamming window, 
whose impulse response is a raised cosine impulse
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Framing and Windowing (cont.)

• Male Voiced Speech

Note: The longer the window duration the finer local frequency resolution !

- 30 ms
- rectangle

- 15 ms
- rectangle

- 30 ms
- Hamming

- 15 ms
- Hamming



SP - Berlin Chen   25

Framing and Windowing (cont.)

• Female Voiced Speech

- 30 ms
- rectangle

- 15 ms
- rectangle

- 30 ms
- Hamming

- 15 ms
- Hamming
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Framing and Windowing (cont.)

• Unvoiced Speech

- 30 ms
- rectangle

- 15 ms
- rectangle

- 30 ms
- Hamming

- 15 ms
- Hamming
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Short-Time Fourier Analysis

• Spectral Analysis
– Notice that the response for each 

frequency is not completely uncorrelated 
due to the windowing operation 

• Spectrogram Representation

– A spectrogram of a time signal
is a two-dimensional representation
that displays time in its horizontal axis
and frequency in its vertical axis

– A gray scale is typically used
to indicate the energy at
each point (t,f)

• “white”: low energy,
“black”: high energy
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Mel-Frequency Cepstral Coefficients (MFCC)
• Most widely used in the speech recognition
• Has generally obtained a better accuracy and a minor 

computational complexity

Speech signal
Pre-emphasis

Window

DFT Mel 
filter banks

Log(Σ|·|2)

IDFT or
Cosine 

TransformationMFCC

energy

derivatives
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S.B. Davis, P. Mermelstein, “Comparison of Parametric Representation for Monosyllabic Word Recognition
in Continuously Spoken Sentences,” IEEE Trans. on Acoustics, Speech & Signal Processing 28(4), 1980
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Mel-Frequency Cepstral Coefficients (cont.)

• Characteristics of MFCC
– Auditory-like frequency

• Mel spectrum
– Filter (critical)-band soothing

• Sum of weighted frequency bins 
– Amplitude warping

• Logarithmic representation of filter bank outputs 
– Feature decorrelation and dimensionality reduction

• Projection on the cosine basis

Adopted from Kumar’s Ph.D. Thesis
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DFT and Mel-filter-bank Processing

• For each frame of signal (N points, e.g., N=512)
– The Discrete Fourier Transform (DFT) is first performed to obtain 

its spectrum (N points, for example N=512)
– The spectrum is then processed by a bank of filters according to 

Mel scale, and the each filter output is the sum of its filtered 
spectral components (M filters, and thus M points, for example 
M=18)

DFTt f

Time domain signal Spectrum
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Filter-bank Processing

• Mel-filter-bank 
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approximate homomorphic transform (more robust to noise and spectral estimation errors) 
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Filter-bank Processing (cont.)

• An Example

2.3979)50(log)50(log)1.0(10log
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Filter-bank Processing (cont.)
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Filter-bank Processing: Why?

• The filter-bank processing simulates human ear 
processing

– Center frequency of each filter
• The position of maximum displacement along the basilar 

membrane for stimuli such as pure tone is proportional to the 
logarithm of the frequency of the tone

– Bandwidth
• Frequencies of a complex sound within a certain bandwidth 

of some nominal frequency cannot be individually identified
• When one of the components of this sound falls outside this 

bandwidth, it can be individually distinguished
• This bandwidth is referred to as the critical bandwidth
• A critical bandwidth is nominally 10% to 20% of the center 

frequency of the sound
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Filter-bank Processing: Why? (cont.)

• For speech recognition purpose :

– Filters are non-uniformly spaced along the frequency axis

– The part of the spectrum below 1kHz is processed by more filter 
banks

• This part contains more information on the vocal tract such 
as the first formant

– Non-linear frequency analysis is also used to achieve 
frequency/time resolution

• Narrow band-pass filters at low frequencies enables 
harmonics to be detected

• Longer bandwidth at higher frequencies allows for higher 
temporal resolution of bursts (?)
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Filter-bank Processing: Why? (cont.)

• The most-used two warped frequency scale : Bark scale 
and Mel scale
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Homomorphic Transformation
Cepstral Processing

• A homomorphic transform         is a transform that converts 
a convolution into a sum

• Cepstrum is regarded as one homomorphic function (filter)
that allow us to separate the source (excitation) from the 
filter for speech signal processing
– We can find a value L such that

• The cepstrum of the filter                      
• The cepstrum of the excitation

 D

     nhnenx 

        nĥnênxDnx̂ 

x(n)=e(n)*h(n) X()=E()H()
|X()|=|E()||H()|log|X()|=log|E()|+log|H()|

  Lnnĥ  for    0
  Lnnê  for    0

could be separated

Cepstrum is an anagram (回文構詞) of spectrum
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Homomorphic Transformation
Cepstral Processing (cont.)
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Source-Filter Separation via Cepstrum (1/3)



Source-Filter Separation via Cepstrum (2/3)
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Source-Filter Separation via Cepstrum (2/3)

• The Result of MFCC analysis intrinsically represents a 
smoothed  spectrum
– Removal of the excitation/harmonics component

SP - Berlin Chen   41
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Cepstral Analysis

• Ideal case
– Preserve the variance introduced by phonemes

– Suppress the variances introduced by source likes 
coarticulation, channel, and speaker

– Reduce the feature dimensionality
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Cepstral Analysis (cont.)

• Project the logarithmic power spectrum (most often 
modified by auditory-like processing) on the Cosine basis
– The Cosine basis are used to project the feature space on 

directions of maximum global (overall) variability
• Rotation and dimensionality reduction

– Also partially decorrelate the log-spectral features

Covariance Matrix of the 18-Mel-filter-bank vectors

Calculated using 5,471 utterances (Year 1999 BN )

Covariance Matrix of the 18-cepstral vectors

Calculated using 5,471 utterances (Year 1999 BN )
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Cepstral Analysis (cont.)
• PCA (Principal Component Analysis)and LDA (Linear 

Discriminant Analysis) also can be used as the basis functions
– PCA can completely decorrelate the log-spectral features
– PCA-derived spectral basis projects the feature space on directions of 

maximum global (overall) variability
– LDA-derived spectral basis projects the feature space on directions of 

maximum phoneme separability

Covariance Matrix of the 18-PCA-cepstral vectors Covariance Matrix of the 18-LDA-cepstral vectors

Calculated using 5,471 utterances (Year 1999 BN ) Calculated using 5,471 utterances (Year 1999 BN )
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Cepstral Analysis (cont.)

PCA

LDA

Class 2

Class 1
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Logarithmic Operation and DCT in MFCC

• The final process of MFCC construction: logarithmic 
operation and DCT (Discrete Cosine Transform )

Mel-filter output 
spectral vector Filter index

Filter index

Log(Σ|·|2)

Log-spectral vector 

DCT

Quefrency (Cepstrum)
MFCC vector
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Log Energy Operation: Why ?

• Use the magnitude (power) only to discard phase 
information
– Phase information is useless in speech recognition

• Humans are phase-deaf
• Replacing the phase part of the original speech signal with 

a continuous random phase won’t be perceived by human 
ears

• Use the logarithmic operation to compress the 
component amplitudes at every frequency
– The characteristic of the human hearing system
– The dynamic compression makes feature extraction less 

sensitive to variations in dynamics
– In order to separate more easily the excitation (source) 

produced by the vocal cords and the filter that represents the 
vocal tract
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• Final procedure for MFCC : perform inverse DFT on the log-
spectral power

• Discrete Cosine Transform (DCT)
– Since the log-power spectrum is real and symmetric, the inverse 

DFT reduces to a Discrete Cosine Transform (DCT). The DCT has 
the property to produce more highly uncorrelated features

• Partial Decorrelation

• When n=0

(relative to the energy of spectrum/filter bank  
outputs)

Discrete Cosine Transform
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Discrete Cosine Transform: Why?

• Cepstral coefficients are more compact since they are 
sorted in variance order
– Can be truncated to retain the highest energy 

coefficients, which represents an implicit liftering
operation with a rectangular window

• Successfully separate the vocal tract and the excitation
– The envelope of the vocal tract changes slowly, and 

thus presents at low quefrencies (lower order 
cepstrum), while the periodic excitation are at high 
quefrencies (higher order cepstrum)
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Derivatives (1/2)

• Derivative operation : to obtain the temporal information of 
the static feature vector

MFCC stream 

quefrency(N)

Frame index

l-1        l        l+1     l+2

quefrency(N)

Frame index

∆MFCC stream  
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Frame index

∆2 MFCC stream 
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Derivatives (2/2)

• The derivative (as that defined in the previous slide) can 
be obtained by “polynomial fits” to cepstrum sequences 
to extract simple representations of the temporal 
variation
– Furui first noted that such temporal information could be of value 

for a speaker verification system 
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S. Furui, “Cepstral analysis technique for automatic speaker verification,” IEEE Trans. on Acoustics, Speech 
& Signal Processing 29(2), 1981
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Derivatives: Why?

• To capture the dynamic evolution of the speech signal
– Such information carries relevant information for speech 

recognition
– The distance (the value of p) should be taken into account 

• Too low distance may imply too correlated frames and therefore the 
dynamic cannot be caught

• Too high values may imply frames describing too different states

• To cancel the DC part (channel effect) of the MFCC 
features
– For example, for clean speech, the MFCC stream is

while for a channel-distorted speech, the MFCC stream is

– the channel effect h is eliminated in the delta (difference) coefficients
 .......,,,,...... 2l1ll1l2l  ccccc

 .......,,,,...... 2l1ll1l2l hchchchchc       
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MFCC v.s LDA
• Tested on Mandarin broadcast news speech
• Large vocabulary continuous speech recognition (LVCSR)
• For each speech frame

– MFCC uses a set of 13 cepstral coefficients and its first and 
second time derivatives as the feature vector (39 dimensions)

– LDA-1 uses a set of 13 cepstral coefficients as the basic vector
– LDA-2 uses a set of 18 filter-bank outputs as the basic vector

(Basic vectors from successive nine frames spliced together to form the 
supervector and then transformed to form a reduced vector with 39 
dimensions) Character Error Rate

TC WG
MFCC 26.32 22.71
LDA-1 23.12 20.17
LDA-2 23.11 20.11

The character error rates (%) achieved with respective to
different feature extraction approaches.


