The EM Algorithm

Observed data : O : "ball sequence"
Latent data : S : "bottle sequence"
Parameters to be estimated to maximize $\log P(O \mid \lambda)$ $\lambda=\{P(A), P(B), P(B \mid A), P(A \mid B), P(R \mid A), P(G \mid A), P(R \mid B), P(G \mid B)\}$

The EM Algorithm

－Introduction of EM（Expectation Maximization）：
－Why EM？
－Simple optimization algorithms for likelihood function relies on the intermediate variables，called latent（隱藏的）data In our case here，the state sequence is the latent data
－Direct access to the data necessary to estimate the parameters is impossible or difficult
In our case here，it is almost impossible to estimate $\{\boldsymbol{A}, \boldsymbol{B}, \pi\}$ without consideration of the state sequence
－Two Major Steps ：
－E ：expectation with respect to the latent data using the current estimate of the parameters and conditioned on the observations
－M ：provides a new estimation of the parameters according to Maximum likelihood（ML）or Maximum A Posterior（MAP） Criteria

The EM Algorithm

ML and MAP

- Estimation principle based on observations:

$$
\boldsymbol{x}=\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right) \Longleftrightarrow \boldsymbol{X}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}
$$

- The Maximum Likelihood (ML) Principle
find the model parameter Φ so that the likelihood $p(x \mid \boldsymbol{\Phi})$ is maximum
 normal distribution, and \boldsymbol{X} is i.i.d. (independent, identically distributed), then the ML estimate of $\boldsymbol{\Phi = \{ \mu , \Sigma \}}$ is

$$
\boldsymbol{\mu}_{M L}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}, \boldsymbol{\Sigma}_{M L}=\frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{M L}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{M L}\right)^{t}
$$

- The Maximum A Posteriori (MAP) Principle find the model parameter $\boldsymbol{\Phi}$ so that the likelihood $p(\boldsymbol{\Phi} \mid \boldsymbol{x})$ is maximum

The EM Algorithm

- The EM Algorithm is important to HMMs and other learning techniques
- Discover new model parameters to maximize the log-likelihood of incomplete data $\log P(\boldsymbol{O} \mid \lambda)$ by iteratively maximizing the expectation of log-likelihood from complete datalog $P(\boldsymbol{O}, \boldsymbol{S} \mid \lambda)$
- Using scalar random variables to introduce the EM algorithm
- The observable training data \boldsymbol{O}
- We want to maximize $P(\boldsymbol{O} \mid \lambda)$, λ is a parameter vector
- The hidden (unobservable) data \boldsymbol{S}
- E.g. the component densities of observable data \boldsymbol{O}, or the underlying state sequence in HMMs

The EM Algorithm

- Assume we have λ and estimate the probability that each \boldsymbol{S} occurred in the generation of \boldsymbol{O}
- Pretend we had in fact observed a complete data pair $(\boldsymbol{O}, \boldsymbol{S})$ with frequency proportional to the probability $P(\boldsymbol{O}, \boldsymbol{S} \mid \lambda)$, to computed a new $\bar{\lambda}$, the maximum likelihood estimate of λ
- Does the process converge?
- Algorithm unknown model setting

$$
P(\boldsymbol{O}, \boldsymbol{S} \mid \bar{\lambda})=P(\boldsymbol{S} \mid \boldsymbol{O}, \bar{\lambda}) P(\boldsymbol{O} \mid \bar{\lambda}) \quad \text { Bayes' rule }
$$

complete data likelihood incomplete data likelihood

- Log-likelihood expression and expectation taken over \boldsymbol{S}

$$
\begin{aligned}
& \log P(\boldsymbol{O} \mid \bar{\lambda})=\log P(\boldsymbol{O}, \boldsymbol{S} \mid \bar{\lambda})-\log P(\boldsymbol{S} \mid \boldsymbol{O}, \bar{\lambda}) \\
& \log P(\boldsymbol{O} \mid \bar{\lambda})=\sum_{s}[P(\boldsymbol{S} \mid \boldsymbol{O}, \lambda) \log P(\boldsymbol{O} \mid \bar{\lambda})] \quad \text { take expecta } \\
& =\sum_{S}[P(\boldsymbol{S} \mid \boldsymbol{O}, \lambda) \log P(\boldsymbol{O}, \boldsymbol{S} \mid \bar{\lambda})]-\sum_{s}[P(\boldsymbol{S} \mid \boldsymbol{O}, \lambda) \log P(\boldsymbol{S} \mid \boldsymbol{O}, \bar{\lambda})]
\end{aligned}
$$

The EM Algorithm

- Algorithm (Cont.)
- We can thus express $\log P(\boldsymbol{O} \mid \bar{\lambda})$ as follows

$$
\log P(\boldsymbol{O} \mid \bar{\lambda})
$$

$$
=\sum_{S}[P(\boldsymbol{S} \mid \boldsymbol{O}, \lambda) \log P(\boldsymbol{O}, \boldsymbol{S} \mid \bar{\lambda})]-\sum_{\boldsymbol{S}}[P(\boldsymbol{S} \mid \boldsymbol{O}, \lambda) \log P(\boldsymbol{S} \mid \boldsymbol{O}, \bar{\lambda})]
$$

$$
=Q(\lambda, \bar{\lambda})-H(\lambda, \bar{\lambda})
$$

where

$$
\begin{aligned}
& Q(\lambda, \bar{\lambda})=\sum_{s}[P(\boldsymbol{S} \mid \boldsymbol{O}, \lambda) \log P(\boldsymbol{O}, \boldsymbol{S} \mid \bar{\lambda})] \\
& H(\lambda, \bar{\lambda})=\sum_{S}[P(\boldsymbol{S} \mid \boldsymbol{O}, \lambda) \log P(\boldsymbol{S} \mid \boldsymbol{O}, \bar{\lambda})]
\end{aligned}
$$

- We want $\log P(\boldsymbol{O} \mid \bar{\lambda}) \geq \log P(\boldsymbol{O} \mid \lambda)$

$$
\begin{aligned}
& \log P(\boldsymbol{O} \mid \bar{\lambda})-\log P(\boldsymbol{O} \mid \lambda) \\
& =[Q(\lambda, \bar{\lambda})-H(\lambda, \bar{\lambda})]-[Q(\lambda, \lambda)-H(\lambda, \lambda)] \\
& =Q(\lambda, \bar{\lambda})-Q(\lambda, \lambda)-H(\lambda ; \cdot \bar{\lambda})+H(\lambda, \lambda)
\end{aligned}
$$

The EM Algorithm

- $-H(\lambda, \bar{\lambda})+H(\lambda, \lambda)$ has the following property

$$
\begin{aligned}
& -H(\lambda, \bar{\lambda})+H(\lambda, \lambda) \\
& =-\sum_{s}\left[P(\boldsymbol{S} \mid \boldsymbol{O}, \lambda) \log \frac{P(\boldsymbol{S} \mid \boldsymbol{O}, \bar{\lambda})}{P(\boldsymbol{S} \mid \boldsymbol{O}, \lambda)}\right] \quad \text { Kullbuack-Leibler (KL) distance } \\
& \geq \sum_{s}\left[P(\boldsymbol{S} \mid \boldsymbol{O}, \lambda)\left(1-\frac{P(\boldsymbol{S} \mid \boldsymbol{O}, \bar{\lambda})}{P(\boldsymbol{S} \mid \boldsymbol{O}, \lambda)}\right)\right] \quad(\because \log x \leq x-1) \quad \text { Jensen's inequality } \\
& =\sum_{\boldsymbol{s}}[P(\boldsymbol{S} \mid \boldsymbol{O}, \lambda)-P(\boldsymbol{S} \mid \boldsymbol{O}, \bar{\lambda})] \\
& =0 \\
& \therefore-H(\lambda, \bar{\lambda})+H(\lambda, \lambda) \geq 0
\end{aligned}
$$

- Therefore, for maximizing $\log P(\boldsymbol{O} \mid \bar{\lambda})$, we only need to maximize the Q-function (auxiliary function)

$$
Q(\lambda, \bar{\lambda})=\sum_{S}[P(\boldsymbol{S} \mid \boldsymbol{O}, \lambda) \log P(\boldsymbol{O}, \boldsymbol{S} \mid \bar{\lambda})] \begin{aligned}
& \text { Expectation of the complete } \\
& \text { data log likelihood with respect } \\
& \text { to the latent state sequences }
\end{aligned}
$$

EM Applied to Discrete HMM Training

- Apply EM algorithm to iteratively refine the HMM parameter vector $\lambda=(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{\pi})$
- By maximizing the auxiliary function

$$
\begin{aligned}
Q(\lambda, \bar{\lambda}) & =\sum_{S}[P(\boldsymbol{S} \mid \boldsymbol{O}, \lambda) \log P(\boldsymbol{O}, \boldsymbol{S} \mid \bar{\lambda})] \\
& =\sum_{S}\left[\frac{P(\boldsymbol{O}, \boldsymbol{S} \mid \lambda)}{P(\boldsymbol{O} \mid \lambda)} \log P(\boldsymbol{O}, \boldsymbol{S} \mid \bar{\lambda})\right]
\end{aligned}
$$

- Where $P(\boldsymbol{o}, \boldsymbol{S} \mid \lambda)$ and $P(\boldsymbol{O}, \boldsymbol{S} \mid \bar{\lambda})$ can be expressed as

$$
\begin{aligned}
& P(\boldsymbol{O}, \boldsymbol{S} \mid \lambda)=\pi \pi_{s_{1}}\left[\prod_{t=1}^{T-1} a_{s_{t} s_{t+1}}\right]\left[\prod_{t=1}^{T} b_{s_{t}}\left(\boldsymbol{o}_{t}\right)\right] \\
& \log P(\boldsymbol{O}, \boldsymbol{S} \mid \lambda)=\log \pi_{s_{1}}+\sum_{t=1}^{T-1} \log a_{s_{s}, s_{t+1}}+\sum_{t=1}^{T} \log b_{s_{t}}\left(\boldsymbol{o}_{t}\right) \\
& \log P(\boldsymbol{O}, \boldsymbol{S} \mid \bar{\lambda})=\log \bar{\pi}_{s_{1}}+\sum_{t=1}^{T-1} \log \overline{a_{s, s_{t+1}}}+\sum_{t=1}^{T} \log \overline{b_{s_{t}}}\left(\boldsymbol{o}_{t}\right)
\end{aligned}
$$

EM Applied to Discrete HMM Training

- Rewrite the auxiliary function as
$Q(\lambda, \bar{\lambda})=Q_{\pi}(\lambda, \bar{\pi})+Q_{a}(\lambda, \overline{\boldsymbol{a}})+Q_{b}(\lambda, \overline{\boldsymbol{b}})$

$Q_{\pi}(\lambda, \bar{\pi})=\sum_{\text {all } s}\left[\frac{P(\boldsymbol{O}, \boldsymbol{S} \mid \boldsymbol{\lambda})}{P(\boldsymbol{O} \mid \lambda)} \log \bar{\pi}_{s_{1}}\right] \stackrel{?}{=} \sum_{i=1}^{N}\left[\frac{P\left(\boldsymbol{O}, s_{1}=i \mid \lambda\right)}{P(\boldsymbol{O} \mid \lambda)} \log \bar{\pi}_{i}\right]$
$Q_{a}(\lambda, \overline{\boldsymbol{a}})=\sum_{\text {all } s}\left[\frac{P(\boldsymbol{O}, \boldsymbol{S} \mid \lambda)}{P(\boldsymbol{O} \mid \lambda)} \sum_{t=1}^{T-1} \log \bar{a}_{s, s_{t+1}}\right] \stackrel{?}{=} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=1}^{T-1}\left[\frac{P\left(\boldsymbol{O}, s_{t}=i, s_{t+1}=j \mid \lambda\right)}{P(\boldsymbol{O} \mid \lambda)} \log \bar{a}_{i j}\right]$
$Q_{b}(\lambda, \overline{\boldsymbol{b}})=\sum_{\mathrm{ails}}\left[\frac{P(\boldsymbol{O}, \boldsymbol{S} \mid \lambda)}{P(\boldsymbol{O} \mid \lambda)} \sum_{t=1}^{T} \log \bar{b}_{s_{s}}(k)\right] ?{ }^{2} \sum_{j=1}^{N} \sum_{k} \sum_{t \in o_{i}=v_{k}}\left[\frac{P\left(\boldsymbol{O}, s_{t}=j \mid \lambda\right)}{P(\boldsymbol{O} \mid \lambda)} \log \bar{b}_{j}(k)\right]$

EM Applied to Discrete HMM Training

- The auxiliary function contains three independent terms, $\pi_{i}, a_{i j}$ and $b_{j}(k)$
- Can be maximized individually
- All of the same form
$F(\boldsymbol{y})=g\left(y_{1}, y_{2}, \ldots,, y_{N}\right)=\sum_{j=1}^{N} w_{j} \log y_{j}$, where $\sum_{j=1}^{N} y_{j}=1$, and $y_{j} \geq 0$
$F(\boldsymbol{y})$ has maximum value when : $y_{j}=\frac{w_{j}}{\sum_{j=l}^{N} w_{j}}$

EM Applied to Discrete HMM Training

- Proof: Apply Lagrange Multiplier

By applying Lagrange Multiplier ℓ
Suppose that $F=\sum_{j=1}^{N} w_{j} \log y_{j}=\sum_{j=1}^{N} w_{j} \log y_{j}+\ell\left(\sum_{j=1}^{N} y_{j}-1\right)$

$$
\frac{\partial F}{\partial y_{j}}=\frac{w_{j}}{y_{j}}+\ell=0 \Rightarrow \ell=-\frac{w_{j}}{y_{j}} \forall j
$$

Constraint
$\ell \sum_{j=1}^{N} y_{j}=-\sum_{j=1}^{N} w_{j} \Rightarrow \ell=-\sum_{j=1}^{N} w_{j}$
$\therefore y_{j}=\frac{w_{j}}{\sum_{j=1}^{N} w_{j}}$

EM Applied to Discrete HMM Training

- The new model parameter set $\bar{\lambda}=(\overline{\boldsymbol{\pi}}, \overline{\boldsymbol{A}}, \overline{\boldsymbol{B}})$ can be expressed as:

$$
\begin{aligned}
& \bar{\pi}_{i}=\frac{P\left(\boldsymbol{O}, s_{1}=i \mid \lambda\right)}{P(\boldsymbol{O} \mid \lambda)}=\gamma_{1}(i) \\
& \bar{a}_{i j}=\frac{\sum_{t=1}^{T-1} P\left(\boldsymbol{O}, s_{t}=i, s_{t+1}=j \mid \lambda\right)}{\sum_{t=1}^{T-1} P\left(\boldsymbol{O}, s_{t}=i \mid \lambda\right)}=\frac{\sum_{t=1}^{T-1} \xi_{t}(i, j)}{\sum_{t=1}^{T-1} \gamma_{t}(i)} \\
& \overline{b_{i}}(k)=\frac{\sum_{\substack{t=1 \\
T}}^{T-1} P\left(\boldsymbol{O}, s_{t}=i \mid \lambda\right)}{\sum_{t=1}^{T} P\left(\boldsymbol{o}, v_{k}\right.} \boldsymbol{T} P\left(s_{t}=i \mid \lambda\right)
\end{aligned} \frac{\sum_{\substack{t=1 \\
\text { s.t }}}^{T} \gamma_{t}(i)}{\sum_{t=1}^{T} \gamma_{t}(i)}
$$

EM Applied to Continuous HMM Training

- Continuous HMM: the state observation does not come from a finite set, but from a continuous space
- The difference between the discrete and continuous HMM lies in a different form of state output probability
- Discrete HMM requires the quantization procedure to map observation vectors from the continuous space to the discrete space
- Continuous Mixture HMM
- The state observation distribution of HMM is modeled by multivariate Gaussian mixture density functions (M mixtures)

$$
\begin{aligned}
b_{j}(\boldsymbol{o}) & =\sum_{k=1}^{M} c_{j k} b_{j k}(\boldsymbol{o}) \\
& \left.=\sum_{k=1}^{M} c_{j k} N\left(\boldsymbol{o}, \boldsymbol{\mu}_{j k}, \boldsymbol{\Sigma}_{j k}\right)=\sum_{k=1}^{M} c_{j k}\left(\frac{1}{(\sqrt{2 \pi})^{2}\left|\Sigma_{j k}\right|^{1 / 2}} \exp \left(-\frac{1}{2}\left(\boldsymbol{o}-\boldsymbol{\mu}_{j k}\right)\right)^{\prime} \boldsymbol{\Sigma}_{j k}^{-1}\left(\boldsymbol{o}-\boldsymbol{\mu}_{j k}\right)\right)\right) \\
& \sum_{k=1}^{M} c_{j k}=1
\end{aligned}
$$

EM Applied to Continuous HMM Training

- Express $b_{j}(\boldsymbol{o})$ with respect to each single mixture component $b_{j k}(\boldsymbol{o})$

> Note:

$$
=\left(a_{11}+a_{12}+\ldots+a_{1 M}\right)\left(a_{21}+a_{22}+\ldots+a_{2 M}\right) \ldots\left(a_{T 1}+a_{T 2}+\ldots+a_{T M}\right)
$$

$$
\downarrow=\pi_{s_{1}}\left\{\prod_{i=1}^{T-1} a_{s, s_{t+1}}\right\}\left\{\sum_{k_{1}=k_{k_{2}=1}^{M}}^{M} \cdots \cdots \sum_{k_{T}=1}^{M} \prod_{t=1}^{T}\left[c_{s, k_{i}} b_{s, k_{i}}\left(\boldsymbol{o}_{t}\right)\right]\right\}
$$

$P(\boldsymbol{O}, \boldsymbol{S}, \boldsymbol{K} \mid \boldsymbol{\lambda})=\pi_{s_{1}}\left\{\prod_{l=1}^{T-1} a_{s, s_{t, 1}}\right\}\left\{\prod_{i=1}^{T}\left[c_{s, t, t} b_{s, k_{i}}\left(\boldsymbol{o}_{\boldsymbol{t}}\right)\right]\right\}$
\boldsymbol{K} : one of the possible mixture component sequence along with the state sequence \boldsymbol{S}

$$
P(\boldsymbol{O} \mid \lambda)=\sum_{S} \sum_{\boldsymbol{K}} P(\boldsymbol{O}, \boldsymbol{S}, \boldsymbol{K} \mid \lambda)
$$

EM Applied to Continuous HMM Training

- Therefore, an auxiliary function for the EM algorithm can be written as:

$$
\begin{aligned}
& Q(\lambda, \bar{\lambda})=\sum_{\boldsymbol{S}} \sum_{\boldsymbol{K}}[P(\boldsymbol{S}, \boldsymbol{K} \mid \boldsymbol{O}, \lambda) \log P(\boldsymbol{O}, \boldsymbol{S}, \boldsymbol{K} \mid \bar{\lambda})] \\
& =\sum_{S} \sum_{K}\left[\frac{P(\boldsymbol{o}, \boldsymbol{S}, \boldsymbol{K} \mid \lambda)}{P(\boldsymbol{o} \mid \lambda)} \log P(\boldsymbol{o}, \boldsymbol{S}, \boldsymbol{K} \mid \bar{\lambda})\right] \\
& \log P(\boldsymbol{O}, \boldsymbol{S}, \boldsymbol{K} \mid \bar{\lambda})=\log \bar{\pi}_{s_{1}}+\sum_{t=1}^{T-1} \log \bar{a}_{s_{s} s_{t+1}}+\sum_{t=1}^{T} \log \bar{s}_{s_{t} k_{t}}\left(\boldsymbol{o}_{t}\right)+\sum_{t=1}^{T} \log \bar{c}_{s_{t} k_{t}} \\
& Q(\lambda, \bar{\lambda})=Q_{\pi}(\lambda, \bar{\pi})+Q_{a}(\lambda, \overline{\boldsymbol{a}})+Q_{b}(\lambda, \overline{\boldsymbol{b}})+Q_{c}(\lambda, \bar{c})
\end{aligned}
$$

EM Applied to Continuous HMM Training

- The only difference we have when compared with Discrete HMM training

$$
\begin{aligned}
& Q_{b}(\lambda, \overline{\boldsymbol{b}})=\sum_{t=1}^{T}\left\{\left[\sum_{j=1}^{N} \sum_{k=1}^{M}\left(j, k\left(s_{t}=j, k_{t}=k \mid \boldsymbol{O}, \lambda\right)\right] \log \bar{b}_{j k}\left(\boldsymbol{o}_{t}\right)\right\}\right. \\
& Q_{c}(\lambda, \overline{\boldsymbol{c}})=\sum_{t=1}^{T}\left\{\left[\sum_{j=1}^{N} \sum_{k=1}^{M} P\left(s_{t}=j, k_{t}=k \mid \boldsymbol{O}, \lambda\right)\right] \log \bar{c}_{j k}\left(\boldsymbol{o}_{t}\right)\right\}
\end{aligned}
$$

EM Applied to Continuous HMM Training

Let $\gamma_{t}(j, k)=\sum_{k=1}^{M} P\left(s_{t}=j, k_{t}=k \mid \boldsymbol{O}, \lambda\right)$

$$
\bar{b}_{j k}\left(\boldsymbol{o}_{t}\right)=N\left(\boldsymbol{o}_{t} ; \overline{\boldsymbol{\mu}}_{j k}, \overline{\boldsymbol{\Sigma}}_{j k}\right)=\frac{1}{(2 \pi)^{L / 2}\left|\overline{\boldsymbol{\Sigma}}_{j k}\right|^{1 / 2}} \exp \left(-\frac{1}{2}\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)^{\prime} \overline{\boldsymbol{\Sigma}}_{j k}^{-1}\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)\right)
$$

$\log \bar{b}_{j k}\left(\boldsymbol{o}_{t}\right)=-L / 2 \cdot \log (2 \pi)+1 / 2 \cdot \log \left|\bar{\Sigma}_{j k}^{-1}\right|-\left(\frac{1}{2}\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)^{\prime} \overline{\boldsymbol{\Sigma}}_{j k}^{-1}\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)\right)$

$$
\frac{\partial \log \bar{b}_{j k}\left(\boldsymbol{o}_{t}\right)}{\partial \overline{\boldsymbol{\mu}}_{j k}}=\overline{\boldsymbol{\Sigma}}_{j k}^{-1}\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right) \quad \frac{d\left(\boldsymbol{x}^{T} \boldsymbol{C} \boldsymbol{x}\right)}{d \boldsymbol{x}}=\left(\boldsymbol{C}+\boldsymbol{C}^{T}\right) \boldsymbol{x}
$$

$\partial Q_{b}(\lambda, \bar{b}) \quad \partial \sum_{i=1}^{T}\left\{\left[\sum_{j=1}^{N} \sum_{k=1}^{M} \gamma_{t}(j, k) \log \bar{b}_{j k}\left(\boldsymbol{o}_{t}\right)\right]\right\} \quad$ and $\Sigma_{j k}^{-1}$ is symmetric here
$\frac{\partial Q_{b}(\lambda, \overline{\boldsymbol{b}})}{\partial \overline{\boldsymbol{\mu}}_{j k}}=\frac{\sum_{t=1}\left[\sum_{j=1} \sum_{k=1} \lambda\left(\overline{\boldsymbol{\mu}}_{j k}\right.\right.}{}$
$\Rightarrow \sum_{t=1}^{T}\left\{\gamma_{t}(j, k) \overline{\boldsymbol{\Sigma}}_{j k}^{-1}\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)\right\}=0$
$\Rightarrow \overline{\boldsymbol{\mu}}_{j k}=\frac{\sum_{t=1}^{T}\left[\gamma_{t}(j, k) \cdot \boldsymbol{o}_{t}\right]}{\sum_{t=1}^{T} \gamma_{t}(j, k)}$

EM Applied to Continuous HMM Training

$$
\begin{aligned}
& \log \bar{b}_{j k}\left(\boldsymbol{o}_{t}\right)=-L / 2 \cdot \log (2 \pi)-1 / 2 \cdot \log \left|\overline{\boldsymbol{\Sigma}}_{j k}\right|-\left(\frac{1}{2}\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)^{\prime} \overline{\boldsymbol{\Sigma}}_{j k}^{-1}\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)\right) \\
& \frac{\partial \log \bar{b}_{j k}\left(\boldsymbol{o}_{t}\right)}{\partial\left(\overline{\boldsymbol{\Sigma}}_{j k}\right)}=-\left[\frac{1}{2} \cdot\left|\overline{\bar{\Sigma}_{j k}}\right|^{-1} \cdots \cdot\left|\bar{\Sigma}_{j k k}\right| \cdot \overline{\boldsymbol{\Sigma}}_{j k}^{-1}-\left(\overline{\boldsymbol{\Sigma}}_{j k}^{-1} \frac{1}{2}\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)^{\prime} \overline{\boldsymbol{\Sigma}}_{j k}^{-1}\right)\right] \\
& =-\frac{1}{2} \cdot\left[\overline{\boldsymbol{\Sigma}}_{j k}^{-1}-\overline{\boldsymbol{\Sigma}}_{j k}^{-1}\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)^{\prime} \overline{\boldsymbol{\Sigma}}_{j k}^{-1}\right] \quad \frac{d\left(\boldsymbol{a}^{T} \boldsymbol{X}^{-1} \boldsymbol{b}\right)}{d \boldsymbol{X}}=-\boldsymbol{X}^{T} \boldsymbol{a} \boldsymbol{b}^{T} \boldsymbol{X}^{T} \\
& \frac{\partial Q_{\boldsymbol{b}}(\lambda, \overline{\boldsymbol{b}})}{\partial\left(\bar{\Sigma}_{j k}\right)}=\frac{\partial \sum_{t=1}^{T}\left\{\left[\sum_{j=1}^{N} \sum_{k=1}^{M} \gamma_{t}(j, k) \log \bar{b}_{j k}\left(\boldsymbol{o}_{t}\right)\right]\right\}}{\partial\left(\overline{\boldsymbol{\Sigma}}^{-1}\right)} \quad \frac{d[\operatorname{det}(\boldsymbol{X})]}{d \boldsymbol{X}}=\operatorname{det}(\boldsymbol{X}) \cdot \boldsymbol{X}^{-\boldsymbol{T}} \\
& \Rightarrow \sum_{t=1}^{T}\left\{\gamma_{t}(j, k)\left(-\frac{1}{2}\right) \cdot\left[\bar{\Sigma}_{j k}^{-1}-\bar{\Sigma}_{j k}^{-1}\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)^{\prime} \bar{\Sigma}_{j k}^{-1}\right]\right\}=0 \\
& \Rightarrow \sum_{t=1}^{T} \gamma_{t}(j, k) \overline{\boldsymbol{\Sigma}}_{j k}^{-1}=\sum_{t=1}^{T} \gamma_{t}(j, k) \overline{\boldsymbol{\Sigma}}_{j k}^{-1}\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)^{\prime} \overline{\boldsymbol{\Sigma}}_{j k}^{-1} \\
& \left.\Rightarrow \sum_{t=1}^{T} \gamma_{t}(j, k) \widehat{\Sigma}_{j k} \overline{\boldsymbol{\Sigma}}_{j k}^{-1} \widehat{\bar{\Sigma}}_{j k}\right)=\sum_{t=1}^{T} \gamma_{t}(j, k) \widehat{\Sigma}_{j k} \overline{\boldsymbol{\Sigma}}_{j k}^{-1}\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right){ }^{\prime} \overline{\boldsymbol{\Sigma}}_{j k}^{-1} \overline{\boldsymbol{\Sigma}}_{j k} \\
& \Rightarrow \overline{\boldsymbol{\Sigma}}_{j k}=\frac{\sum_{t=1}^{T}\left[\gamma_{t}(j, k) \cdot\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)^{\prime}\right]}{\sum_{t=1}^{T} \gamma_{t}(j, k)}
\end{aligned}
$$

EM Applied to Continuous HMM Training

- The new model parameter set for each mixture component and mixture weight can be expressed as:

$$
\begin{aligned}
& \overline{\boldsymbol{\mu}}_{j k}=\frac{\sum_{i=1}^{T}\left[\frac{P\left(\boldsymbol{O}, s_{t}=j, k_{t}=k \mid \lambda\right)}{P(\boldsymbol{O} \mid \lambda)} \boldsymbol{o}_{t}\right]}{\sum_{i=1}^{T} \frac{P\left(\boldsymbol{O}, s_{t}=j, k_{t}=k \mid \lambda\right)}{P(\boldsymbol{O} \mid \lambda)}=\frac{\sum_{t=1}^{T}\left[\gamma_{t}(j, k) \boldsymbol{o}_{t}\right]}{\sum_{t=1}^{T} \gamma_{t}(j, k)}} \\
& \overline{\boldsymbol{\Sigma}}_{j k k}=\frac{\sum_{i=1}^{T} \frac{\left[\frac{P\left(\boldsymbol{O}, s_{t}=j, k_{t}=k \mid \lambda\right)}{P(\boldsymbol{O} \mid \lambda)}\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)^{\prime}\right]}{\sum_{t=1}^{T} \frac{P\left(\boldsymbol{O}, s_{t}=j, k_{t}=k \mid \lambda\right)}{P(\boldsymbol{O} \mid \lambda)}=\frac{\sum_{t=1}^{T}\left[\gamma_{t}(j, k)\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)^{k}\right]}{\sum_{t=1}^{T} \gamma_{t}(j, k)}}}{\overline{\boldsymbol{c}}_{j k}=\frac{\sum_{t=1}^{T} \gamma_{t}(j, k)}{\sum_{t=1 k=1}^{T} \sum_{t}^{M} \gamma_{t}(j, k)}}
\end{aligned}
$$

