Informed Search and Exploration

Berlin Chen 2003

1

Reference:

1. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, Chapter 4

2. S. Russell's teaching materials

Introduction

- Informed Search
 - Also called heuristic search
 - Use problem-specific knowledge
 - Search strategy: a node is selected for exploration based on an evaluation function, f(n)
 - Estimate of desirability

- Evaluation function generally consists of two parts
 - The path cost from the initial state to a node *n*, g(n) (optional)
 - The estimated cost of the cheapest path from a node *n* to a goal node, the heuristic function, h(n)
 - If the node *n* is a goal state $\rightarrow h(n) = 0$
 - Can't be computed from the problem definition (need experience)

Heuristics

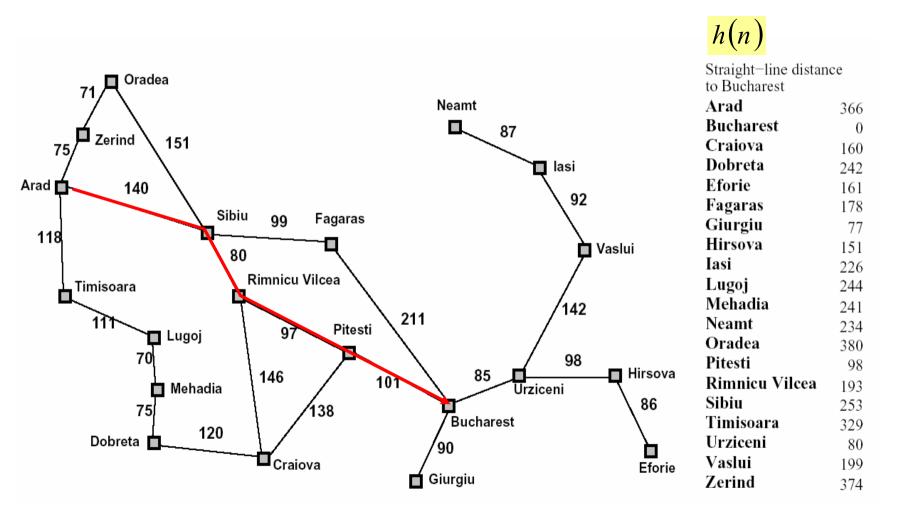
- Used to describe rules of thumb or advise that are generally effective, but not guaranteed to work in every case
- In the context of search, a heuristic is a function that takes a state as an argument and returns a number that is an estimate of the merit of the state with respect to the goal
- Not all heuristic functions are beneficial
 - Should consider the time spent on evaluating the heuristic function
 - Useful heuristics should be computationally inexpensive

Best-First Search

- Choose the most desirable (seemly-best) node for expansion based on evaluation function
 - Lowest cost/highest probability evaluation
- Implementation
 - Fringe is a priority queue in decreasing order of desirability
- Several kinds of best-first search introduced
 - Greedy best-first search
 - A* search
 - Iterative-Deepening A* search
 - Recursive best-first search
 - Simplified memory-bounded A* search

memory-bounded heuristic search

Map of Romania

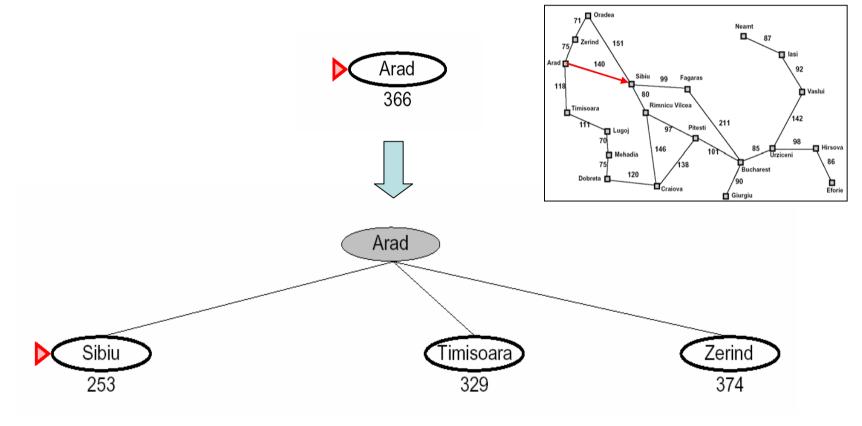


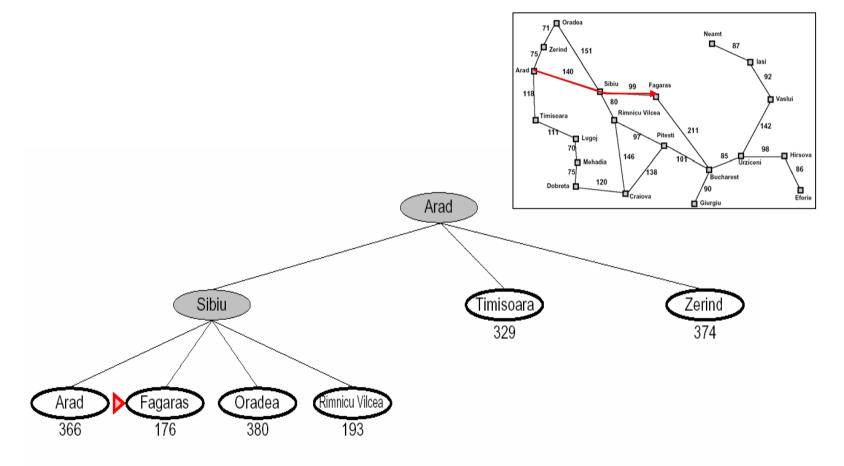
• Expand the node that appears to be closet to the goal, based on the heuristic function only

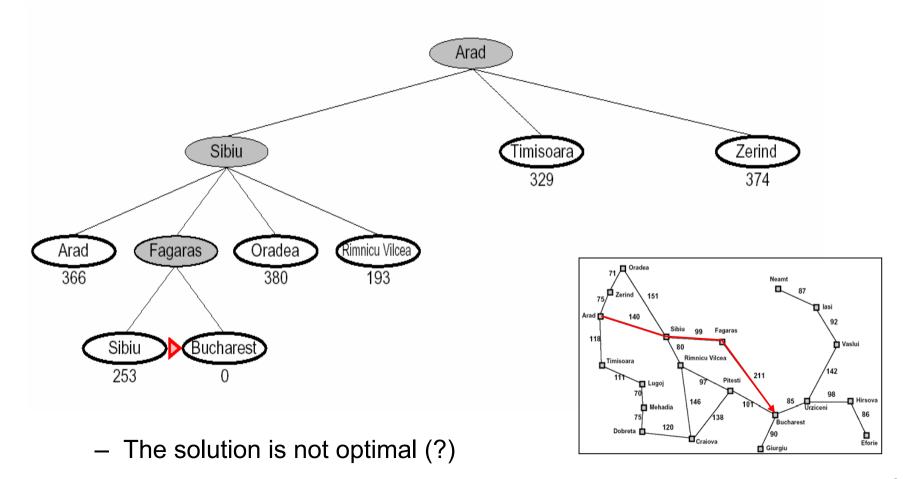
f(n) = h(n) = estimate of cost from node *n* to the closest goal

- E.g., the straight-line distance heuristics h_{SLD} to Bucharest for the route-finding problem
 - $h_{SLD}(In(Arad)) = 366$

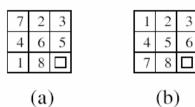
 "greedy" – at each search step the algorithm always tries to get close to the goal as it can



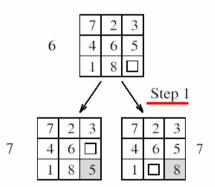


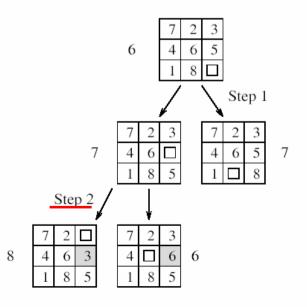


• Example 2: the 8-puzzle problem



2+0+0+0+1+1+2+0=6 (Manhattan distance)

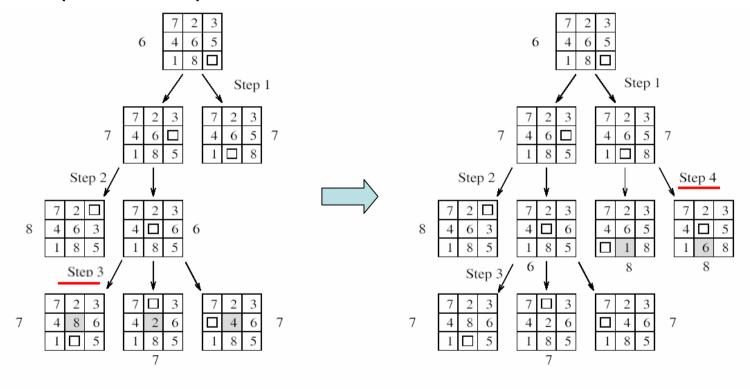




Blank Tile

The last tile moved

• Example 2: the 8-puzzle

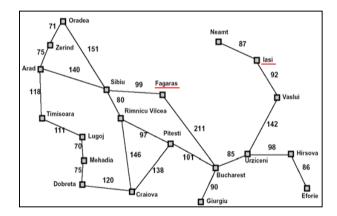


(c)

Figure 11.6 Applying best-first search to the 8-puzzle: (a) initial configuration; (b) final configuration; and (c) states resulting from the first four steps of best-first search. Each state is labeled with its *h*-value (that is, the Manhattan distance from the state to the final state).

Properties of Greedy Best-First Search

- Prefer to follow a single path all the way to the goal, and will back up when dead end is hit (like DFS)
 - Also have the possibility to go down infinitely
- Is neither optimal nor complete
 - Not complete: could get suck in loops
 - E.g., finding path from Iasi to Fagars
- Time and space complexity
 - Worse case: O(b^m)
 - But a good heuristic function could give dramatic improvement



- Pronounced as "A-star search"
- Expand a node by evaluating the path cost to reach itself, g(n), and the estimated path cost from it to the goal, h(n)
 - Evaluation function

$$f(n) = g(n) + h(n)$$

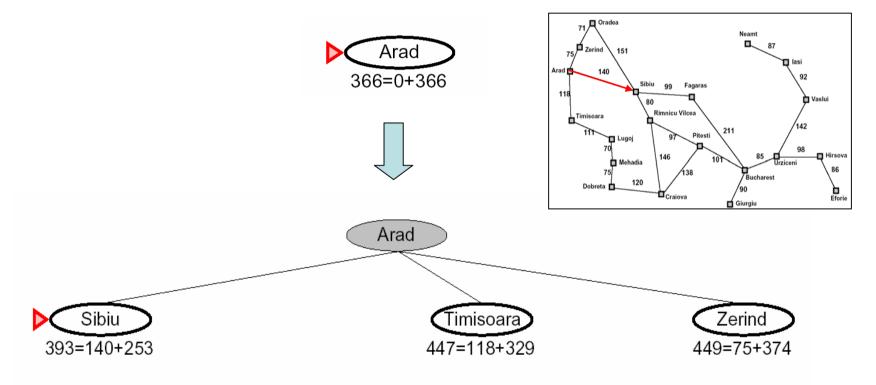
g(n) = path cost so far to reach nh(n) = estimated path cost to goal from nf(n) = estimated total path cost through n to goal

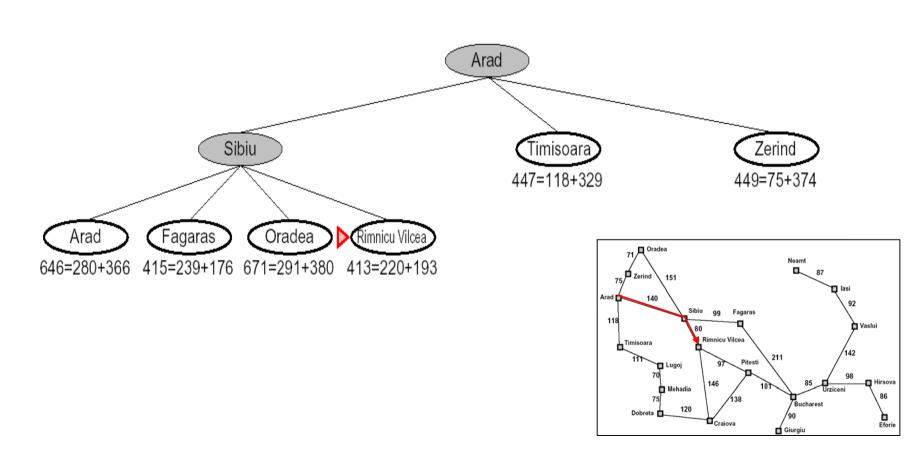
- Uniform-cost search + greedy best-first search ?
- Avoid expanding nodes that are already expansive

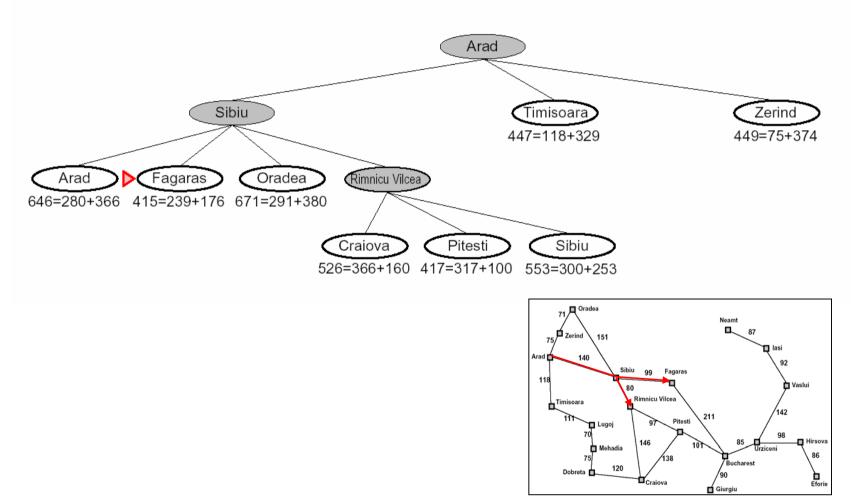
- A* is optimal if the heuristic function h(n) never overestimates
 - Or say "if the heuristic function is admissible"
 - E.g. the straight-line-distance heuristics are admissible

 $h(n) \le h^*(n)$, where $h^*(n)$ is the true path cost from *n* to goal

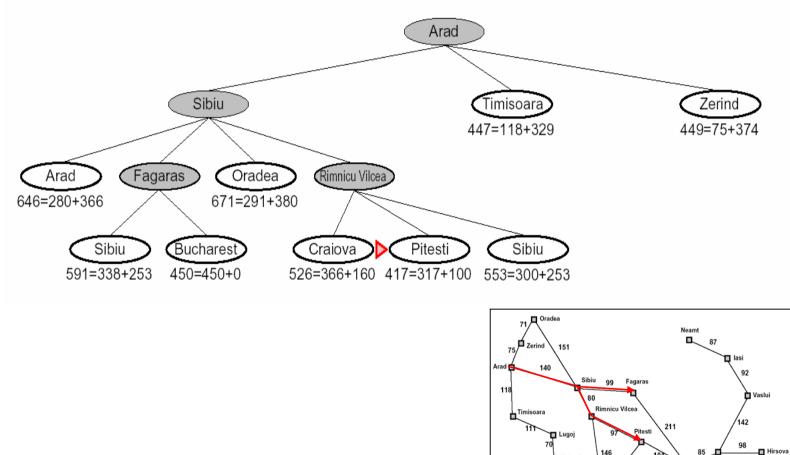
Finding the shortest-path goal







• Example 1: the route-finding problem



🗖 Mehadia

Dobreta

120

Craiova

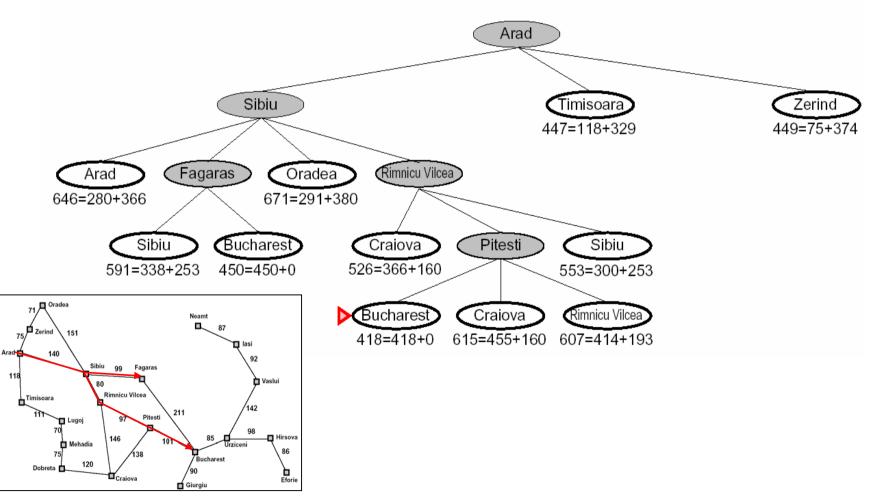
86

þ

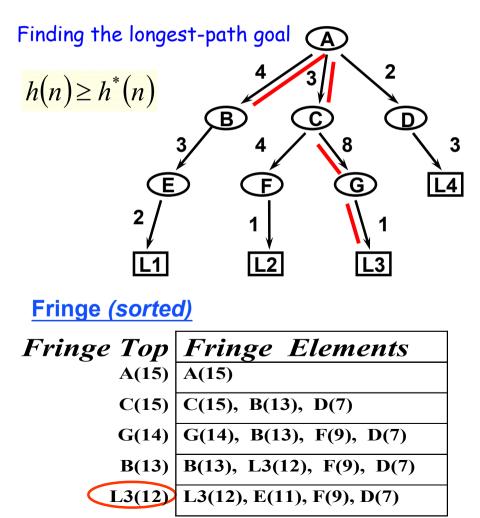
Eforie

Bucharest

🖬 Giurgiu



• Example 2: the state-space just represented as a tree



Evaluation function of node n: f(n) = g(n) + h(n)

Node	<u>g(n)</u>	<u>h(n)</u>	<u>f(n)</u>
Α	0	15	15
B	4	9	13
С	3	12	15
D	2	5	7
E	7	4	11
F	7	2	9
G	11	3	14
L1	9	0	9
L2	8	0	8
L3	12	0	12
L4	5	0	5

Consistency of A* Heuristics

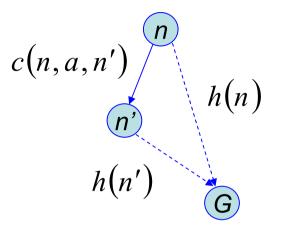
• A heuristic *h* is consistent if

 $h(n) \le c(n, a, n') + h(n')$

- A stricter requirement on h
- If *h* is consistent

$$f(n') = g(n') + h(n')$$

= $g(n) + c(n, a, n') + h(n')$
 $\ge g(n) + h(n)$
 $\ge f(n)$



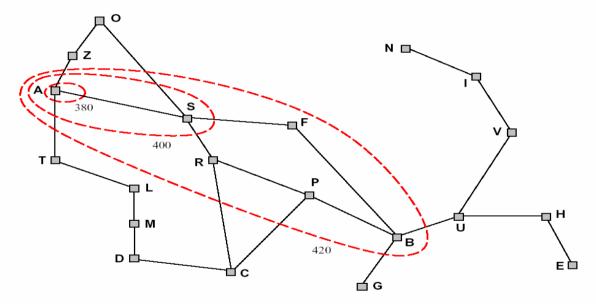
Finding the shortest-path goal

, where $h(\cdot)$ is the straight-line distance to the nearest goal

- I.e., f(n) is nondecreasing along any path during search

Contours of the Evaluation Functions

• Fringe (leaf) nodes expanded in concentric contours



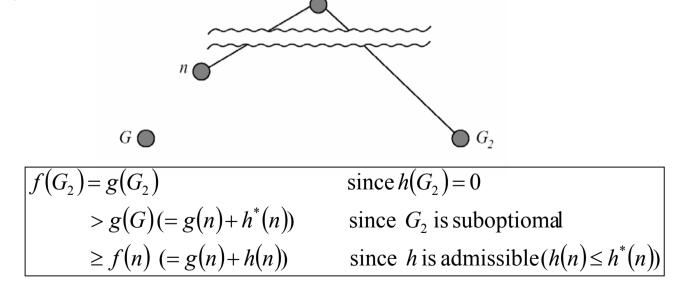
- Uniformed search ($\forall n, h(n) = 0$)
 - Bands circulate around the initial state
- A* search
 - Bands stretch toward the goal and is narrowly focused around the optimal path if more accurate heuristics were used

Contours of the Evaluation Functions

- If *G* is the optimal goal
 - A^{*} search expands all nodes with f(n) < f(G)
 - A^{*} search expands some nodes with f(n)=f(G)
 - A* expands no nodes with f(n) > f(G)

Optimality of A* Search

- A* search is optimal
- Proof
 - Suppose some suboptimal goal G_2 has been generated and is in the fringe (queue)
 - Let *n* be an unexpanded node on a shortest path to an optimal goal *G*



- A* will never select G_2 for expansion since $f(G_2) > f(n)$

Optimality of A* Search

- Another proof
 - Suppose when algorithm terminates, G_2 is a complete path (a solution) on the top of the fringe and a node *n* that stands for a partial path presents somewhere on the fringe. There exists a complete path *G* passing through *n*, which is not equal to G_2 and is optimal (with the lowest path cost)

 G is a complete which passes through node n, f(G)>=f(n)
 Because G₂ is on the top of the fringe , f(G₂)<=f(n)<=f(G)
 Therefore, it makes contrariety !!

- A* search optimally efficient
 - For any given heuristic function, no other optimal algorithms is guaranteed to expand fewer nodes than A*

Completeness of A* Search

- A* search is complete
 - If every node has a finite branching factor
 - If there are finitely many nodes with $f(n) \le f(G)$
 - Every infinite path has an infinite path cost

Proof:

Because A* adds bands (expands nodes) in order of increasing f, it must eventually reach a band where f is equal to the path to a goal state.

- To Summarize again *If G* is the optimal goal
 - A^{*} expands all nodes with f(n) < f(G)
 - A^{*} expands smoe nodes with f(n) = f(G)A^{*} expands no nodes with f(n) > f(G)

Complexity of A* Search

- Time complexity: $O(b^d)$
- Space complexity: $O(b^d)$
 - Keep all nodes in memory
 - Not practical for many large-scale problems
- Theorem
 - The search space of A* grows exponentially unless the error in the heuristic function grows no faster than the logarithm of the actual path cost

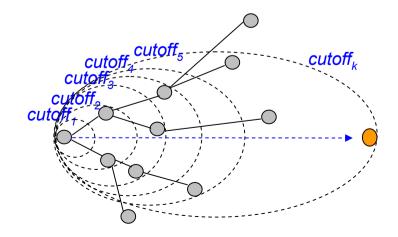
$$|h(n) - h^*(n)| \le O(\log h^*(n))$$

Memory-bounded Heuristic Search

- Iterative-Deepening A* search
- Recursive best-first search
- Simplified memory-bounded A* search

Iterative Deepening A* Search (IDA*)

- The idea of iterative deepening was adapted to the heuristic search context to reduce memory requirements
- At each iteration, DFS is performed by using the *f*-cost (*g* + *h*) as the cutoff rather than the depth
 - E.g., the smallest f-cost of any node that exceeded the cutoff on the previous iteration



Iterative Deepening A* Search

```
function IDA*(problem) returns a solution sequence

inputs: problem, a problem

static: f-limit, the current f- COST limit

root, a node

root \leftarrow MAKE-NODE(INITIAL-STATE[problem])

f-limit \leftarrow f- COST(root)

loop do

solution, f-limit \leftarrow DFS-CONTOUR(root, f-limit)

if solution is non-null then return solution

if f-limit = \infty then return failure; end
```

function DFS-CONTOUR(node, f-limit) returns a solution sequence and a new f- COST limit
inputs: node, a node
 f-limit, the current f- COST limit
static: next-f, the f- COST limit for the next contour, initially ∞

if f- COST[node] > f-limit then return null, f- COST[node]
if GOAL-TEST[problem](STATE[node]) then return node, f-limit
for each node s in SUCCESSORS(node) do
 solution, new-f ← DFS-CONTOUR(s, f-limit)
 if solution is non-null then return solution, f-limit
 next-f ← MIN(next-f, new-f); end
return null, next-f

Properties of IDA*

- IDA* is complete and optimal
- Space complexity: $O(bf(G)/\delta) \approx O(bd)$
 - δ : the smallest step cost
 - f(G): the optimal solution cost
- Time complexity: $O(\alpha b^d)$
 - α : the number of distinct f values small than the optimal goal
- Between iterations, IDA* retains only a single number the *f* -cost
- IDA* has difficulties in implementation when dealing with real-valued cost

Recursive Best-First Search (RBFS)

- Attempt to mimic best-first search but use only linear space
 - Can be implemented as a recursive algorithm
 - Keep track of the f-value of the best alternative path from any ancestor of the current node
 - It the current node exceeds the limit, the recursion unwinds back to the alternative path
 - As the recursion unwinds, the f-value of each node along the path is replaced with the best f-value of its children

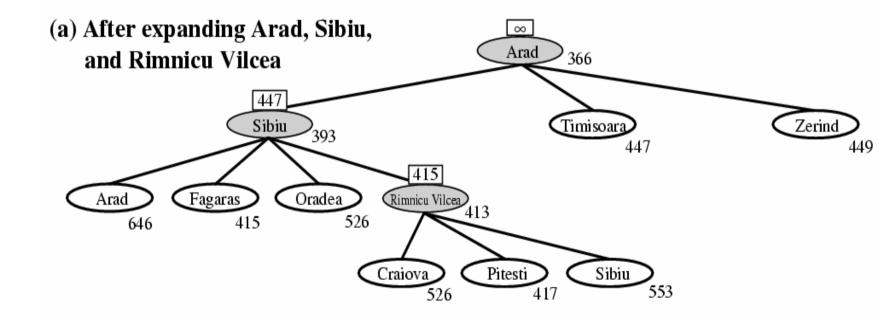
Recursive Best-First Search (RBFS)

Algorithm

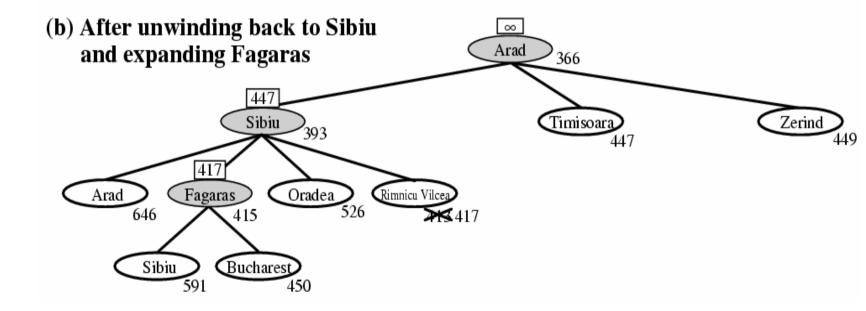
function RECURSIVE-BEST-FIRST-SEARCH(*problem*) returns a solution, or failure RBFS(*problem*, MAKE-NODE(INITIAL-STATE[*problem*]), ∞)

function RBFS(*problem*, *node*, *f_limit*) returns a solution, or failure and a new *f*-cost limit if GOAL-TEST[*problem*](*state*) then return *node successors* $\leftarrow EXPAND(node, problem)$ if *successors* is empty then return *failure*, ∞ for each *s* in *successors* do $f[s] \leftarrow max(g(s) + h(s), f[node])$ repeat *best* \leftarrow the lowest *f*-value node in *successors* if *f*[*best*] > *f_limit* then return *failure*, *f*[*best*] *alternative* \leftarrow the second-lowest *f*-value among *successors result*, *f*[*best*] \leftarrow RBFS(*problem*, *best*, min(*f_limit*, *alternative*)) if *result* \neq *failure* then return *result*

Recursive Best-First Search

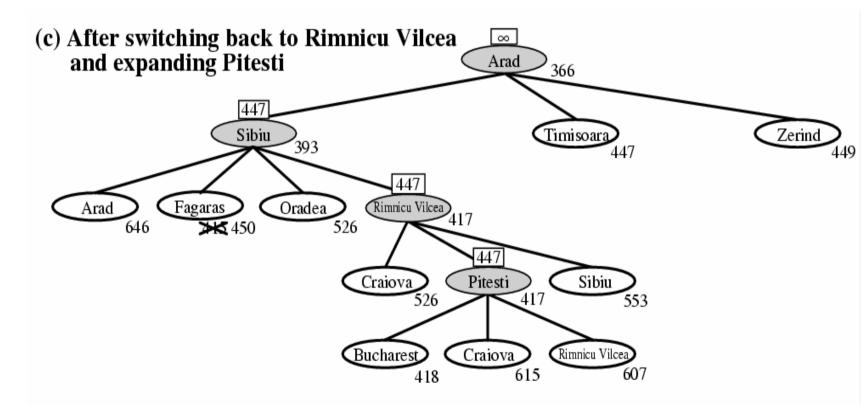


Recursive Best-First Search



Recursive Best-First Search

• Example: the route-finding problem



Re-expand the forgotten nodes (subtree of Rimnicu Vilcea)

Properties of RBFS

- RBFS is complete and optimal
- Space complexity: *O*(*bd*)
- Time complexity : worse case $O(b^d)$
 - Depend on the heuristics and frequency of "mind change"
 - The same states may be explored many times

Simplified Memory-Bounded A* Search (SMA*)

- Make use of all available memory *M* to carry out A*
- Expanding the best leaf like A* until memory is full
- When full, drop the worst leaf node (with highest *f*-value)
 - Like RBFS, backup the value of the forgotten node to its parent if it is the best among the subtree of its parent
 - When all children nodes were deleted/dropped, put the parent node to the fringe again for further expansion

Simplified Memory-Bounded A* Search

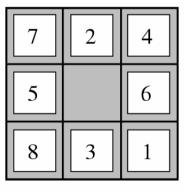
```
function SMA*(problem) returns a solution sequence
  inputs: problem, a problem
  static: Queue, a queue of nodes ordered by f-cost
  Queue \leftarrow MAKE-QUEUE({MAKE-NODE(INITIAL-STATE[problem])})
  loop do
      if Queue is empty then return failure
      n \leftarrow deepest least-f-cost node in Queue
      if GOAL-TEST(n) then return success
      s \leftarrow \text{NEXT-SUCCESSOR}(n)
      if s is not a goal and is at maximum depth then
          f(s) \leftarrow \infty
      else
          f(s) \leftarrow MAX(f(n), g(s)+h(s))
      if all of n's successors have been generated then
          update n's f-cost and those of its ancestors if necessary
      if SUCCESSORS(n) all in memory then remove n from Queue
      if memory is full then
          delete shallowest, highest-f-cost node in Queue
          remove it from its parent's successor list
          insert its parent on Queue if necessary
      insert s on Queue
  end
```

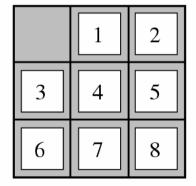
Properties of SMA*

- Is complete if $M \ge d$
- Is optimal if $M \ge d^*$
- Space complexity: O(M)
- Time complexity : worse case $O(b^d)$

Admissible Heuristics

- Take the 8-puzzle problem for example
 - Two heuristic functions considered here
 - $h_1(n)$: number of misplaced tiles
 - h₂(n): the sum of the distances of the tiles from their goal positions (tiles can move vertically, horizontally), also called Manhattan distance or city block distance





Goal State

- *h*₁(*n*): 8
- $h_2(n)$: 3+1+2+2+2+3+3+2=18

Admissible Heuristics

• Take the 8-puzzle problem for example

branching factor for 8-puzzle: 2~4

Comparison of IDS and A*

solution		Search Cost			Effective Branching Factor		
length	d	IDS	$A^*(h_1)$	$A^*(h_2)$	IDS	$A^*(h_1)$	$A^*(h_2)$
	2 4 6	10 112 680	6 13 20	6 12 18	2.45 2.87 2.73	1.79 1.48 1.34	1.79 1.45 1.30
	8 10 12 14 16	6384 47127 364404 3473941 -	39 93 227 539 1301	25 39 73 113 211	2.80 2.79 2.78 2.83 -	1.33 1.38 1.42 1.44 1.45	1.24 1.22 1.24 1.23 1.25
	18 20 22 24	- - -	3056 7276 18094 39135	363 676 1219 1641		1.46 1.47 1.48 1.48	1.26 1.27 1.28 1.26

Figure 4.8 Comparison of the search costs and effective branching factors for the ITERATIVE-DEEPENING-SEARCH and A^{*} algorithms with h_1 , h_2 . Data are averaged over 100 instances of the 8-puzzle, for various solution lengths.

100 random problems for each number

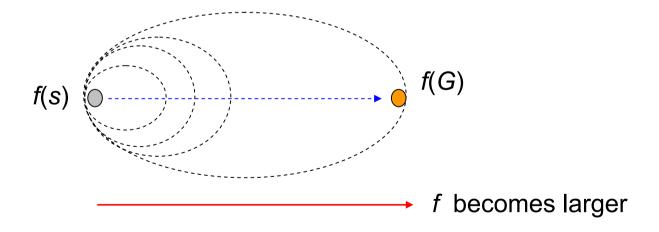
$$N+1=1+b^{*}+(b^{*})^{2}+(b^{*})^{3}+...+(b^{*})^{d}$$

Nodes generated by A*

b*: effective branching factor

Dominance

- For two heuristic functions h₁ and h₂ (both are admissible), if h₂(n) ≥ h₁(n) for all nodes n
 - Then h_2 dominates h_1 and is better for search
 - A* using h_2 will not expand more node than A* using h_1



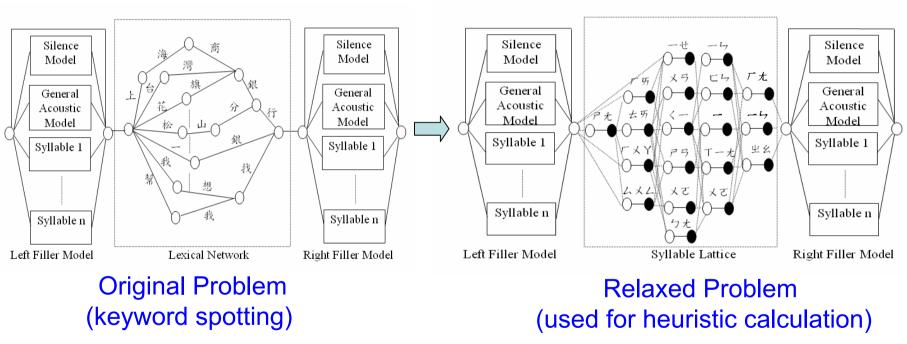
Inventing Admissible Heuristics

- Relaxed Problems
 - The search heuristics can be achieved from the relaxed versions the original problem
 - Key point: the optimal solution cost to a relaxed problem is an admissible heuristic for the original problem (not greater than the optimal solution cost of the original problem)

- Example 1: the 8-puzzle problem
 - If the rules are relaxed so that a tile can move anywhere then h₁(n) gives the shortest solution
 - If the rules are relaxed so that a tile can move any adjacent square then $h_2(n)$ gives the shortest solution

Inventing Admissible Heuristics

Example 2: the speech recognition problem



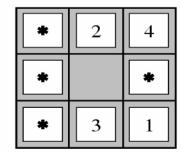
Note: if the relaxed problem is hard to solve, then the values of the corresponding heuristic will be expansive to obtain

Inventing Admissible Heuristics

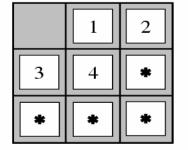
- Composite Heuristics
 - Given a collection of admissible heuristics $h_1, h_2, ..., h_m$, none of them dominates any of other

$$h(n) = \max \{h_1(n), h_2(n), ..., h_m(n)\}$$

- Subproblem Heuristics
 - The cost of the optimal solution of the subproblem is a lower bound on the cost of the complete problem

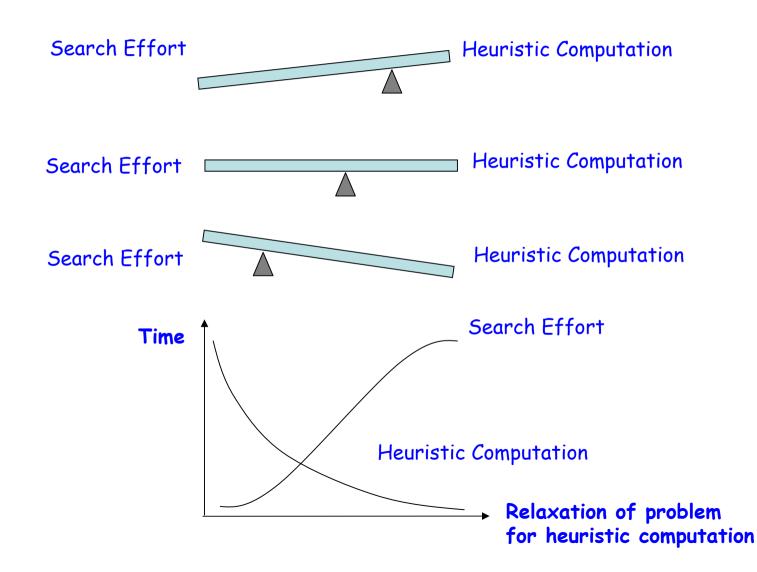


Start State



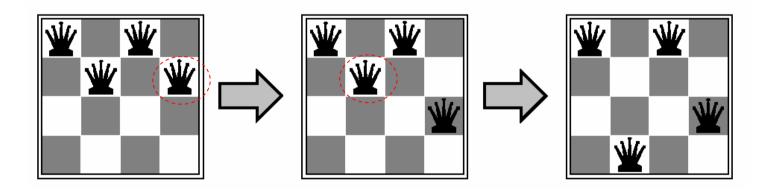
Goal State

Tradeoffs

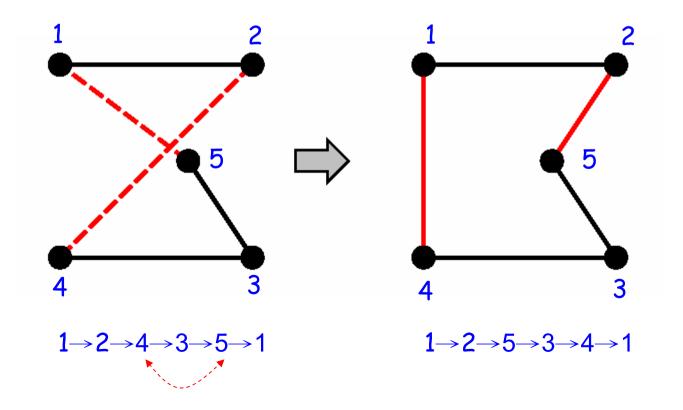


- In many optimization, path to solution is irrelevant
 - E.g., 8-queen, VLSI layout, TSP etc., for finding optimal configuration
 - The goal state itself is the solution
 - The state space is a complete configuration
- In such case, iterative improvement algorithms can be used
 - Start with a complete configuration (represented by a single "current" state)
 - Make modifications to improve the quality

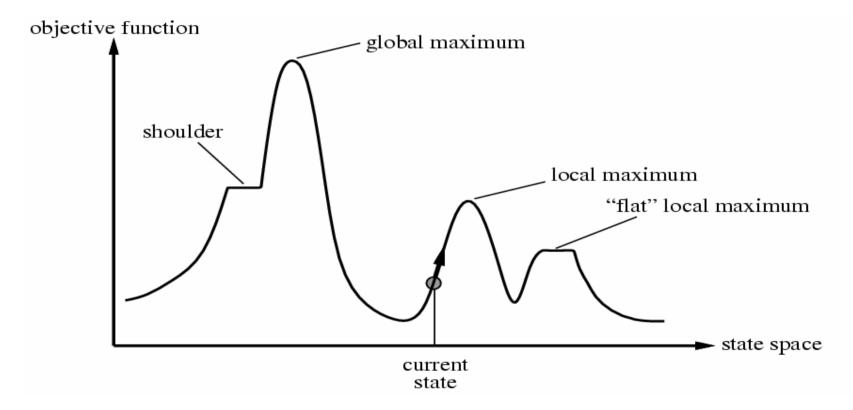
- Example: the *n*-queens problem
 - Put *n* queens on an *nxn* board with no queens on the same row, column, or diagonal
 - Move a queen to reduce number of conflicts



- Example: the traveling salesperson problem (TSP)
 - Find the shortest tour visiting all cities exactly one
 - Start with any complete tour, perform pairwise exchanges



- Local search algorithms belongs to iterative improvement algorithms
 - Use a current state and generally move only to the neighbors of that state
 - Properties
 - Use very little memory
 - Applicable to problems with large or infinite state space
- · Local search algorithms to be considered
 - Hill-climbing search
 - Simulated annealing
 - Local beam search
 - Genetic algorithms



• Completeness or optimality of the local search algorithms should be considered

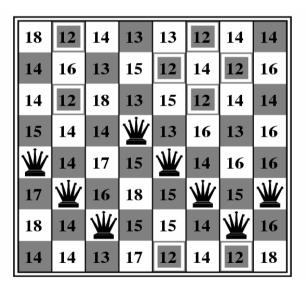
Hill-Climbing Search

- "Like climbing Everest in the thick fog with amnesia"
- Choose any successor with a higher value (of objective or heuristic functions) than current state
 - Choose Value[next] ≥ Value[current]

Also called greedy local search

Hill-Climbing Search

- Example: the 8-queens problem
 - The heuristic cost function is the number of pairs of queens that are attacking each other

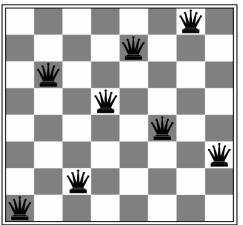


- h=3+4+2+3+2+2+1=17 (calculated from left to right)
- Best successors have h=12 (when one of queens in Column 2,5,6, and 7 is moved)

Hill-Climbing Search

- Problems:
 - Local maxima: search halts prematurely
 - Plateaux: search conducts a random walk
 - Ridges: search oscillates with slow progress
- Solution
 - Start from randomly generated initial states
 - Random-restart hill climbing

8-queens stuck in a local minimum



Neither complete nor optimal

Ridges cause oscillation

Simulated Annealing Search

- Combine hill climbing with a random walk to yield both efficiency and completeness
 - Pick a random move at each iteration instead of picking the best move
 - If the move improve the situation \rightarrow accept!

 $\Delta E = VALUE [next] - VALUE [current]$

- Otherwise($\Delta E < 0$), have a probability ($e^{\Delta E/T}$) to move to a worse state
 - The probability decreases exponentially as ΔE decreases
 - The probability decreases exponentially as T (temperature) goes down (as time goes by)

Simulated Annealing Search

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
  inputs: problem, a problem
           schedule, a mapping from time to "temperature"
  local variables: current, a node
                     next, a node
                     T, a "temperature" controlling the probability of downward steps
  current \leftarrow MAKE-NODE(INITIAL-STATE[problem])
  for t \leftarrow 1 to \infty do
       T \leftarrow schedule[t]
      if T = 0 then return current
      next \leftarrow a randomly selected successor of current
      \Delta E \leftarrow \text{VALUE}[next] - \text{VALUE}[current]
      if \Delta E > 0 then current \leftarrow next
      else current \leftarrow next only with probability e^{\Delta E/T}
```

Local Beam Search

- Keep track of *k* states rather than just one
 - Begin with *k* randomly generated states
 - All successors of the *k* states are generated at each iteration
 - If any one is a goal \rightarrow halt!
 - Otherwise, select *k* best successors from them and continue the iteration
 - Information is passed/exchanged among these k search threads
 - Compared to the random-restart search

Local Beam Search

- Problem
 - The k states may quickly become concentrated in a small region of the state space
 - Like an expensive version of hill climbing
- Solution
 - A variant version called stochastic beam search
 - Choose a given successor at random with a probability in increasing function of its value

Genetic Algorithms (GAs)

- Developed and patterned after biological evolution
- Also regarded as a variant of stochastic beam search
 - Successors are generated from multiple current states
 - A population of potential solutions are maintained
 - States are often described by bit strings (like chromosomes) whose interpretation depends on the applications
 - Binary-coded or alphabet
 - $(11, 6, 9) \rightarrow (101101101001)$
 - Encoding: translate problem-specific knowledge to GA framework
 - Search begins with a population of randomly generated initial states

Genetic Algorithms (GAs)

- The successor states are generated by combining two parent states, rather then by modifying a single state
 - Current population/states are evaluated with a fitness function and selected probabilistically as seeds for producing the next generation
 - Fitness function: the criteria for ranking
 - Recombine parts of the best (most fit) currently known states
 - Generate-and-test beam search

- Three phases of GAs
 - Selection \rightarrow Crossover \rightarrow Mutation

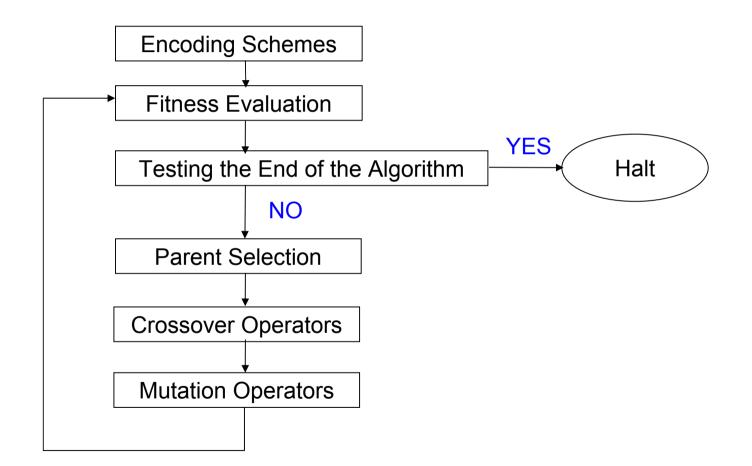
Genetic Algorithms (GAs)

- Selection
 - Determine which parent strings (chromosomes) participate in producing offspring for the next generation
 - The selection probability is proportional to the fitness values

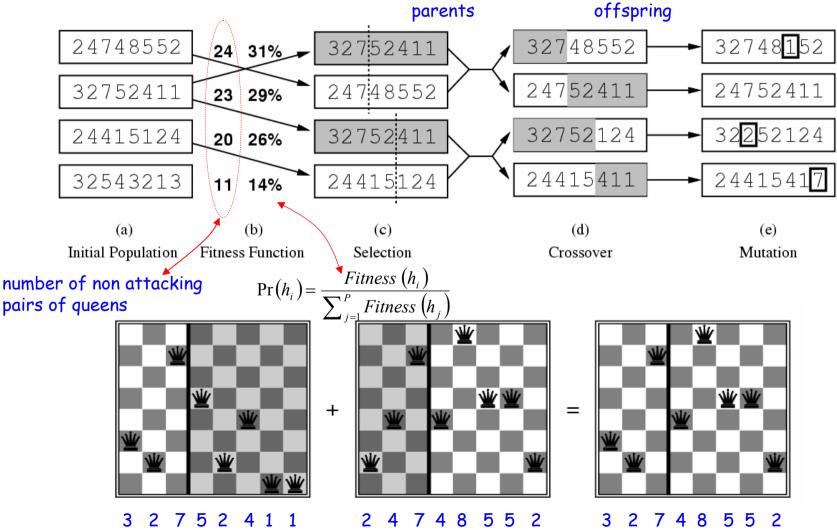
$$\Pr(h_i) = \frac{Fitness(h_i)}{\sum_{j=1}^{P} Fitness(h_j)}$$

- Some strings (chromosomes) would be selected more than once

- Two most common (genetic) operators which try to mimic biological evaluation are performed at each iteration
 - Crossover
 - Produce new offspring by crossing over the two mated parent strings at randomly (a) chosen crossover point(s) (bit position(s))
 - · Selected bits copied from each parent
 - Mutation
 - Often performed after crossover
 - Each (bit) location of the randomly selected offspring is subject to random mutation with a small independent probability
- Applicable problems
 - Function approximation & optimization, circuit layout etc.

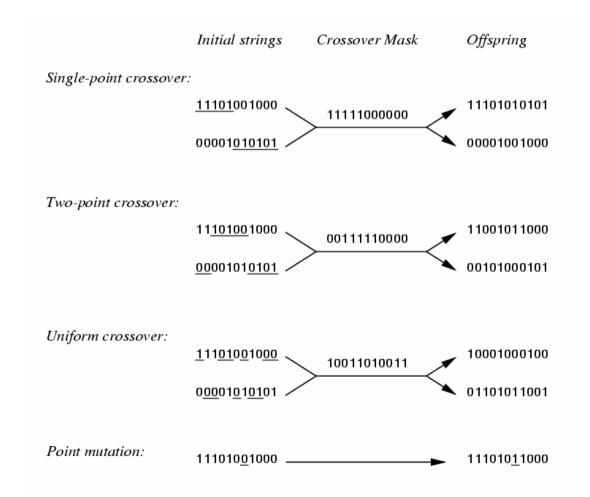


• Example 1: the 8-queens problem

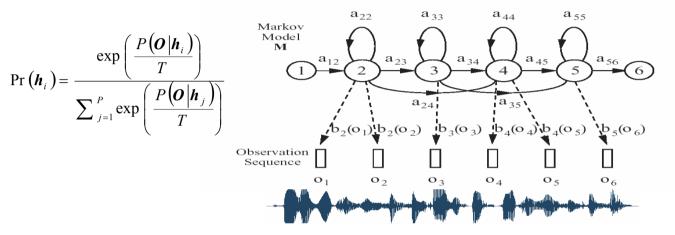


65

• Example 2: common crossover operators



• Example 3: HMM adaptation in Speech Recognition



sequences of HMM mean vectors

$$\begin{aligned} \mathbf{h}_{1} &= (k_{1}, k_{2}, k_{3}, \dots, k_{D}) \\ \mathbf{h}_{2} &= (k_{1}, m_{2}, m_{3}, \dots, m_{D}) \\ \mathbf{h}_{2} &= (m_{1}, m_{2}, m_{3}, \dots, m_{D}) \\ \mathbf{v}_{3} &= (m_{1} \cdot i_{f} + k_{1} \cdot (1 - i_{f}), m_{2} \cdot i_{f} + k_{2} (1 - i_{f}), k_{3} \cdot i_{f} + m_{3} (1 - i_{f}), \dots, k_{3} \cdot i_{f} + m_{D} (1 - i_{f})) \\ \mathbf{v}_{3} &= (m_{1}, m_{2}, m_{3}, \dots, m_{D}) \\ \mathbf{v}_{3} &= (m_{1} \cdot i_{f} + k_{1} \cdot (1 - i_{f}), m_{2} \cdot i_{f} + k_{2} (1 - i_{f}), k_{3} \cdot i_{f} + m_{3} (1 - i_{f}), \dots, k_{3} \cdot i_{f} + m_{D} (1 - i_{f})) \\ \mathbf{v}_{3} &= (m_{1}, m_{2}, m_{3}, \dots, m_{D}) \\ \mathbf{v}_{4} &= (m_{1}, m_{2}, m_{3}, \dots, m_{D}) \\ \mathbf{v}_{5} &= (m_{1} \cdot i_{f} + k_{1} \cdot (1 - i_{f}), m_{2} \cdot i_{f} + k_{2} (1 - i_{f}), k_{3} \cdot i_{f} + m_{3} (1 - i_{f}), \dots, k_{3} \cdot i_{f} + m_{D} (1 - i_{f})) \\ \mathbf{v}_{5} &= (m_{1} \cdot i_{f} + k_{1} \cdot (1 - i_{f}), m_{2} \cdot i_{f} + k_{2} (1 - i_{f}), k_{3} \cdot i_{f} + m_{3} (1 - i_{f}), \dots, k_{3} \cdot i_{f} + m_{D} (1 - i_{f})) \\ \mathbf{v}_{5} &= (m_{1} \cdot i_{f} + k_{1} \cdot (1 - i_{f}), m_{2} \cdot i_{f} + k_{2} (1 - i_{f}), k_{3} \cdot i_{f} + m_{3} (1 - i_{f}), \dots, k_{3} \cdot i_{f} + m_{D} (1 - i_{f})) \\ \mathbf{v}_{5} &= (m_{1} \cdot i_{f} + k_{1} \cdot (1 - i_{f}), m_{2} \cdot i_{f} + k_{2} (1 - i_{f}), k_{3} \cdot i_{f} + m_{3} (1 - i_{f}), \dots, k_{3} \cdot i_{f} + m_{D} (1 - i_{f})) \\ \mathbf{v}_{5} &= (m_{1} \cdot i_{f} + k_{2} \cdot (1 - i_{f}), m_{2} \cdot i_{f} + k_{2} \cdot (1 - i_{f}), m_{3} \cdot i_{f} + m_{3} \cdot (1 - i_{f}), \dots, k_{3} \cdot i_{f} + m_{D} (1 - i_{f})) \\ \mathbf{v}_{5} &= (m_{1} \cdot i_{f} + k_{2} \cdot (1 - i_{f}), m_{3} \cdot i_{f} + k_{3} \cdot (1 - i_{f}), m_{3} \cdot i_{f} + m_{3} \cdot (1 - i_{f}), \dots, k_{3} \cdot i_{f} + m_{D} (1 - i_{f})) \\ \mathbf{v}_{5} &= (m_{1} \cdot i_{f} + m_{2} \cdot (1 - i_{f}), m_{3} \cdot i_{f} + m_{3} \cdot (1 - i_{f}), m_{3} \cdot i_{f} + m_{3} \cdot (1 - i_{f}), \dots, k_{3} \cdot i_{f} + m_{D} \cdot (1 - i_{f}), \dots, k_{3} \cdot i_{f} + m_{D} \cdot (1 - i_{f}), \dots, k_{3} \cdot i_{f} + m_{D} \cdot (1 - i_{f}), \dots, k_{3} \cdot i_{f} + m_{D} \cdot (1 - i_{f}), \dots, k_{3} \cdot i_{f} + m_{D} \cdot (1 - i_{f}), \dots, k_{3} \cdot i_{f} + m_{D} \cdot (1 - i_{f}), \dots, k_{3} \cdot i_{f} + m_{D} \cdot (1 - i_{f}), \dots, k_{3} \cdot i_{f} + m_{D} \cdot (1 - i_{f}), \dots, k_{3} \cdot i_{f} + m_{D} \cdot (1 - i$$

```
function GENETIC-ALGORITHM( population, FITNESS-FN) returns an individual

inputs: population, a set of individuals

FITNESS-FN, a function that measures the fitness of an individual

repeat

new_population \leftarrow empty set

loop for i from 1 to SIZE( population) do

x \leftarrow RANDOM-SELECTION( population, FITNESS-FN)

y \leftarrow RANDOM-SELECTION( population, FITNESS-FN)

child \leftarrow REPRODUCE(x, y)

if (small random probability) then child \leftarrow MUTATE(child)

add child to new_population

population \leftarrow new_population

until some individual is fit enough, or enough time has elapsed

return the best individual in population, according to FITNESS-FN
```

function REPRODUCE(x, y) returns an individual inputs: x, y, parent individuals

```
n \leftarrow \text{LENGTH}(x)
c \leftarrow \text{random number from 1 to } n
return APPEND(SUBSTRING(x, 1, c), SUBSTRING(y, c + 1, n))
```

- Main issues
 - Encoding schemes
 - Representation of problem states
 - Size of population
 - Too small \rightarrow converging too quickly, and vice versa
 - Fitness function
 - The objective function for optimization/maximization
 - Ranking members in a population

Properties of GAs

- GAs conduct a randomized, parallel, hill-climbing search for states that optimize a predefined fitness function
- GAs are based an analogy to biological evolution
- It is not clear whether the appeal of GAs arises from their performance or from their aesthetically pleasing origins in the theory of evolution

Local Search in Continuous Spaces

- Gradient Search
 - A hill climbing method
 - Search in the space defined by the real numbers
 - Guaranteed to find local maximum
 - Not Guaranteed to find global maximum

maximization

$$\hat{x} = x + \alpha \nabla f(x) = x + \alpha \frac{df(x)}{dx}$$

minimization
 $\hat{x} = x - \alpha \nabla f(x) = x - \alpha \frac{df(x)}{dx}$