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Introduction

• Estimation theory is the most important theory and 
method in statistical inference

• Statistical inference
– Data generated in accordance with some unknown probability 

distribution must be analyzed
– Some type of inference about the unknown distribution must be 

made like the characteristics (parameters) of the distribution 
generating the experimental data, the mean and variance etc.
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Introduction

• Three common estimators (estimation methods)
– Minimum mean square estimator

• Estimate the random variable itself

• Function approximation, curve fitting, …

– Maximum likelihood estimator
• Estimate the parameters of the distribution of the random 

variables

– Bayes’ estimator
• Estimate the parameters of the distribution of the random 

variables
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Minimum Mean Square Error Estimation 
and Least Square Error Estimation

• There are two random variables       and      . When 
observing the value of        , we want to find a
transform                   (      the parameter vectors of 
function     ) to predict the value of
– Minimum Mean Square Error Estimation

– Least Square Error Estimation

• Base on the law of large numbers, when the joint 
probability                 is uniform or the number of samples 
approaches to infinity, MMSE and LSE are equivalent
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Minimum Mean Square Error Estimation 
and Least Square Error Estimation

• Constant functions
– MMSE -- LSE

• Linear functions
– MMSE
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Minimum Mean Square Error Estimation 
and Least Square Error Estimation

• Linear functions
– LSE

• Suppose that x are d-dimensional vectors and y 
are scalars 
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Maximum Likelihood Estimation (MLE/ML)

• ML is the most widely used parametric estimation 
method

• A set of random samples                      is to be drawn 
independently according to a distribution 
with the pdf
– Given a sequence of random samples                         the 

likelihood of it is defined as             , a joint pdf of 

– Maximum likelihood estimator of        is denoted as 

– Since the logarithm function is monotonically increasing function,  
the parameter set           that maximizes the log-likelihood should 
also maximize the likelihood. The log-likelihood can be 
expressed as:   
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Maximum Likelihood Estimation (MLE/ML)

• If          is differentiable function of     ,        can be 
attained by taking the partial derivative with respect to       

and setting it to zero
– Let       be a M-component parameter vector

• Example:             is a univariate Gaussian pdf with the 
parameter set 
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Maximum Likelihood Estimation (MLE/ML)

• Example: univariate Gaussian pdf (cont.)
– Take the partial derivatives of the above expression and set 

them to zero

– The maximum likelihood estimates for      and       are 

• The maximum likelihood estimation for mean and variance is just 
the sample mean and variance
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Maximum Likelihood Estimation (MLE/ML)

• Example: multivariate Gaussian pdf (cont.)

– The maximum likelihood estimates for      and       are

• The maximum likelihood estimation for mean vector and 
variance matrix is just the sample mean vector and 
variance matrix

• In fact,               itself is also a Gaussian distribution 
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Bayesian Estimation

• Bayesian estimation has a different philosophy than 
maximum likelihood (ML) estimation
– ML assumes the parameter set       is fixed but unknown (non-

informative, uniform prior)
– Bayesian estimation assumes the parameter set        itself is a

random variable with a prior distribution

– Given a sequence of random samples                         , which are 
i.i.d. with a joint pdf , the posterior distribution of        can 
be the following according to the Bayes’ rule
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Bayesian Estimation

• : the posterior probability, the distribution of        
after we observed the values of random variables

• : a conjugate prior of the random variables (or vector) 
is defined as the prior distribution for the parameters of the 
density function (e.g.      ) of the random variables (or vectors)

– Before we observed the values of random variables

• The joint pdf/likelihood function

• The prior is also a Gaussian distribution
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Maximum a Posterior Probability (MAP)

• The MAP chooses a estimate         that maximizes the 
posterior probability              is the most common 
Bayesian estimator

– For example, the conjugate prior for the mean of a Gaussian pdf
is also a Gaussian pdf

• Supposed in previous example,                             is drawn from a 
Gaussian which mean         is unknown and variance           is
known, while the conjugate prior (is a Gaussian) with mean      
and variance

• The MAP estimated       is:
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Bayes’ Decision Theory

• A decision-making based on both the posterior 
knowledge obtained from specific observation data and 
prior knowledge of the categories 
– Prior class probabilities 
– Class-conditioned probabilities (likelihoods) 
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Bayes’ Decision Theory

• Bayes’ decision rule designed to minimize the overall risk 
involved in making decision
– The expected loss (conditional risk) when making decision

– The overall risk  (Bayes’ risk) 
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Bayes’ Decision Theory

• Minimize the overall risk (classification error) by 
computing  the conditional risks and select the decision        

for which the conditional risk                is minimum, 
i.e.,                is maximum

– Called the minimum-error-rate decision rule which minimizes 
the classification error rate
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Bayes’ Decision Theory

• Two-class pattern classification

Likelihood ratio or log-likelihood ratio:
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