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Introduction

• Classification of Speech Variability in Five Categories

Robustness
Enhancement

Speaker-independency
Speaker-adaptation

Speaker-dependency

Context-Dependent
Acoustic Modeling

Pronunciation
Variation

Linguistic
variability

Intra-speaker
variability

Inter-speaker
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Introduction (cont.)

• The Diagram for Speech Recognition

• Importance of the robustness in speech recognition
– Speech recognition systems have to operate in situations with 

uncontrollable acoustic environments
– The recognition performance is often degraded due to the 

mismatch in the training and testing conditions
• Varying environmental noises, different speaker characteristics 

(sex, age, dialects), different speaking modes (stylistic, Lombard 
effect), etc. 

Feature 
Extraction

Likelihood 
computation

Acoustic 
model

Language
model

Speech 
signal

Recognition
results

Acoustic Processing Linguistic Processing

Lexicon

Linguistic Network 
Decoding
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Introduction (cont.)

• If a speech recognition system’s accuracy does not 
degrade very much under mismatch conditions, the 
system is called robust 
– ASR performance is rather uniform for SNRs greater than 25dB, 

but there is a very steep degradation as the noise level 
increases 

• Signal energy measured in time domain, e.g.:

• Various noises exist in varying real-world environments
– Periodic, impulsive, or wide/narrow band
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Introduction (cont.)

• Therefore, several possible robustness approaches have 
been developed to enhance the speech signal, its 
spectrum, and the acoustic models as well

– Environmental compensation processing (feature-based)

– Acoustic model adaptation (model-based)

– Robust acoustic features (both model- and feature-based)
• Or, inherently discriminative acoustic features
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The Noise Types (1/2)
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The Noise Types (2/2)
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Additive Noises
• Additive noises can be stationary or non-stationary

– Stationary noises
• Such as computer fan, air conditioning, car noise: the power 

spectral density does not change over time (the above noises are 
also narrow-band noises)

– Non-stationary noises
• Machine gun, door slams, keyboard clicks, radio/TV, and other 

speakers’ voices (babble noise, wide band nose, most difficult): the 
statistical properties
change over time

) (        ) (         

loglog
cl SS

SCSS 

power
spectrum

log power
spectrum cepstrum



Speech - Berlin Chen   9

Additive Noises (cont.)
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Convolutional Noises

• Convolutional noises are mainly resulted from channel 
distortion (sometimes called “channel noises”) and are 
stationary for most cases
– Reverberation, the frequency response of microphone, 

transmission lines, etc. 
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Noise Characteristics

• White Noise
– The power spectrum is flat                 ,a condition equivalent to 

different samples being uncorrelated, 
– White noise has a zero mean, but can have different distributions 
– We are often interested in the white Gaussian noise, as it 

resembles better the noise that tends to occur in practice

• Colored Noise
– The spectrum is not flat (like the noise captured by a microphone)
– Pink noise

• A particular type of colored nose that has a low-pass nature, as it 
has more energy at the low frequencies and rolls off at high 
frequency

• E.g., the noise generated by a computer fan, an air conditioner, or 
an automobile   

  qSnn 
   mqmRnn 
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Noise Characteristics (cont.)

• Musical Noise
– Musical noise is short sinusoids (tones) randomly distributed 

over time and frequency
• That occur due to, e.g., the drawback of original spectral 

subtraction technique and statistical inaccuracy in estimating 
noise magnitude spectrum

• Lombard effect
– A phenomenon by which a speaker increases his vocal effect in 

the presence of background noise (the additive noise)
– When a large amount of noise is present, the speaker tends to 

shout, which entails not only a high amplitude, but also often 
higher pitch, slightly different formants, and a different coloring 
(shape) of the spectrum

– The vowel portion of the words will be overemphasized by the 
speakers 



A Few Robustness Approaches
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Three Basic Categories of Approaches

• Speech Enhancement Techniques
– Eliminate or reduce the noisy effect on the speech signals, thus 

better accuracy with the originally trained models
(Restore the clean speech signals or compensate for distortions)

– The feature part is modified while the model part remains 
unchanged

• Model-based Noise Compensation Techniques
– Adjust (changing) the recognition model parameters (means and 

variances) for better matching the noisy testing conditions
– The model part is modified while the feature part remains 

unchanged

• Robust Parameters for Speech
– Find robust representation of speech signals less influenced by 

additive or channel noise
– Both of the feature and model parts are changed
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Assumptions & Evaluations

• General Assumptions for the Noise
– The noise is uncorrelated with the speech signal
– The noise characteristics are fixed during the speech utterance 

or vary very slowly (the noise is said to be stationary)
• The estimates of the noise characteristics can be obtained during 

non-speech activity 
– The noise is supposed to be additive or convolutional

• Performance Evaluations
– Intelligibility, quality (subjective assessment)
– Distortion between clean and recovered speech (objective

assessment)
– Speech recognition accuracy
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Spectral Subtraction (SS)     S. F. Boll, 1979

• A Speech Enhancement Technique
• Estimate the magnitude (or the power) of clean speech by 

explicitly subtracting the noise magnitude (or the power) 
spectrum from the noisy magnitude (or power) spectrum

• Basic Assumption of Spectral Subtraction
– The clean speech         is corrupted by additive noise 
– Different frequencies are uncorrelated from each other
– and are statistically independent, so that the power 

spectrum of the noisy speech     can be expressed as: 

– To eliminate the additive noise:
– We can obtain an estimate of          using the average period of M

frames that are known to be just noise:
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Spectral Subtraction (cont.)

• Problems of Spectral Subtraction
– and are not statistically independent such that the cross 

term in power spectrum can not be eliminated
– is possibly less than zero
– Introduce “musical noise” when
– Need a robust endpoint (speech/noise/silence) detector

 ms  mn

 SP̂
    NX PP 
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Spectral Subtraction (cont.)

• Modification: Nonlinear Spectral Subtraction (NSS)
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Spectral Subtraction (cont.)

• Spectral Subtraction can be viewed as a filtering 
operation 
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Wiener Filtering

• A Speech Enhancement Technique
• From the Statistical Point of View

– The process        is the sum of the random process       and the 
additive noise process

– Find a linear estimate         in terms of the process          :
• Or to find a linear filter         such that the sequence                   

minimizes the expected value of  
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Wiener Filtering (cont.)
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Wiener Filtering (cont.)

• Minimize the expectation of the squared error (MMSE 
estimate)
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Wiener Filtering (cont.)
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• The time varying Wiener Filter also can be expressed in 
a similar form as the spectral subtraction

SS vs. Wiener Filter:
1. Wiener filter has stronger attenuation  

at low SNR region
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Wiener Filtering (cont.)

• Wiener Filtering can be realized only if we know the 
power spectra of both the noise and the signal
– A chicken-and-egg problem

• Approach - I : Ephraim(1992) proposed the use of an 
HMM where, if we know the current frame falls under, we 
can use its mean spectrum as 
– In practice, we do not know what state each frame falls into 

either
• Weight the filters for each state by a posterior probability that frame 

falls into each state

    Sss PS or   



Speech - Berlin Chen   25

Wiener Filtering (cont.)

• Approach - II :
– The background/noise is stationary and its power spectrum can 

be estimated by averaging spectra over a known background 
region

– For the non-stationary speech signal, its time-varying power 
spectrum can be estimated using the past Wiener filter (of 
previous frame) 

• The initial estimate of the speech spectrum can be derived from 
spectral subtraction

– Sometimes introduce musical noise
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Wiener Filtering (cont.)

• Approach - III :
– Slow down the rapid frame-to-frame movement of the object 

speech power spectrum estimate by apply temporal smoothing 
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Wiener Filtering (cont.)

Clean Speech

Noisy Speech

Enhanced Noise Speech
Using Approach – III

 85.0

Other more complicate 
Wiener filters
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The Effectives of Active Noise
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Cepstral Mean Normalization (CMN)

• A Speech Enhancement Technique and sometimes 
called Cepstral Mean Subtraction (CMS)

• CMN is a powerful and simple technique designed to 
handle convolutional (Time-invariant linear filtering)
distortions      nhnsnx 
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 The spectral characteristics of the microphone and 
room acoustics thus can be removed !

Time Domain

Spectral Domain

Log Power Spectral Domain
Cepstral Domain

Can be eliminated if the assumption of zero-mean speech contribution!
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Cepstral Mean Normalization (cont.)

• Some Findings
– Interesting, CMN has been found effective even the testing and 

training utterances are within the same microphone and 
environment

• Variations for the distance between the mouth and the microphone 
for different utterances and speakers

– Be careful that the duration/period used to estimate the mean 
of noisy speech 

• Why?
– Problematic when the acoustic feature vectors are almost 

identical within the selected time period
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Cepstral Mean Normalization (cont.)

• Performance
– For telephone recordings, where each call has different 

frequency response, the use of CMN has been shown to provide 
as much as 30 % relative decrease in error rate

– When a system is trained on one microphone and tested on 
another, CMN can provide significant robustness
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Cepstral Mean Normalization (cont.)

• CMN has been shown to improve the robustness not 
only to varying channels but also to the noise
– White noise added at different SNRs
– System trained with speech with the same SNR (matched 

Condition)

Cepstral delta and delta-delta
features are computed prior to the 

CMN operation so that they are 
unaffected.
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Cepstral Mean Normalization (cont.)

• From the other perspective
– We can interpret CMN as the operation of subtracting a low-pass 

temporal filter         , where all the     coefficients are identical and 
equal to         , which is a high-pass temporal filter

– Alleviate the effect of conventional noise introduced in the 
channel

 nd T

T
1

Temporal (Modulation)
Frequency
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Cepstral Mean Normalization (cont.)

• Real-time Cepstral Normalization
– CMN requires the complete utterance to compute the cepstral 

mean; thus, it cannot be used in a real-time system, and an 
approximation needs to be used

– Based on the above perspective, we can implement other types 
of high-pass filters
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Histogram EQualization (HEQ)
• HEQ has its roots in the assumption that the transformed 

speech feature distributions of the test (or noisy) data             
should be identical to that of the training (or reference) 
data
– Find a transformation function         converts      to          

satisfying

– Therefore, the relationship between the cumulative probability 
density functions (CDFs) respectively associated with the test 
and training speech is
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Histogram Equalization (Cont.)

• Convert the distribution of each feature vector 
component of  the test speech into a predefined target 
distribution which corresponds to that of the training 
speech
– Attempt not only to match speech feature means/variances, but 

also to completely match the feature distribution of the training 
and test data
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RASTA Temporal Filter   Hyneck Hermansky, 1991

• A Speech Enhancement Technique
• RASTA (Relative Spectral)

Assumption
– The linguistic message is coded into movements of the vocal 

tract (i.e., the change of spectral characteristics)
– The rate of change of non-linguistic components in speech often 

lies outside the typical rate of change of the vocal tact shape
• E.g. fix or slow time-varying linear communication channels

– A great sensitivity of human hearing to modulation frequencies 
around 4Hz than to lower or higher modulation frequencies

Effect
– RASTA Suppresses the spectral components that change more 

slowly or quickly than the typical rate of change of speech
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RASTA Temporal Filter (cont.)

• The IIR transfer function

• An other version
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Retraining on Corrupted Speech

• A Model-based Noise Compensation Technique
• Matched-Conditions Training

– Take a noise waveform from the new environment, add it to all 
the utterance in the training database, and retrain the system

– If the noise characteristics are known ahead of time, this method 
allow as to adapt the model to the new environment with 
relatively small amount of data from the new environment, yet 
use a large amount of training data
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Retraining on Corrupted Speech (cont.)

• Multi-style Training
– Create a number of artificial acoustical environments by 

corrupting the clean training database with noise samples of 
varying levels (30dB, 20dB, etc.) and types (white, babble, etc.), 
as well as varying the channels

– All those waveforms (copies of training database) from multiple 
acoustical environments can be used in training
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Model Adaptation

• A Model-based Noise Compensation Technique
• The standard adaptation methods for speaker adaptation 

can be used for adapting speech recognizers to noisy 
environments
– MAP (Maximum a Posteriori) can offer results similar to those of 

matched conditions, but it requires a significant amount of 
adaptation data

– MLLR (Maximum Likelihood Regression) can achieve 
reasonable performance with about a minute of speech for minor 
mismatch. For severe mismatches, MLLR also requires a larger 
amount of adaptation data
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Signal Decomposition Using HMMs

• A Model-based Noise Compensation Technique
• Recognize concurrent signals (speech and noise) 

simultaneously
– Parallel HMMs are used to model the concurrent signals and the 

composite signal is modeled as a function of their combined 
outputs

• Three-dimensional Viterbi Search

Clean speech HMM

Noise HMM
(especially for 
non-stationary noise)

Computationally Expensive
for both Training and Decoding !
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Parallel Model Combination (PMC)

• A Model-based Noise Compensation Technique
• By using the clean-speech models and a noise model, 

we can approximate the distributions obtained by training 
a HMM with corrupted speech
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Parallel Model Combination (cont.)

• The steps of Standard Parallel Model Combination (Log-
Normal Approximation)

Clean speech HMM’s

Noise HMM’s

Cepstral domain
Log-spectral domain Linear spectral domain
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Parallel Model Combination (cont.)

• Modification-I: Perform the model combination in the Log-
Spectral Domain (the simplest approximation)
– Log-Add Approximation: (without compensation of variances)

• The variances are assumed to be small
– A simplified version of Log-Normal approximation

• Reduction in computational load

• Modification-II: Perform the model combination in the 
Linear Spectral Domain (Data-Driven PMC, DPMC, or 
Iterative PMC)
– Use the speech models to generate noisy samples (corrupted 

speech observations) and then compute a maximum likelihood of 
these noisy samples

– This method is less computationally expensive than standard 
PMC with comparable performance 

    lll  ~expexplogˆ 
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Parallel Model Combination (cont.)

• Modification-II: Perform the model combination in the 
Linear Spectral Domain (Data-Driven PMC, DPMC)

Noise HMM

Linear spectral domain

Clean Speech HMM

Cepstral domain

Generating 
samples

Domain 
transform

Noisy Speech HMM

Apply Monte Carlo 
simulation to draw random 
cepstral vectors
(for example, at least 100 for
each distribution)
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Parallel Model Combination (cont.)

• Data-Driven PMC
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Vector Taylor Series (VTS)   P. J. Moreno,1995

• A Model-based Noise Compensation Technique
• VTS Approach

– Similar to PMC, the noisy-speech-like models is generated by 
combining of clean speech HMM’s and the noise HMM

– Unlike PMC, the VTS approach combines the parameters of 
clean speech HMM’s and the noise HMM linearly in the log-
spectral domain

Power spectrum

Log Power spectrum

Non-linear function
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Vector Taylor Series (cont.)

• The Taylor series provides a polynomial representation 
of a function in terms of the function and its derivatives at 
a point
– Application often arises when nonlinear functions are employed 

and we desire to obtain a linear approximation
– The function is represented as an offset and a linear term 
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Vector Taylor Series (cont.)

• Apply Taylor Series Approximation

– VTS-0: use only the 0th-order terms of Taylor Series
– VTS-1: use only the 0th- and 1th-order terms of Taylor Series
– is the vector function evaluated at a particular 

vector point

• If VTS-0 is used 
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Vector Taylor Series (cont.)
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Retraining on Compensated Features

• A Model-based Noise Compensation Technique that also 
Uses enhanced Features (processed by SS, CMN, etc.)
– Combine speech enhancement and model compensation

SPLICE: Stereo-based Piecewise Linear Compensation



More on SPLICE
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Principal Component Analysis

• Principal Component Analysis (PCA) :
– Widely applied for the data analysis and dimensionality reduction 

in order to derive the most “expressive” feature
– Criterion: 

for a zero mean r.v. xRN, find k (kN) orthonormal vectors
{e1, e2,…, ek} so that

– (1) var(e1
T x)=max 1

(2) var(ei
T x)=max i

subject to ei ei-1 …… e1 1 i k

– {e1, e2,…, ek} are in fact the eigenvectors 
of the covariance matrix (x) for x
corresponding to the largest k eigenvalues

– Final r.v y R k : the linear transform 
(projection) of the original r.v., y=ATx
A=[e1 e2 …… ek] 

Principal axis
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Principal Component Analysis (cont.)
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Principal Component Analysis (cont.)

• Properties of PCA
– The components of y are mutually uncorrelated

E{yiyj}=E{(ei
Tx) (ej

Tx)T}=E{(ei
Tx) (xTej)}=ei

TE{xxT} ej =ei
Txej 

= jei
Tej=0 , if ij

 the covariance of y is diagonal
– The error power (mean-squared error) between the original vector x

and the projected x’ is minimum 
x=(e1

Tx)e1+ (e2
Tx)e2 + ……+(ek

Tx)ek + ……+(eN
Tx)eN 

x’=(e1
Tx)e1+ (e2

Tx)e2 + ……+(ek
Tx)ek    (Note : x’RN)

error r.v : 
x-x’= (ek+1

Tx)ek+1+ (ek+2
Tx)ek+2 + ……+(eN

Tx)eN

E((x-x’)T(x-x’))=E((ek+1
Tx) ek+1

Tek+1 (ek+1
Tx))+……+E((eN

Tx) eN
TeN

(eN
Tx))

=var(ek+1
Tx)+ var(ek+2

Tx)+…… var(eN
Tx) 

= k+1+ k+2+…… +N  minimum
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PCA Applied in Inherently Robust Features 

• Application 1 : the linear transform of the original
features (in the spatial domain)

Original feature stream xt

Frame index

AT AT AT AT

transformed feature 
stream zt

Frame index

zt= ATxt

The columns of A are the 
“first k” eigenvectors of x
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PCA Applied in Inherently Robust Features (cont.) 

• Application 2 : PCA-derived temporal filter
(in the temporal domain)
– The effect of the temporal filter is equivalent to the weighted sum of 

sequence of a specific MFCC coefficient with length L slid along the 
frame index  

quefrency

Frame index

B1(z)

B2(z)

Bn(z)

L

zk(1)
zk(2)

zk(3)

Original feature 
stream xt

The impulse response of Bk(z) is one of the 
eigenvectors of the covariance for zk
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zk(n)=[ yk(n) yk(n+1) yk(n+2) …… yk(n+L-1)]T
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The element in the new feature vector

From Dr. Jei-wei Hung
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PCA Applied in Inherently Robust Features (cont.)

The frequency responses of the 15 PCA-derived temporal filters

From Dr. Jei-wei Hung



Speech - Berlin Chen   60

PCA Applied in Inherently Robust Features (cont.)

• Application 2 : PCA-derived temporal filter

From Dr. Jei-wei Hung

Mismatched 
condition

Matched 
condition

Filter length
L=10
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PCA Applied in Inherently Robust Features (cont.) 

• Application 3 : PCA-derived filter bank
Power spectrum
obtained by DFT 

x1 x2 x3

h1

h3

h2 hk is one of the 
eigenvectors 
of the covariance
for xk

From Dr. Jei-wei Hung
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PCA Applied in Inherently Robust Features (cont.)

• Application 3 : PCA-derived filter bank

From Dr. Jei-wei Hung
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Linear Discriminative Analysis

• Linear Discriminative Analysis (LDA)
– Widely applied for the pattern classification 
– In order to derive the most “discriminative” feature
– Criterion : assume wj, j and j are the weight, mean and 

covariance of class j, j=1……N. Two matrices are defined as:

Find W=[w1 w2 ……wk]
such that

– The columns wj of W are the 
eigenvectors of Sw

-1SB
having the largest eigenvalues

  











N
j jjw

N
j

T
jjjb

w

w

1

1

 : covariance class-Within

 : covariance class-Between

ΣS

μμμμS

WSW

WSW
W

W
w

T

b
T

maxargˆ 
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Linear Discriminative Analysis (cont.)

The frequency responses of the 15 LDA-derived temporal filters

From Dr. Jei-wei Hung
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Minimum Classification Error

• Minimum Classification Error (MCE):
– General Objective : find an optimal feature presentation or an 

optimal recognition model to minimize the expected error of 
classification

– The recognizer is often operated under the following decision rule :
C(X)=Ci if gi(X,)=maxj gj(X,)
={(i)}i=1……M (M models, classes), X : observations,
gi(X,): class conditioned likelihood function, for example,

gi(X,)=P(X|(i))
– Traditional Training Criterion : 

find (i) such that P(X|(i)) is maximum (Maximum Likelihood) if X 
Ci

• This criterion does not always lead to minimum classification error, 
since it doesn't consider the mutual relationship between 
different classes

• For example, it’s possible that P(X|(i)) is maximum but X Ci



  kCXXLRP    kCXXLRP 

 kLR

k

kCX kCX 
 XLR
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Minimum Classification Error (cont.)

Type I 
error

Type II 
error

Threshold

Example showing histograms of the likelihood ratio             
when the observation                   and                                                

Type I error: False Rejection
Type II error: False Alarm/False Acceptance
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Minimum Classification Error (cont.)

• Minimum Classification Error (MCE) (Cont.):
– One form of the class misclassification measure : 

– A continuous loss function is defined as follows : 

– Classifier performance measure :

        
 
  0)(error tion classificacorrect  a implies 0

1)(errorication misclassif a implies 0

      ,exp
1

1log,
1
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Minimum Classification Error (cont.)

• Using MCE in model training : 
– Find  such that

the above objective function in general cannot be minimized 
directly but the local minimum can be achieved using gradient 
decent algorithm

• Using MCE in robust feature representation

    


,minargminargˆ XLEL X

       : ,1 



 ofparameterarbitraryanw
w

Lww tt 

     

yaccordingl changed also is model  thechanged, is onpresentati feature  while:
 feature original  theof ma transfor :

,minargˆ

Note
Xf

XfLEf f
Xf




