
1

First-Order Logic and Inference

Berlin Chen 2003

References:
1. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, Chapters 7,8 and 9
2. S. Russell’s teaching materials

2

Pros and Cons of Propositional Logic (PL)
• PL is declarative

– Pieces of syntax correspond to facts
– Knowledge and inference are separate and inference is entirely

domain-independent

• PL is compositional
– Meaning of a sentence is a function of the meaning of its parts
– E.g., meaning of B1,1 ∧ P1,2 is derived from meaning

of B1,1 and of P1,2

• PL can deal with partial information

• The meaning of PL is context-independent

• PL has very limited expressive power
– E.g., cannot say “pits cause breezes in adjacent squares” except

by writing one sentence for each square
B1,1 ⇔ (P1,2 ∨ P2,1),
B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1), …. The lack of concise representations

3

Natural Languages

• Natural Languages are
– Very expressive
– Mediums for communication rather than pure representation
– Content-dependent
– Not purely compositional
– Ambiguous

• Major elements of natural Languages
– Nouns and noun phrases: refer to objects

• E.g., people, houses, colors, …
– Verbs and verb phrases: refer to relations among objects

• E.g., is red, is round, (properties)…; is brother of, has color, …
– Some of the relations are functions which return one value for a

given input
• E.g., father of, best friend, beginning of, …

4

First-Order Logic (FOL)

• Whereas PL assumes world containing facts, FOL
assumes the world contains objects and relations
– FOL can express facts about some or all the objects in the

universe
– Such as “Squares neighboring the wumpus are smelly”

• Objects: things with individual identities

• Relations
– Relations
– Functions
– Properties: distinguish objects from others

Interrelations among objects

5

Logics in General

6

Examples

• One plus two equals three
– Objects: one, two, three, one plus two
– Relation: equals
– Function: plus

• Squares neighboring the wumpus are smelly
– Objects: wumpus, square
– Property: smelly
– Relation: neighboring

• Evil King John ruled England in 1200
– Objects: John, England, 1200
– Properties: evil, king
– Relation: ruled

7

Models for FOL

• A model contains objects and relations among them

• The domain of a model is the set of objects
– Objects are domain elements

• Example

5 objects: Richard, John, Richard’s left legs, John’s left legs, crown
2 binary relations: brother, on head
3 unary relations: person, king, crown
1 unary function: left leg

8

Syntax of FOL

• BNF (Backus-Naur Form) grammar for FOL

Sentence → AtomicSentence
| (Sentence Connective Sentence)
| Quantifier Variables, Sentence
| ￢Sentence

AtomicSentence → Predicate(Term, …) | Term = Term

Term → Function(Term, …)
| Constant
| Variable

Connective → ⇒ | ∧ | ∨ | ⇔
Quantifier → ∀ | ∃
Constant → A | X1 | John | …
Variable → a | x | s | …

Predicate → Before | HasColor | Raining | …
Function → Mother | LeftLeg | …

relations, properties

complex terms

9

Semantics of FOL

• The truth of any sentences is determined by a model and
an interpretation for the sentence’s symbols

• Interpretation specifies exactly which objects, relations
and functions are referred by the constant, predicate,
and function symbols
– Constant symbols → objects
– Predicate symbols → relations, properties
– Function symbols → functional relations

• An atomic sentence Predicate(Term1, …,Termn) is true iff
the objects referred to by Term1, …,Termn are in the
relation referred to by Predicate

10

Terms

• A term is a logic expression that refers to an object

• Simple term: e.g., constant/variable symbols

• Complex term: formed by a function symbol followed a
parenthesized list of terms as arguments to the function
symbol
– The complex term refers to an object that is the value of the

function (symbol) applied to the arguments

– E.g., LeftLeg(John)

function symbol argument/term

11

Atomic Sentences

• An atomic sentence is formed by
– A predicate symbol followed by a parenthesized list of terms

• Predicate(Term1,…, termn)
• E.g., Brother(Richard, John)

– Or just term1=term2

• Atomic sentences can have complex terms as argument
– E.g., Married(Father(Richard), Mother(John))

12

Complex Sentences

• An complex sentence is constructed using logical
connectives
– Negation

￢Brother(LeftLeg(Richard), John)
– Conjunction

Brother(Richard, John)∧Brother(John, Richard)
– Disjunction

King(Richard)∨King(John)
– Implication

￢King(Richard) ⇒ King(John)

The truth or falsity of a complex sentence can be determined from
the truth or falsity of its component sentences

13

Universal Quantification

• The following sentence remains truth for all values
of the variable

∀〈variable〉〈sentence〉
– Variables are lowercase
– E.g., “Everyone in Taiwan is industrious”

∀x In(x, Taiwan) ⇒ Industrious(x)

∀x P is true in a model m iff P with x being each
possible object in the model
- Equivalent to the conjunction of instantiations of P

In(Thmoas, Taiwan) ⇒ Industrious(Thmoas)
∧In(Rich, Taiwan) ⇒ Industrious(Rich)
∧In(Vicent, Taiwan) ⇒ Industrious(Vicent)
∧In(Eileen, Taiwan) ⇒ Industrious(Eileen)
∧ ……

14

Universal Quantification: A Common Mistake

• Typically, ⇒ (implication) is the main connective with ∀

• Common mistake: using ∧ as the main connective with ∀
∀x In(x, Taiwan) ∧ Industrious(x)

Means “ Everyone is in Taiwan and everyone is industrious”

15

Existential Quantification

• The following sentence remains true for all values
of the variable
∃〈variable〉〈sentence〉

– E.g., “Someone in Taiwan is industrious”
∃x In(x, Taiwan) ∧ Industrious(x)

∃x P is true in a model m iff P with x being each
possible object in the model
- Equivalent to the disjunction of instantiations of P

(In(Thmoas, Taiwan) ∧Industrious(Thmoas))
∨ (In(Rich, Taiwan) ∧ Industrious(Rich))
∨ (In(Vicent, Taiwan) ∧ Industrious(Vicent))
∨ (In(Eileen, Taiwan) ∧ Industrious(Eileen))
∨ ……

16

Existential Quantification : A Common Mistake

• Typically, ∧ is the main connective with ∃

• Common mistake: using ⇒ as the main connective with ∃
∃ x In(x, Taiwan) ⇒ Industrious(x)

Is true if there is anyone who is not in Taiwan

17

Properties of Quantifiers

• Nested Quantifiers
∀x ∀y is the same as ∀y ∀x
∃x ∃y is the same as ∃y ∃x
∃x ∀y is the same as ∀y ∃x
– Examples:

• “There is a person who loves everyone in the world”
∃x ∀y Loves(x, y)

• “Everyone in the world is loved by at least one person”
∀y ∃x Loves(x, y)

• Quantifier Duality
– Each of the following sentences can be expressed using the

other
∀x Likes(x, IceCream) ￢∃x ￢Likes(x, IceCream)
∃x Likes(x, IceCream) ￢∀x ￢Likes(x, IceCream)

18

Equality

• Make statements to the effect that two terms refer to the
same object
– Determine the truth of an equality sentence by seeing that the

referents of the two terms are the same objects

– E.g.,: state the facts about a given function
Father(John)=Henry

– E.g., insist that two terms are not the same objects
∃x∃y Brother(x,Richard)∧Brother(y,Richard)∧￢(x=y)
• Richard has at least two brothers

19

Review: De Morgan’s Rules

∀x ￢P ≣ ￢∃x P ￢P∧￢Q ≣￢(P ∨Q)

￢∀x P ≣ ∃x ￢ P ￢(P∧Q) ≣￢P ∨￢Q

∀x P ≣ ￢∃x ￢ P P∧Q ≣￢(￢P ∨￢Q)

∃x P ≣ ￢∀x ￢ P P∨Q ≣￢(￢P ∧￢Q)

20

Using First-Order Logic

• Assertions and Queries
– Assertions:

• Sentences are added to KB using TELL, such sentences
are called assertions

TELL(KB, King(John))
TELL(KB, ∀x King(x) ⇒ Person(x))

– Queries
• Questions are asked using ASK, which are also called queries

or goals
ASK(KB, King(John))
ASK(KB, Person(John)
ASK(KB, ∃x Person (x))

return true
return true

return {x/John}

A substitution
or binding list

21

Using First-Order Logic

• Example: The Kinship Domain
– One’s mother is one’s female parent

∀m,c Mother(m, c) ⇔ (Female(m) ∧ Parent(m, c))

– One’s husband is one’s male spouse
∀w,h Husband(h, w) ⇔ (Male(h) ∧ Spouse(h, w))

– A grandparent is a a parent of one’s parent
∀g,c Grandparent(g, c) ⇔ (∃p Parent(g, p)∧Parent(p, c))

– A sibling is another child of one’s parents
∀x,y Sibling (x, y) ⇔ x≠y ∧ (∃p Parent(p, x)∧Parent(p, y))

– A first cousin is a child of a parent’s sibling
∀x,y FirstCousin(x, y) ⇔ ∃p,ps Parent(p, x) ∧ Sibling(ps, p)

∧ Parent(ps, y)

22

Interacting with FOL KBs

• Suppose a wumpus-world agent is using an FOL KB
and perceives a stench and a breeze (but no glitter)
at t = 5

Tell(KB, percept([Stench, Breeze, None, None, None], 5))
Ask(KB, ∃a BestAction(a, 5))

– Does the KB entail any particular actions at t = 5?
Answer: Yes, {a/shoot}

• Given a sentence S and a substitution θ, SUBST(θ, S)
denotes the result of plugging θ into S ; e.g.,

S=Smarter(x, y)
θ={x/Vicent, y/Thmoas}
SUBST(θ, S) =Smarter(Vicent, Thmoas)

– ASK(KB, S) returns some/all θ (substitution, binding list) such
that KB |= SUBST(θ, S)

A substitution or binding list

stench breeze glitter bump scream

23

KB for the Wumpus World

• Perception
∀t, s, g ,m, c Percept([s, Breeze, g, m, c], t) ⇒ Breeze(t)
∀t, s, b ,m, c Percept([s, b, Glitter, m, c], t) ⇒ Glitter(t)

• Reflex
∀t Glitter (t) ⇒ BestAction(Grab, t)

• Environment
∀x , y, a, b Adjacent([x,y], [a,b]) ⇔

[a,b] ∈{[x+1, y], [x-1, y], [x, y+1] [x, y-1]}

• Properties of agent’s locations
∀s, t At(Agent, s, t) ∧ Breeze(t) ⇒ Breezy(s)

stench breeze glitter bump scream

24

KB for the Wumpus World
• Square are breezy near a pit

– Diagnostic rule – infer hidden causes from observable effects
• If a square is breezy , some adjacent square must contain a pit
∀s Breezy(s) ⇒ ∃ r Adjacent(r, s)∧Pit(r)

• If a square is not breezy , no adjacent square contains a pit
∀s ￢Breezy(s) ⇒ ￢ ∃r Adjacent(r, s) ∧Pit(r)

• Combined:
∀s Breezy(s) ⇔∃ r Adjacent(r, s)∧Pit(r)

– Causal rule – infer observable effects from hidden causes
• A pit causes all adjacent squares to be breezy

∀r Pit(r) ⇒[∀s Adjacent(r, s) ⇒ Breezy(s)]
• If all squares adjacent to a given square are pitless, the square will

not be breezy
∀s [∀r Adjacent(r, s) ⇒ ￢Pit(r)] ⇒ ￢ Breezy(s)

• Combined:
∀s Breezy(s) ⇔∃ r Adjacent(r, s)∧Pit(r)

model-based
reasoning

25

Inference Rules for Quantifiers

• Substitution SUBST(θ,α)
– Refer to applying the substitution θ to the sentence α
– θ is a set of variable/(ground)term pairs

Person(x) Person(John)

• Universal Instantiation (UI)
– Infer any sentence obtained by substituting a ground term for the

universally quantified variable
– A ground term is a term without variable

• could be a complex term

θ={x/John}

∀v α
SUBST({v/g}, α)

∀x King(x)∧Greedy(x) ⇒ Evil(x)
King(John)∧Greedy(John) ⇒ Evil(John)

SUBST(θ,α)

θ={x/John}

26

Inference Rules for Quantifiers

• Existential Instantiation (EI)
– Infer any sentence obtained by substituting a new constant

symbol that does not appear elsewhere in the KB for the
existentially quantified variable

– A new constant symbol called Skolem constant

∃ v α
SUBST({v/k}, α)

∃x Crown(x)∧OnHead(x, John)
Crown(C1)∧OnHead(C1, John)

θ={x/C1}

27

Universal/Existential Instantiation

• Universal instantiation can be applied several times to
add new sentences
– The new KB is logically equivalent to the old one

• Existential instantiation can be applied just once to
replace the existential sentence
– The new KB is not equivalent to the old one
– But is satisfiable iff the old KB was satisfiable

28

Reduction to Propositional Inference

• Suppose the KB contains:

• Instantiate the universal sentence in all possible ways:

• The new KB is propositionalized
– View the ground atomic sentences as propositional symbols

King(John), Greedy(John), Evil(John), King(Richard), etc.

∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
Greedy(John)
Brother(Richard, John)

King(John) ∧ Greedy(John) ⇒ Evil(John)
King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)
King(John)
Greedy(John)
Brother(Richard, John)

29

Reduction to Propositional Inference

• Claims
– A ground sentence is entailed by new KB iff entailed by original

KB
– Every FOL KB can be propositionalized so as to preserve

entailment

• Idea
– Propositionalize KB and query, apply resolution, return result

• Problem
– When the KB includes a function symbol, there are infinitely

many ground terms can be generated from substitutions
– E.g., Father(Father(Father(John)))

30

Reduction to Propositional Inference

• Theorem: Herbrand (1930)
– If a sentence is entailed by the original FOL KB, there is a proof

involving just a finite subset of the propositionalized KB

• Idea:
for n = 0 to ∞ do
create a proposional KB by instantiating with depth-n terms
see if the sentence α is entailed by this KB

• Problem
– Works if α is entailed, loops if α is not entailed

Father(John) Father(Father(John)) Father(Father(Father(John))) …….

depth 1 depth 2 depth 3 depth n

31

Reduction to Propositional Inference

• Theorem: Turing (1936), Church (1936)
– Entailment in FOL is semidecidable

• Algorithms exists that say yes to every entailed sentence
– The programs will halt

• But no algorithm exists that also say no to every nonentailed
sentence

– The programs will stuck in a infinite loop
– More deeply nested terms were generated

32

Problems with Propositionalization

• Propositionalization approach is rather inefficient
– It seems to generate lots of irrelevant sentences
– E.g., from

it seems obvious that Evil(John) , but propositionalization
produces lots of facts such as Greedy(Richard) that are irrelevant

• With p k-ary predicates and n constants,
there are p∙nk instantiations

∀x King(x) ∧ Greedy(x) ⇒ Evil(x)
King(John)
∀y Greedy(y)
Brother(Richard, John)

33

Generalized Modus Ponens (GMP)

• For atomic sentences pi, pi’ , and q , where there is a
substitution θ such that SUBST(θ, pi’) = SUBST(θ, pi)
for all i

– GMP used with KB of definite clauses (exactly one positive literal)
– All variables assumed universally quantified

()
()

,SUBST
 ,, , , 21

''
2

'
1

q
qpppppp nn

θ
⇒∧∧∧ KK

() ()
() ()

() is

 is is

 is is

2
'
2

1
'
1

xEvilq

xGreedypyGreedyp

xKingpJohnKingp

{ }JohnyJohnx /,/ is θ
() () is ,SUBST JohnEvilqθ

n atomic sentences pi’
1 implication

: a set of variable/(ground)term pairs

atomic sentences

the premises of an implication

34

Unification
• A process to find a substitution θ which can be applied

to two sentences p and q to make them look the same

UNIFY(p, q) = θ where SUBST(θ, p) = SUBST(θ, q)

– The UNIFY algorithm returns a unifier (θ) for the two sentences

• Example
– Query: KB:

Knows(John, x)
Knows(John, Jane)
Knows(y, Bill)
Knows(y, Mother(y))
Knows(x, Elizabeth)

UNIFY(Knows(John, x), Knows(John, Jane)) ={x/Jane}
UNIFY(Knows(John, x), Knows(y, Bill)) ={x/Bill, y/John}
UNIFY(Knows(John, x), Knows(y, Mother(y)))={y/John, x/Mother(John)}
UNIFY(Knows(John, x), Knows(x, Elizabeth)) = fail

p q θ

35

Standardizing Apart

• Eliminate overlap of variables to avoid clashes by
Renaming variables

UNIFY(Knows(John, x), Knows(x, Elizabeth)) = fail

UNIFY(Knows(John, x), Knows(z17, Elizabeth)) ={x/Elizabeth, z17/John}

36

Most General Unifier (MGU)

• Consider the following two unifications

– We say the first unifier is more general than the second
• It places fewer restrictions on the values of variables

• For every unifiable pairs of expressions, there is a single
most generalized unifier (MGU)
– E.g., the former unifier, {y/John, x /z}, shown above

UNIFY(Knows(John, x), Knows(y, z)) ={y/John, x /z}

UNIFY(Knows(John, x), Knows(y, z)) ={y/John, x /John , z /John}

Knows(John, z)

Knows(John, John)

37

Unification Algorithm

As matching a variable against a
complex term, check whether
the variable itself occurs inside the
term.
If it does, the match fails.

38

Efficient Indexing and Retrieval

• Predicate Indexing

– Using a hash table
– Maintain indices on keys composed of a predicate plus (one to

several) arguments

Query: Knows(John, x)

KB: Knows(x, y)
Brother(John, Richard)
Employs(x, y)
…..

Employs(x, Richard)

39

Forward Chaining

• Operations
– Start with the atomic sentences (known facts) in the KB and

apply Generalized Modus Ponens in the forward direction
(trigger rules whose premises are satisfied)

– Adding new atomic sentences (conclusions of implications)
• Not just a renaming of a known fact

– Repeat until the query is answered or no further inferences can
be made

• To apply FC, the KB should be converted into a set of
definite clauses

40

Definite Clauses

• Are disjunctions of literals, and of which exactly one is
positive

• More specifically, a definite clause either
– Is an atomic clause
– Or is an implication whose antecedent (premise/body) is a

conjunction of positive literals and whose conclusion (head) is a
single positive literal

– Variables are assumed to be universally quantified

• Not all KB can be converted into a set of definite clauses
– Because of the single-positive-literal restriction

King(John)
Greedy(y)
King(x) ∧Greedy(x) ⇒ Evil(x)

41

Example KB

• The law is that it is a crime for an American to sell
weapon to hostile nations. The country Nono, an enemy
of America, has some missiles, and all of its missiles
were sold by Colonel West, who is American.

• Prove that West is a criminal

Criminal(West) true or false ?

42

Example KB

• It is a crime for an American to sell weapon to hostile
nations

• The country Nono has some missiles

• All its (Nono’s) missiles are sold to it by West

• Missiles are weapons

• An enemy of America counts as “hostile”

American(x)∧Weapon(y)∧Sells(x , y, z)∧Hostile(z)⇒Criminal(x)

∃ x Owns(Nono, x) ∧Missile(x)
Owns(Nono, M1) , Missile(M1)

Missile(x) ⇒ Weapon(x)

Enemy(x, America) ⇒ Hostile(x)

A datalog KB:
composed of a set of
FOL definite clauses
with no function symbols

∀ x Missile(x)∧Owns(Nono, x) ⇒Sells(West,x,Nono)

1

2 3

4

6

5

existential elimination/instantiation
AND elimination

background knowledge!

43

Example KB

• West, who is American

• The country Nono, an enemy of America

American(West)

Enemy(Nono, America)

7

8

44

Example KB: FC Proof

• Start with the atomic sentences (known facts) in the KB

Proof Tree

45

Example KB: FC Proof

• Apply Generalized Modus Ponens in the forward
direction to trigger rules whose premises are satisfied

• Adding new atomic sentences (conclusions)

3 2

4

9

5

10

8

6

11

7

x/M1

x/M1
x/Nono

Proof Tree

46

Example KB: FC Proof

• Apply Generalized Modus Ponens in the forward
direction to trigger rules whose premises are satisfied

• Adding new atomic sentences (conclusions)
A fixed point is reached:
no more new inferences
can be further concluded

3 2

4

9

5

10

8

6

11

7

1

12Proof Tree

47

Forward Chaining Algorithm

renaming the variables
pattern matching

the new fact unified with the query

48

Forward Chaining Algorithm

• Problems
– The inner loop (pattern matching) is very expensive

– Rules will be rechecked on every iteration to see if its premises
are satisfied

– Many facts generated are irrelevant to the goal

49

Incremental Forward Chaining

• Every new fact inferred on iteration t must be derived
from at least one new fact from iteration t-1

– Check a rule only if its premise include a conjunct pi can be
unified with a fact pi’ newly inferred at iteration t-1

– If so, fix pi to match with pi’ and allow the other conjuncts of the
rule to match with facts from any previous iteration

50

Properties of Forward Chaining

• FC is sound and complete for first-order definite clauses

• FC terminates for Datalog in poly iterations: (at most p∙nk)
– Datalog = first-order definite clauses + no functions

• May not terminate in general if α is not entailed
– Entailment with datalog is decidable
– Entailment with definite clauses is semi-decidable

• When KB with functional symbols

NatNum(0)
∀n NatNum(n) ⇒ NatNum(S(n))

Will add:
NatNum(S(0)), NatNum(S(S(0))), NatNum(S(S(S(0)))), …

51

Hard Matching Example

• Express a finite-domain CSP as a single definite clause
together with some associated ground facts
– E.g., the map coloring problem

– Matching a definite clause against a set of facts is NP-hard

∧

Known facts

rule

52

Backward Chaining

• Work backward from the goal (query), chaining through
rules to find known facts that support the proof
– Put the query on a stack

– Pup it and find the set of all substitutions that satisfies the query

– Find all implications in KB whose heads (conclusions) can be
unified with the goals and put their bodies (premises) on the
stack as new goals

– Goals unified with known facts generate no new goals

– If all goals on the stack are satisfied, (the current branch of) the
proof succeeds

53

Example KB: BC Proof

Put the query on a stack
Pup it and find the set of all substitutions that satisfies the query

54

Example KB: BC Proof

new subgoals

Proof Tree

55

Example KB: BC Proof

Proof Tree

56

Example KB: BC Proof

Proof Tree

57

Example KB: BC Proof

Proof Tree

58

Example KB: BC Proof

Once one subgoal in a
conjunction succeeds, its
substitution is applied to

subsequent subgoals

SUBST(COMPOSE(θ1, θ2), p) = SUBST(θ2, SUBST(θ1, p))

Proof Tree

59

Example KB: BC Proof

Proof Tree

60

Backward Chaining Algorithm

61

Properties of Backward Chaining

• Depth-first recursive proof search
– Space is linear in size of proof

• Incomplete due to infinite loops
– Can be fixed by checking current goal against every goal on

stack

• Inefficient due to repeated subgoals
– Can be fixed by using caching of previous results (extra space !)

62

Conjunctive Normal Form (CNF) for FOL

• A CNF sentence in FOL
– A conjunction (via ∧’s operations) of clauses
– Each clause is a disjunction (via ∨’s operations) of literals,

where literals contain variables which are assumed to be
universally quantified

• Every sentence of FOL can be converted into an
inferentially equivalent CNF
– The CNF sentence will be unsatisfiable if the oroginal one is

unsatisfiable

∀x American(x)∧Weapon(y)∧Sells(x , y, z)∧Hostile(z)⇒Criminal(x)

￢American(x)∨￢Weapon(y)∨￢Sells(x , y, z)∨￢Hostile(z)∨Criminal(x)
CNF

63

Conversion to CNF

• Example :
Everyone who loves all animals is loved by someone

• Eliminate implications

• Move negation (￢) inwards

• Standardize apart (renaming)

∀x [∀y Animal(y) ⇒ loves(x, y)] ⇒ ∃y loves(y, x)

∀x [￢∀y ￢Animal(y) ∨ loves(x, y)] ∨ ∃y loves(y, x)

∀x [∃y ￢(￢Animal(y) ∨ loves(x, y))] ∨ ∃y loves(y, x)

∀x [∃y Animal(y) ∧ ￢loves(x, y)] ∨ ∃y loves(y, x)

∀x [∃y Animal(y) ∧ ￢loves(x, y)] ∨ ∃z loves(z, x)

64

Conversion to CNF

• Skolemize (remove existential quantifier)

– Existential variables replaced by skolem functions
– The kolemized sentence is satisfiable when the original one is

satisfiable

• Drop universal quantifiers

• Distribute conjunction(∧) over disjunction (∨)

∀x [Animal(A) ∧ ￢loves(x, A)] ∨ loves(B, x)

∀x [Animal(F(x)) ∧ ￢loves(x, F(x))] ∨ loves(G(x), x)

?

[Animal(F(x)) ∧ ￢loves(x, F(x))] ∨ loves(G(x), x)

[Animal(F(x)) ∨loves(G(x), x)] ∧ [￢loves(x, F(x)) ∨loves(G(x), x)]

65

Resolution

• The binary resolution rule for FOL can be express as

Or

()

() θ

θ

=¬

∨∨∨∨∨∨∨
∨∨∨∨

+−+−

ji

njjkii

nk

ml

mmmmllll
mmll

, UNIFYwhere

 ,SUBST

 ,

111111

11

LLLL

LL

() θ

θ

=

∧∧∧∧∧∧⇒
∧∧∧∧∧∧

∧∧⇒∧∧
∧∧⇒∧∧

+−

+−

ji

njjs

rkii

nr

sk

ml

mmmmpp
qqllll

mmqq
ppll

, UNIFYwhere

)
 ,(SUBST

1111

1111

11

11

LLL

LLL

LL

LL

66

Resolution

• The combination of binary resolution rule and factoring is
complete
– Factoring: remove multiple copies of literals if they are unifiable

(the unifier must be applied to the entire clause)

[Animal(F(x)) ∨loves(G(x), x)] and [￢loves(u, v) ∨￢Kills(u, v)]

[Animal(F(x)) ∨￢Kills(u, v)]

Θ={ u/G(x), v/x }

67

Resolution: Example Proof 1

• Proved by refutation

x/West

x/y

y/M1

x/Nono

An empty clause achieved !

68

Resolution: Example Proof 2

Problem:
Everyone who loves all animals is loved by someone.
Anyone who kills an animal is loved by no one.
Jack loves all animals.
Either Jack or Curiosity killed the cat, who is named Tuna.
Did Curiosity kill the cat?

A. ∀x [∀y Animal(y) ⇒ loves(x, y)] ⇒ ∃y loves(y, x)
B. ∀x [∀y Animal(y) ⇒ Kills(x, y)] ⇒ ∀z ￢loves(z, x)
C. ∀x Animal(x)⇒loves(Jack, x)
D. Kills(Jack, Tuna) ∨Kills(Curiosity, Tuna)
E. Cat(Tuna)
F. ∀x Cat(x) ⇒Animal(x) (background knowledge!)

￢G. ￢Kills(Curiosity, Tuna)

69

Resolution: Example Proof 2

A1. Animal(F(x))∨loves(G(x), x)
A2. ￢loves(x, F(x)) ∨loves(G(x), x)
B. ￢Animal(y) ∨￢Kills(x, y)] ∨ ￢loves(z, x)
C. ￢Animal(x) ∨ loves(Jack, x)
D. Kills(Jack, Tuna) ∨Kills(Curiosity, Tuna)
E. Cat(Tuna)
F. ￢Cat(x) ∨ Animal(x) (background knowledge!)

￢G. ￢Kills(Curiosity, Tuna)

70

Resolution: Example Proof 2

x/Tuna

z/Tuna

x/Jack

zz

x/Jack, z/F(Jack)

x/Jack, and Factoring

renaming

y/G(Jack)

DFE ￢G

B CA2

A1

