# Hidden Markov Models for Speech Recognition 

## Berlin Chen 2003

References:

1. Rabiner and Juang, Fundamentals of Speech Recognition, Chapter 6
2. X. Huang et. al., Spoken Language Processing, Chapters 4, 8
3. Rabiner, "A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition," Proceedings of the IEEE, vol. 77, No. 2, February 1989

## Introduction

- Hidden Markov Model (HMM)


## History

- Published in papers of Baum in late 1960s and early 1970s
- Introduced to speech processing by Baker (CMU) and Jelinek (IBM) in the 1970s


## Assumption

- Speech signal can be characterized as a parametric random process
- Parameters can be estimated in a precise, well-defined manner


## Three fundamental problems

- Evaluation of probability (likelihood) of a sequence of observations given a specific HMM
- Determination of a best sequence of model states
- Adjustment of model parameters so as to best account for observed signals


## Observable Markov Model

- Observable Markov Model (Markov Chain)
- First-order Markov chain of $N$ states is a triple ( $\mathbf{S}, \boldsymbol{A}, \pi$ )
- $S$ is a set of $N$ states
- $\boldsymbol{A}$ is the $N \times N$ matrix of transition probabilities between states $P\left(s_{t}=j \mid s_{t-1}=i, s_{t-2}=k, \ldots \ldots\right)=P\left(s_{t}=j \mid s_{t-1}=i\right)=A_{i j}$
- $\pi$ is the vector of initial state probability

$$
\pi_{j}=P\left(s_{1}=j\right)
$$

- The output of the process is the set of states at each instant of time, when each state corresponds to an observable event
- The output in any given state is not random (deterministic!)
- Too simple to describe the speech signal characteristics


Fig. 1. A Markov chain with 5 states (labeled $S_{1}$ to $S_{5}$ ) with selected state transitions.

## Observable Markov Model

- Example 1: A 3-state Markov Chain $\lambda$ State 1 generates symbol A only, State 2 generates symbol B only, and State 3 generates symbol C only

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{lll}
0.6 & 0.3 & 0.1 \\
0.1 & 0.7 & 0.2 \\
0.3 & 0.2 & 0.5
\end{array}\right] \\
& \pi=\left[\begin{array}{lll}
0.4 & 0.5 & 0.1
\end{array}\right]
\end{aligned}
$$



- Given a sequence of observed symbols $\boldsymbol{O}=\{C A B B C A B C\}$, the only one corresponding state sequence is $\left\{S_{3} S_{1} S_{2} S_{2} S_{3} S_{1} S_{2} S_{3}\right\}$, and the corresponding probability is

$$
\begin{aligned}
& P(O \mid \lambda) \\
& =P\left(S_{3}\right) P\left(S_{1} \mid S_{3}\right) P\left(S_{2} \mid S_{1}\right) P\left(S_{2} \mid S_{2}\right) P\left(S_{3} \mid S_{2}\right) P\left(S_{1} \mid S_{3}\right) P\left(S_{2} \mid S_{1}\right) P\left(S_{3} \mid S_{2}\right) \\
& =0.1 \times 0.3 \times 0.3 \times 0.7 \times 0.2 \times 0.3 \times 0.3 \times 0.2=0.00002268
\end{aligned}
$$

## Observable Markov Model

- Example 2: A three-state Markov chain for the Dow Jones Industrial average
state 1 -up (in comparison to the index of previous day)
state 2 -down (in comparison to the index of previous day)
state 3 - unchanged (in comparison to the index of previous day)


The probability of 5 consecutive up days $P(5$ consecutive $u p$ days $)=P(1,1,1,1,1)$
$=\pi_{1} a_{11} a_{11} a_{11} a_{11}=0.5 \times(0.6)^{4}=0.0648$

Figure 8.1 A Markov chain for the Dow Jones Industrial average. Three states represent $u p$, down, and unchanged, respectively.

The parameter for this Dow Jones Markov chain may include a state-transition probability matrix

$$
A=\left\{a_{i j}\right\}=\left[\begin{array}{lll}
0.6 & 0.2 & 0.2 \\
0.5 & 0.3 & 0.2 \\
0.4 & 0.1 & 0.5
\end{array}\right] \quad \pi=\left(\pi_{i}\right)^{t}=\left[\begin{array}{l}
0.5 \\
0.2 \\
0.3
\end{array}\right]
$$

and an initial state probability matrix

## Hidden Markov Model

- HMM, an extended version of Observable Markov Model
- The observation is turned to be a probabilistic function (discrete or continuous) of a state instead of an one-to-one correspondence of a state
- The model is a doubly embedded stochastic process with an underlying stochastic process that is not directly observable (hidden)
- What is hidden? The State Sequence! According to the observation sequence, we are not sure which state sequence generates it!
- Elements of an HMM (the State-Output HMM) $\lambda=\{\mathbf{S}, \boldsymbol{A}, \boldsymbol{B}, \pi\}$
- $S$ is a set of $N$ states
- $\boldsymbol{A}$ is the $N \times N$ matrix of transition probabilities between states
- B is a set of $N$ probability functions, each describing the observation probability with respect to a state
- $\pi$ is the vector of initial state probability


## Hidden Markov Model

- Two major assumptions
- First order (Markov) assumption
- The state transition depends only on the origin and destination
- Time-invariant
- Output-independent assumption
- All observations are dependent on the state that generated them, not on neighboring observations


## Hidden Markov Model

- Two major types of HMMs according to the observations
- Discrete and finite observations:
- The observations that all distinct states generate are finite in number

$$
\boldsymbol{V}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \ldots \ldots, \boldsymbol{v}_{M}\right\}, \boldsymbol{v}_{k} \in \boldsymbol{R}^{L}
$$

- In this case, the set of observation probability distributions $B=\left\{b_{j}\left(\boldsymbol{v}_{\mathrm{k}}\right)\right\}$, is defined as $b_{j}\left(\boldsymbol{v}_{\mathrm{k}}\right)=P\left(\mathbf{o}_{t}=\boldsymbol{v}_{\mathrm{k}} \mid \mathrm{s}_{t}=j\right), 1 \leq k \leq M, 1 \leq j \leq N$ $\mathbf{o}_{t}$ : observation at time $t, s_{t}$ : state at time $t$
$\Rightarrow$ for state $j, b_{i}\left(\boldsymbol{v}_{\mathrm{k}}\right)$ consists of only M probability values

A left-to-right HMM


## Hidden Markov Model

- Two major types of HMMs according to the observations
- Continuous and infinite observations:
- The observations that all distinct states generate are infinite and continuous, that is, $\boldsymbol{V}=\left\{\boldsymbol{v} \mid \boldsymbol{V} \in \boldsymbol{R}^{L}\right\}$
- In this case, the set of observation probability distributions $B=\left\{b_{j}(\mathbf{v})\right\}$, is defined as $b_{j}(\boldsymbol{v})=f_{\text {O|S }}\left(\boldsymbol{o}_{t}=\boldsymbol{v} \mid s_{t}=j\right), 1 \leq j \leq N$
$\Rightarrow b_{j}(v)$ is a continuous probability density function (pdf) and is often a mixture of Multivariate Gaussian (Normal) Distributions

$$
b_{j}(\boldsymbol{v})=\sum_{k=1}^{M} w_{j k}\left(\frac{1}{(2 \pi)^{L / 2}\left|\Sigma_{j k}\right|^{1 / 2}} \exp \left(-\frac{1}{2}\left(\underset{\substack{\boldsymbol{v} \\ \text { Covariance } \\ \text { Matrix }}}{\boldsymbol{\mu}_{j k}}\right)^{t} \Sigma_{j k}^{-1}\left(\boldsymbol{v}-\boldsymbol{\mu}_{j k}\right)\right)\right)
$$

## Hidden Markov Model

- Multivariate Gaussian Distributions
- When $\boldsymbol{X}=\left(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{\mathrm{n}}\right)$ is a $n$-dimensional random vector, the multivariate Gaussian pdf has the form:
$f(\boldsymbol{X}=\boldsymbol{x} \mid \boldsymbol{\mu}, \Sigma)=N(\boldsymbol{x} ; \boldsymbol{\mu}, \Sigma)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{t} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)$
where $\boldsymbol{u}$ is the $n$-dimensional mean vector,
$\boldsymbol{\Sigma}$ is the coverance matrix, $\boldsymbol{\Sigma}=E\left[(\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^{t}\right]=E\left[\boldsymbol{x} \boldsymbol{x}^{t}\right]-\boldsymbol{\mu} \boldsymbol{\mu}^{t}$ and $|\Sigma|$ is the the dterminant of $\Sigma$
The $i-j j^{\text {th }}$ elevment $\sigma_{i j}^{2}$ of $\Sigma, \sigma_{i j}^{2}=E\left[\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)\right]=E\left[x_{i} x_{j}\right]-\mu_{i} \mu_{j}$
- If $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{\mathrm{n}}$ are independent, the covariance matrix is reduced to diagonal covariance
- The distribution as $\boldsymbol{n}$ independent scalar Gaussian distributions
- Model complexity is reduced


## Hidden Markov Model

- Multivariate Gaussian Distributions



Figure 3.12 A two-dimensional multivariate Gaussian distribution with independent random Figure 3.13 Another two-dimensional multivariate Gaussian distribution with independen variables $x_{1}$ and $x_{2}$ that have the same variance. random variable $x_{1}$ and $x_{2}$ which have different variances

## Hidden Markov Model

- Covariance matrix of the partially decorrelated feature vectors
- MFCC cepstrum without $\mathrm{C}_{0}$



## Hidden Markov Model

- Multivariate Mixture Gaussian Distributions (cont.)
- More complex distributions with multiple local maxima can be approximated by Gaussian (a unimodal distribution) mixture

$$
f(\boldsymbol{x})=\sum_{k=1}^{M} w_{k} N_{k}\left(\boldsymbol{x} ; \boldsymbol{\mu}_{k}, \Sigma_{k}\right), \quad \sum_{k=1}^{M} w_{k}=1
$$

- Gaussian mixtures with enough mixture components can approximate any distribution



## Hidden Markov Model

- Example : a 3-state discrete HMM $\lambda$

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{lll}
0.6 & 0.3 & 0.1 \\
0.1 & 0.7 & 0.2 \\
0.3 & 0.2 & 0.5
\end{array}\right] \\
& b_{1}(\mathbf{A})=0.3, b_{1}(\mathbf{B})=0.2, b_{1}(\mathbf{C})=0.5 \\
& b_{2}(\mathbf{A})=0.7, b_{2}(\mathbf{B})=0.1, b_{2}(\mathbf{C})=0.2 \\
& b_{3}(\mathbf{A})=0.3, b_{3}(\mathbf{B})=0.6, b_{3}(\mathbf{C})=0.1 \\
& \pi=\left[\begin{array}{lll}
0.4 & 0.5 & 0.1
\end{array}\right]
\end{aligned}
$$


\{A:.7,B:.1,C:.2\} \{A:.3,B:.6,C:.1\}

- Given a sequence of observations $O=\{A B C\}$, there are 27 possible corresponding state sequences, and therefore the corresponding probability is

$$
\begin{aligned}
& P(\boldsymbol{O} \mid \lambda)=\sum_{i=1}^{27} P\left(\boldsymbol{O}, \boldsymbol{S}_{i} \mid \lambda\right)=\sum_{i=1}^{27} P\left(\boldsymbol{O} \mid \boldsymbol{S}_{i}, \lambda\right) P\left(\boldsymbol{S}_{i} \mid \boldsymbol{\lambda}\right), \quad \boldsymbol{S}_{i} \text { : state sequence } \\
& E . g \text {. when } \boldsymbol{S}_{i}=\left\{s_{2} s_{2} s_{3}\right\}, P\left(\boldsymbol{O} \mid \boldsymbol{S}_{i}, \lambda\right)=P\left(\boldsymbol{A} \mid s_{2}\right) P\left(\boldsymbol{B} \mid s_{2}\right) P\left(\boldsymbol{C} \mid s_{3}\right)=0.7 * 0.1^{*} 0.1=0.007 \\
& P\left(\boldsymbol{S}_{i} \mid \boldsymbol{\lambda}\right)=P\left(s_{2}\right) P\left(s_{2} \mid s_{2}\right) P\left(s_{3} \mid s_{2}\right)=0.5 * 0.7 * 0.2=0.07
\end{aligned}
$$

## Hidden Markov Model

－Notation ：
－$O=\left\{0_{1} \mathrm{O}_{2} \mathrm{o}_{3} \ldots \ldots \mathrm{o}_{7}\right\}$ ：the observation（feature）sequence
－$S=\left\{s_{1} s_{2} s_{3} \ldots \ldots s_{T}\right\}$ ：the state sequence
$-\lambda$ ：model，for HMM，$\lambda=\{\boldsymbol{A}, \boldsymbol{B}, \pi\}$
$-P(O \mid \lambda)$ ：用model $\lambda$ 計算 $\boldsymbol{O}$ 的機率値
$-P(\mathbf{O} \mid \mathbf{S}, \lambda)$ ：在 $\boldsymbol{O}$ 是state sequence $\boldsymbol{S}$ 所產生的前提下，用model $\lambda$ 計算 $\boldsymbol{O}$ 的機率値
$-P(\mathbf{O}, \boldsymbol{S} \mid \lambda)$ ：用model $\lambda$ 計算 $[\mathbf{O}, \boldsymbol{S}]$ 兩者同時成立的機率値
$-P(\mathbf{S} \mid \mathbf{O}, \boldsymbol{\lambda})$ ：在已知 $\mathbf{O}$ 的前提下，用model $\boldsymbol{\lambda}$ 計算 $\boldsymbol{S}$ 的機率値
－Useful formula
－Bayesian Rule ：

$$
\begin{aligned}
& P(A \mid B)=\frac{P(A, B)}{P(B)}=\frac{P(B \mid A) P(A)}{P(B)} \square \begin{array}{l}
P(A \mid B, \lambda)=\frac{P(A, B \mid \lambda)}{P(B \mid \lambda)}=\frac{P(B \mid A, \lambda) P(A \mid \lambda)}{P(B \mid \lambda)} \\
P(A, B)=P(B \mid A) P(A)=P(A \mid B) P(B)
\end{array} \quad \begin{array}{l}
\text { : model describing the probability }
\end{array}
\end{aligned}
$$

## Hidden Markov Model

- Useful formula (Cont.):

$$
\begin{aligned}
& P(A)=\left\{\begin{array}{l}
\sum_{\text {all } B} P(A, B)=\sum_{\text {all } B} P(A \mid B) P(B), \quad \text { if } B \text { is disrete and disjoint } \\
\int_{B} f(A, B) d B=\int_{B} f(A \mid B) f(B) d B, \quad \text { if } B \text { is continuous }
\end{array}\right. \\
& \text { if } x_{1}, x_{2}, \ldots \ldots, x_{n} \text { are independent, } \\
& P\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)=P\left(x_{1}\right) P\left(x_{2}\right) \ldots \ldots P\left(x_{n}\right) \\
& E_{z}(q(z))= \begin{cases}\sum_{k} P(z=k) q(k), & z \text { : discrete } \\
\int_{z}^{k} f_{z}(z) q(z) d z, & z \text { : continuous }\end{cases}
\end{aligned}
$$

Expectation

## Hidden Markov Model

- Three Basic Problems for HMMs Given an observation sequence $O=\left(o_{1}, O_{2}, \ldots . ., o_{T}\right)$, and an HMM $\lambda=(S, A, B, \pi)$
- Problem 1:

How to efficiently compute $P(O \mid \lambda)$ ?
$\Rightarrow$ Evaluation problem

- Problem 2:

How to choose an optimal state sequence $\boldsymbol{S}=\left(s_{1}, s_{2}, \ldots . ., s_{T}\right)$ ?
$\Rightarrow$ Decoding Problem

- Problem 3:

How to adjust the model parameter $\lambda=(A, B, \pi)$ to maximize $P(O \mid \lambda)$ ?
$\Rightarrow$ Learning / Training Problem

## Basic Problem 1 of HMM

Given $\boldsymbol{O}$ and $\lambda$, find $P(\boldsymbol{O} \mid \lambda)=$ Prob[observing $O$ given $\lambda]$

- Direct Evaluation
- Evaluating all possible state sequences of length $T$ that generating observation sequence $\boldsymbol{O}$

$$
P(\boldsymbol{O} \mid \lambda)=\sum_{\text {all } s} P(\boldsymbol{O}, \boldsymbol{S} \mid \lambda)=\sum_{\text {all } S} P(\boldsymbol{O} \mid \boldsymbol{S}, \lambda) P(\boldsymbol{S} \mid \lambda)
$$

- $P(\boldsymbol{S} \mid \lambda)$ : The probability of each path $\boldsymbol{S}$
- By Markov assumption (First-order HMM)

$$
\begin{aligned}
& P(\boldsymbol{S} \mid \lambda)=P\left(s_{1} \mid \lambda\right) \prod_{t=2}^{T} P\left(s_{t} \mid s_{1}^{t-1}, \lambda\right) \\
& \approx P\left(s_{1} \mid \lambda\right) \prod_{t=2}^{T} P\left(s_{t} \mid s_{t-1}, \lambda\right) \\
& =\pi_{s_{1}} a_{s_{1} s_{2}} a_{s_{2} s_{3}} \ldots a_{s_{T-1} s_{T}}
\end{aligned}
$$

## Basic Problem 1 of HMM

- Direct Evaluation (cont.)
- $P(\boldsymbol{O} \mid \boldsymbol{S}, \lambda)$ : The joint output probability along the path $S$
- By output-independent assumption
- The probability that a particular observation symbol/vector is emitted at time $t$ depends only on the state $s_{t}$ and is conditionally independent of the past observations

$$
\begin{aligned}
P(\boldsymbol{O} \mid \boldsymbol{S}, \lambda) & =P\left(\boldsymbol{o}_{1}^{T} \mid s_{1}^{T}, \lambda\right) \\
& =P\left(\boldsymbol{o}_{1} \mid s_{1}^{T}, \lambda\right) \prod_{t=2}^{T} P\left(\boldsymbol{o}_{t} \mid \boldsymbol{o}_{1}^{t-1}, s_{1}^{T}, \lambda\right) \\
& \approx \prod_{t=1}^{T} P\left(\boldsymbol{o}_{t} \mid s_{t}, \lambda\right) \\
& =\prod_{t=1}^{T} b_{s_{t}}\left(\boldsymbol{o}_{t}\right)
\end{aligned}
$$

## Basic Problem 1 of HMM

- Direct Evaluation (Cont.)

$$
\begin{aligned}
P(\boldsymbol{O} \mid \lambda) & =\sum_{\text {all } \boldsymbol{S}} P(\boldsymbol{S} \mid \lambda) P(\boldsymbol{O} \mid \boldsymbol{S}, \lambda) \\
& \left.=\sum_{\text {all } \boldsymbol{s}}\left(\left[\pi_{s_{1}} a_{s_{1} s_{2}} a_{s_{2} s_{3}} \ldots . . a_{s_{T-1} s_{T}}\right] b_{s_{1}}\left(\boldsymbol{o}_{1}\right) b_{s_{2}}\left(\boldsymbol{o}_{2}\right) \ldots . b_{s_{T}}\left(\boldsymbol{o}_{T}\right)\right]\right) \\
& =\sum_{s_{1}, s_{2}, \ldots, s_{T}} \pi_{s_{1}} b_{s_{1}}\left(\boldsymbol{o}_{1}\right) a_{s_{1} s_{2}} b_{s_{2}}\left(\boldsymbol{o}_{2}\right) \ldots . a_{s_{T-1} s_{T}} b_{s_{T}}\left(\boldsymbol{o}_{T}\right)
\end{aligned}
$$

- Huge Computation Requirements: $O\left(N^{T}\right)$
- Exponential computational complexity

$$
\text { Complexity }:(2 T-1) N^{T} M U L \quad \approx 2 T N^{T}, N^{T}-1 \mathrm{ADD}
$$

- A more efficient algorithms can be used to evaluate $P(\boldsymbol{O} \mid \lambda)$
- Forward/Backward Procedure/Algorithm


## Basic Problem 1 of HMM

- Direct Evaluation (Cont.)



## Basic Problem 1 of HMM <br> - The Forward Procedure

- Base on the HMM assumptions, the calculation of $P\left(s_{t} \mid s_{t-1}, \lambda\right)$ and $P\left(o_{t} \mid s_{t}, \lambda\right)$ involves only $s_{t-1}, s_{t}$ and $\boldsymbol{o}_{t}$, so it is possible to compute the likelihood with recursion on $t$
- Forward variable : $\alpha_{t}(i)=P\left(o_{1} o_{2} \ldots o_{t}, s_{t}=i \mid \lambda\right)$
- The probability that the HMM is in state $i$ at time $t$ having generating partial observation $\mathbf{o}_{1} \mathbf{o}_{2} \ldots \mathbf{o}_{t}$


## Basic Problem 1 of HMM <br> - The Forward Procedure

- Algorithm

1. Initialization $\alpha_{1}(i)=\pi_{i} b_{i}\left(\boldsymbol{o}_{1}\right), 1 \leq i \leq N$
2. Induction $\alpha_{t+1}(j)=\left[\sum_{i=1}^{N} \alpha_{t}(i) a_{i j}\right] b_{j}\left(\boldsymbol{o}_{t+1}\right), 1 \leq t \leq T-1,1 \leq j \leq N$
3.Termination $P(\boldsymbol{O} \mid \lambda)=\sum_{i=1}^{N} \alpha_{T}(i)$

- Complexity: $O\left(N^{2} T\right)$

$$
\begin{aligned}
& \text { MUL }: N(N+1)(T-1)+N \approx N^{2} T \\
& \text { ADD }:(N-1) N(T-1)+(N-1) \approx N^{2} T
\end{aligned}
$$

- Based on the lattice (trellis) structure

- Computed in a time-synchronous fashion from left-to-right, where each cell for time $t$ is completely computed before proceeding to time $t+1$
- All state sequences, regardless how long previously, merge to $N$ nodes (states) at each time instance $t$


## Basic Problem 1 of HMM <br> - The Forward Procedure

$$
\begin{aligned}
& \alpha_{t}(j)=P\left(o_{1} o_{2} \ldots o_{t}, s_{t}=j \mid \lambda\right) \\
& =P\left(o_{1} o_{2} \ldots o_{t} \mid s_{t}=j, \lambda\right) P\left(s_{t}=j \mid \lambda\right) \\
& P(A, B)=P(B \mid A) P(A) \quad \text { output } \\
& \text { independent } \\
& \text { assumption } \\
& =P\left(o_{1} o_{2} \ldots o_{t-1} \mid s_{t}=j, \lambda\right) P\left(o_{t} \mid s_{t}=j, \lambda\right) P\left(s_{t}=j \mid \lambda\right) \\
& P(B \mid A) P(A)=P(A, B) \\
& =P\left(o_{1} o_{2} \ldots o_{t-1}^{\left.t, s_{t}=j \mid \lambda\right) P\left(o_{t} \mid s_{t}=j, \lambda\right)}\right. \\
& P\left(o_{t} \mid s_{t}=j, \lambda\right)=b_{j}\left(o_{t}\right) \\
& =P\left(o_{1} o_{2} \ldots o_{t-1}, s_{t}=j \mid \lambda\right) b_{j}\left(\grave{o}_{t}\right) \\
& =\left[\sum_{i=1}^{N} P\left(o_{1} o_{2} \ldots o_{t-1}, s_{t-1}=i, s_{t}=j \mid \lambda\right)\right] b_{j}\left(o_{t}\right) \quad P(A) \sum_{\text {all }} P(A, B) \\
& =\left[\sum_{i=1}^{N} P\left(o_{1} o_{2} \ldots o_{t-1}, s_{t-1}=i \mid \lambda\right) P\left(s_{t}=j \mid o_{1} o_{2} \ldots o_{t-1}, s_{t-1}=i, \lambda\right)\right] b_{j}\left(o_{t}\right) \\
& =\left[\sum_{i=1}^{N} P\left(o_{1} o_{2} \ldots o_{t-1}, s_{t-1}=i \mid \lambda\right) P\left(s_{t}=j \mid s_{t-1}^{\prime}=i, \lambda\right)\right] b_{j}\left(o_{t}\right) \\
& =\left[\sum_{i=1}^{N} \alpha_{t-1}(i) a_{i j}\right] b_{j}\left(o_{t}\right) \\
& \text { first-order } \\
& \text { Markov } \\
& \text { assumption }
\end{aligned}
$$

## Basic Problem 1 of HMM

- The Forward Procedure
- $\alpha_{3}(3)=P\left(\boldsymbol{o}_{1}, \boldsymbol{o}_{2}, \boldsymbol{o}_{3}, s_{3}=3 \mid \lambda\right)$

$$
=\left[\alpha_{2}(1)^{\star} a_{13}+\alpha_{2}(2)^{\star} a_{23}+\alpha_{2}(3) \star a_{33}\right] \mathrm{b}_{3}\left(\boldsymbol{o}_{3}\right)
$$

State


## Basic Problem 1 of HMM

- The Forward Procedure
- A three-state Hidden Markov Model for the Dow Jones Industrial average


Figure 8.4 The forward trellis computation for the HMM of the Dow Jones Industrial average.

## Basic Problem 1 of HMM <br> - The Backward Procedure

- Backward variable : $\beta_{t}(i)=P\left(\boldsymbol{o}_{t+1}, \boldsymbol{o}_{t+2}, \ldots ., \boldsymbol{o}_{T} \mid \mathrm{s}_{t}=i, \lambda\right)$

1. Initialization : $\beta_{\mathrm{T}}(i)=1,1 \leq i \leq N$
2. Induction: $\beta_{t}(i)=\sum_{j=1}^{N} a_{i j} b_{j}\left(\boldsymbol{o}_{t+1}\right) \beta_{t+1}(j), 1 \leq t \leq T-1,1 \leq j \leq N$
3. Termination : $P(\boldsymbol{O} \mid \lambda)=\sum_{j=1}^{N} \pi_{j} b_{j}\left(\boldsymbol{o}_{1}\right) \beta_{1}(j)$

Complexity MUL: $2 N^{2}(T-1)+2 N \approx N^{2} T$;
ADD: $(N-1) N(T-1)+N \approx N^{2} T$

## Basic Problem 2 of HMM

- Why $P\left(\boldsymbol{O}, s_{t}=i \mid \lambda\right)=\alpha_{t}(i) \beta_{t}(i) \quad$ ?

$$
\begin{aligned}
& \alpha_{t}(i) \beta_{t}(i) \\
& =P\left(\boldsymbol{o}_{1}, \boldsymbol{o}_{2}, \ldots, \boldsymbol{o}_{t}, s_{t}=i \mid \lambda\right) \cdot P\left(\boldsymbol{o}_{t+1}, \boldsymbol{o}_{t+2}, \ldots, \boldsymbol{o}_{T} \mid s_{t}=i, \lambda\right) \\
& =P\left(\boldsymbol{o}_{1}, \boldsymbol{o}_{2}, \ldots, \boldsymbol{o}_{t} \mid s_{t}=i, \lambda\right) P\left(s_{t}=i \mid \lambda\right) P\left(\boldsymbol{o}_{t+1}, \boldsymbol{o}_{t+2}, \ldots, \boldsymbol{o}_{T} \mid s_{t}=i, \lambda\right) \\
& =P\left(\boldsymbol{o}_{1}, \ldots, \boldsymbol{o}_{t}, \ldots, \boldsymbol{o}_{T} \mid s_{t}=i, \lambda\right) P\left(s_{t}=i \mid \lambda\right) \\
& =P\left(\boldsymbol{o}_{1}, \ldots, \boldsymbol{o}_{t}, \ldots, \boldsymbol{o}_{T}, s_{t}=i \mid \lambda\right) \\
& =P\left(\boldsymbol{O}, s_{t}=i \mid \lambda\right)
\end{aligned}
$$

- $P(\boldsymbol{O} \mid \lambda)=\sum_{i=1}^{N} P\left(\boldsymbol{O}, s_{t}=i \mid \lambda\right)=\sum_{i=1}^{N} \alpha_{t}(i) \beta_{t}(i)$


## Basic Problem 1 of HMM <br> - The Backward Procedure

- $\beta_{2}(3)=P\left(o_{3}, o_{4}, \ldots, o_{T} \mid s_{2}=\mathbf{3}, \lambda\right)$

$$
=a_{31}{ }^{*} b_{1}\left(o_{3}\right)^{*} \beta_{3}(1)+a_{32}{ }^{*} b_{2}\left(o_{3}\right)^{*} \beta_{3}(2)+a_{33}{ }^{*} b_{1}\left(o_{3}\right)^{*} \beta_{3}(3)
$$



## Basic Problem 2 of HMM

## How to choose an optimal state sequence $S=\left(s_{1}, s_{2}, \ldots . ., s_{T}\right)$ ?

- The first optimal criterion: Choose the states $s_{t}$ are individually most likely at each time $t$

Define a posteriori probability variable $\gamma_{t}(i)=P\left(s_{t}=i \mid \boldsymbol{O}, \lambda\right)$

$$
\gamma_{t}(i)=\frac{P\left(s_{t}=i, \boldsymbol{O} \mid \lambda\right)}{P(\boldsymbol{O} \mid \lambda)}=\frac{P\left(s_{t}=i, \boldsymbol{O} \mid \lambda\right)}{\sum_{m=1}^{N} P\left(s_{t}=m, \boldsymbol{O} \mid \lambda\right)}=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{m=1}^{N} \alpha_{t}(m) \beta_{t}(m)}
$$

- Solution : $\mathrm{s}_{t}{ }^{*}=\arg _{i} \max \left[\gamma_{t}(i)\right], 1 \leq t \leq T$
- Problem: maximizing the probability at each time $t$ individually $S^{*}=s_{1}{ }^{*} S_{2}{ }^{*} \ldots S_{T}{ }^{*}$ may not be a valid sequence (e.g. $a_{S_{t} s_{t+1^{*}}}=0$ )


## Basic Problem 2 of HMM

- $P\left(s_{3}=3, \boldsymbol{O} \mid \lambda\right)=\alpha_{3}(3)^{\star} \beta_{3}(3)$



## Basic Problem 2 of HMM <br> - The Viterbi Algorithm

- The second optimal criterion: The Viterbi algorithm can be regarded as the dynamic programming algorithm applied to the HMM or as a modified forward algorithm
- Instead of summing up probabilities from different paths coming to the same destination state, the Viterbi algorithm picks and remembers the best path
- Find a single optimal state sequence $S=\left(s_{1}, s_{2}, \ldots \ldots, s_{T}\right)$
- The Viterbi algorithm also can be illustrated in a trellis framework similar to the one for the forward algorithm


## Basic Problem 2 of HMM - The Viterbi Algorithm

- Algorithm

Find a best state sequence $\boldsymbol{S}=\left(s_{1}, s_{2}, \ldots, s_{T}\right)$ for a given
observation $\boldsymbol{O}=\left(\boldsymbol{o}_{1}, \boldsymbol{o}_{2}, \ldots, \boldsymbol{o}_{T}\right)$ ?
Define a new variable

$$
\delta_{t}(i)=\max _{s_{1}, s_{2}, \ldots, s_{t-1}} P\left[s_{1}, s_{2}, \ldots, s_{t-1}, s_{t}=i, \boldsymbol{o}_{1}, \boldsymbol{o}_{2}, \ldots, \boldsymbol{o}_{t} \mid \lambda\right]
$$

$=$ the best score along a single path at time $t$, which accounts for the first $t$ observation and ends in state $i$

By induction $\therefore \delta_{t+1}(j)=\left[\max _{1 \leq i \leq N} \delta_{t}(i) a_{i j}\right] b_{j}\left(\boldsymbol{o}_{t+1}\right)$

$$
\psi_{t+1}(j)=\arg \max _{1 \leq i \leq N} \delta_{t}(i) a_{i j} \ldots . \text { For backtracing }
$$

We can backtrace from $s_{T}^{*}=\arg \max _{1 \leq i \leq N} \delta_{T}(i)$

- Complexity: $O\left(N^{2} T\right)$


## Basic Problem 2 of HMM

- The Viterbi Algorithm



## Basic Problem 2 of HMM <br> - The Viterbi Algorithm

- A three-state Hidden Markov Model for the Dow Jones Industrial average


Figure 8.5 The Viterbi trellis computation for the HMM of the Dow Jones Industrial average.

## Basic Problem 2 of HMM <br> - The Viterbi Algorithm

- Algorithm in the logarithmic form

Find a best state sequence $\boldsymbol{S}=\left(s_{1}, s_{2}, . ., s_{T}\right)$ for a given
observation $\boldsymbol{O}=\left(\boldsymbol{o}_{1}, \boldsymbol{o}_{2}, \ldots, \boldsymbol{\sigma}_{T}\right)$ ?
Definea new variable

$$
\delta_{t}(i)=\max _{s_{1}, s_{2}, \ldots, s_{1-1}} \log P\left[s_{1}, s_{2}, \ldots, s_{t-1}, s_{t}=i, \boldsymbol{\sigma}_{1}, \boldsymbol{o}_{2}, \ldots, \boldsymbol{o}_{t} \mid \lambda\right]
$$

$=$ the best score along a single path at time $t$, which accounts for the first $t$ observation and ends in state $i$

By induction $\therefore \delta_{t+1}(j)=\left[\max _{1 \leq i \leq N}\left(\delta_{t}(i)+\log a_{i j}\right)\right]+\log b_{j}\left(\boldsymbol{o}_{t+1}\right)$

$$
\psi_{t+1}(j)=\arg \max _{1 \leq i \leq N}\left(\delta_{t}(i)+\log a_{i j}\right) \ldots . . \text { For backtracing }
$$

We can backtrace from $s_{T}^{*}=\arg \max _{1 \leq i \leq N} \delta_{T}(i)$

## Homework-2

- A three-state Hidden Markov Model for the Dow Jones Industrial average


Figure 8.2 A hidden Markov model for the Dow Jones Industrial average. The three states no longer have deterministic meanings as in the Markov chain illustrated in Figure 8.1.

- Find the probability:
$P(u p$, up, unchanged, down, unchanged, down, up $\mid \lambda$ )
- Fnd the optimal state sequence of the model which generates the observation sequence: (up, up, unchanged, down, unchanged, down, up)


## Probability Addition in F-B Algorithm

- In Forward-backward algorithm, operations usually implemented in logarithmic domain
- Assume that we want to add $P_{1}$ and $P_{2}$

$$
\begin{aligned}
& \text { if } P_{1} \geq P_{2} \\
& \quad \log _{b}\left(P_{1}+P_{2}\right)=\log P_{1}+\log _{b}\left(1+b^{\log _{b} P_{2}-\log _{b} P_{1}}\right) \\
& \text { else } \\
& \quad \log _{b}\left(P_{1}+P_{2}\right)=\log P_{2}+\log _{b}\left(1+b^{\log _{b} P_{1}-\log _{b} P_{2}}\right)
\end{aligned}
$$

The values of $\log _{b}\left(1+b^{x}\right)$ can be saved in in a table to speedup the operations

## Probability Addition in F-B Algorithm

- An example code

```
#define LZERO (-1.0E10) // ~log(0)
#define LSMALL (-0.5E10) // log values < LSMALL are set to LZERO
#define minLogExp -log(-LZERO)
double LogAdd(double x, double y)
{
double temp,diff,z;
    if (x<y)
    {
        temp = x; x = y; y = temp;
    }
    diff = y-x;
    if (diff<minLogExp)
        return (x<LSMALL) ? LZERO:x;
    else
    {
        z = exp(diff);
        return x+log(1.0+z);
    }
}
```


## Basic Problem 3 of HMM

## Intuitive View

- How to adjust (re-estimate) the model parameter $\lambda=(\boldsymbol{A}, \boldsymbol{B}, \pi)$ to maximize $P(\boldsymbol{O} \mid \lambda)$ ?
- The most difficult of the three problems, because there is no known analytical method that maximizes the joint probability of the training data in a close form
- The data is incomplete because of the hidden state sequences
- Well-solved by the Baum-Welch (known as forwardbackward) algorithm and EM (Expectation Maximization) algorithm
- Iterative update and improvement


## Basic Problem 3 of HMM Intuitive View

- Relation between the forward and backward variables
$\alpha_{t}(i)=P\left(\boldsymbol{o}_{1}, \boldsymbol{o}_{2}, \ldots, \boldsymbol{o}_{t}, s_{t}=i \mid \lambda\right)$
$\beta_{t}(i)=P\left(\boldsymbol{o}_{t+1}, \boldsymbol{o}_{t+2}, \ldots, \boldsymbol{o}_{T} \mid s_{t}=i, \lambda\right)$
$=\left[\sum_{j=1}^{N} \alpha_{t-1}(j) a_{j i}\right] b_{i}\left(\boldsymbol{o}_{t}\right)$

$$
=\sum_{j=1}^{N} \beta_{t+1}(j) b_{j}\left(\boldsymbol{o}_{t+1}\right) a_{i j}
$$

$t-1$
$t$ $t+1$


Figure 8.6 The relationship of $\alpha_{t-1}$ and $\alpha_{t}$ and $\beta_{t}$ and $\beta_{t+1}$ in the forward-backward algorithm.

## Basic Problem 3 of HMM Intuitive View

- Define a new variable:

$$
\xi_{t}(i, j)=P\left(s_{t}=i, s_{t+1}=j \mid \boldsymbol{O}, \lambda\right)
$$

- Probability being at state $i$ at time $t$ and at state $j$ at time $t+1$

$$
\begin{aligned}
\xi_{t}(i, j) & =\frac{P\left(s_{t}=i, s_{t+1}=j, \boldsymbol{O} \mid \lambda\right)}{P(\boldsymbol{O} \mid \lambda)} \\
& =\frac{\alpha_{t}(i) a_{i j} b_{j}\left(\boldsymbol{o}_{t+1}\right) \beta_{t+1}(j)}{P(\boldsymbol{O} \mid \lambda)}=\frac{\alpha_{t}(i) a_{i j} b_{j}\left(\boldsymbol{o}_{t+1}\right) \beta_{t+1}(j)}{\sum_{m=1 n=1}^{N} \sum_{t}(m) a_{m n} b_{n}\left(\boldsymbol{o}_{t+1}\right) \beta_{t+1}(n)}
\end{aligned}
$$

- Recall the posteriori probability variable:

$$
\begin{aligned}
& \gamma_{t}(i)=\sum_{j=1}^{N} P\left(s_{t}=j \mid \boldsymbol{O}, \lambda\right) \quad \text { Note: } \gamma_{t}(i) \text { also can be represented as } \frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{m=1}^{N} \alpha_{t}(m) \beta_{t}(m)} \\
& \gamma_{t}(i)=\sum_{j=1}^{N} P\left(s_{t}=i, s_{t+1}=j \mid \boldsymbol{O}, \lambda\right)=\sum_{j=1}^{N} \xi_{t}(i, j)
\end{aligned}
$$

## Basic Problem 3 of HMM Intuitive View

- $P\left(s_{3}=3, s_{4}=1, O \mid \lambda\right)=\alpha_{3}(3)^{*} a_{31}{ }^{*} b_{1}\left(o_{4}\right)^{\star} \beta_{1}(4)$

State



## Basic Problem 3 of HMM

## Intuitive View

- $\xi_{t}(i, j)=P\left(s_{t}=i, s_{t+1}=j \mid \boldsymbol{O}, \lambda\right)$

$$
\sum_{i=1}^{T-1} \xi_{t}(i, j)=\text { expected number of transitions from state } i \text { to state } j \text { in } \boldsymbol{O}
$$

- $\gamma_{t}(i)=\sum_{j=1}^{N} P\left(s_{t}=j \mid \boldsymbol{O}, \lambda\right)$

$$
\sum_{t=1}^{T-1} \gamma_{t}(i)=\sum_{t=1}^{T-1} \sum_{j=1}^{N} \xi_{t}(i, j)=\text { expected number of transitions from state } i \text { in } \boldsymbol{O}
$$

- A set of reasonable re-estimation formula for $\{A, \pi\}$ is $\bar{\pi}_{i}=$ expected freqency (number of times) in state $i$ at time $t=1$
$=\gamma_{1}(i)$
$\bar{a}_{i j}=\frac{\text { expected number of transition from state } i \text { to state } j}{\text { expected number of transition from state } i}=\frac{\sum_{i=1}^{T_{-1}} \xi_{t}(i, j)}{\sum_{t=1}^{T_{-1}} \gamma_{t}(i)}$


## Basic Problem 3 of HMM Intuitive View

- A set of reasonable re-estimation formula for $\{B\}$ is
- For Discrete and finite observation $b_{j}\left(\boldsymbol{v}_{k}\right)=P\left(\boldsymbol{o}_{t}=\boldsymbol{v}_{k} \mid \mathbf{s}_{t}=j\right)$

- For continuous and infinite observation $b_{j}(\boldsymbol{v})=f_{\mathbf{O} \mid \boldsymbol{s}}\left(\mathbf{o}_{t}=\boldsymbol{v} \mid \mathbf{s}_{t}=j\right)$,

$$
\bar{b}_{j}(\boldsymbol{v})=\sum_{k=1}^{M} \bar{c}_{j k} N\left(\boldsymbol{v} ; \overline{\boldsymbol{\mu}}_{j k}, \bar{\Sigma}_{j k}\right)=\sum_{k=1}^{M} \bar{c}_{j k}\left(\frac{1}{(\sqrt{2 \pi})^{t}\left|\overline{\boldsymbol{\Sigma}}_{j k}\right|^{1 / 2}} \exp \left(-\frac{1}{2}\left(\boldsymbol{v}-\overline{\boldsymbol{\mu}}_{j k}\right)^{t} \bar{\Sigma}_{j k}^{-1}\left(\boldsymbol{v}-\overline{\boldsymbol{\mu}}_{j k}\right)\right)\right)
$$

Modeled as a mixture of multivariate Gaussian distributions

## Basic Problem 3 of HMM

## Intuitive View

- For continuous and infinite observation (Cont.)
- Define a new variable $\gamma_{t}(j, k)$
- $\gamma_{t}(j, k)$ is the probability of being in state $j$ at time $t$ with the $k$-th mixture component accounting for $\boldsymbol{o}_{t}$
$\gamma_{t}(j, k)=P\left(s_{t}=j, m_{t}=k \mid \boldsymbol{O}, \lambda\right)$
$=P\left(s_{t}=j \mid \boldsymbol{O}, \lambda\right) P\left(m_{t}=k \mid s_{t}=j, \boldsymbol{O}, \lambda\right)$
$=\gamma_{t}(j) P\left(m_{t}=k \mid s_{t}=j, \boldsymbol{O}, \lambda\right)$
$=\gamma_{t}(j) \frac{P\left(m_{t}=k \mid s_{t}=j, \lambda\right) P\left(\boldsymbol{O} \mid s_{t}=j, m_{t}=k, \lambda\right)}{P\left(\boldsymbol{O} \mid s_{t}=j, \lambda\right)}$
(observation - independent assumption is applied)

$$
=\left[\frac{\alpha_{t}(j) \beta_{t}(j)}{\sum_{s=1}^{N} \alpha_{t}(s) \beta_{t}(s)}\right]\left[\frac{c_{j k} N\left(\boldsymbol{o}_{t} ; \boldsymbol{\mu}_{j k}, \boldsymbol{\Sigma}_{j k}\right)}{\sum_{m=1}^{M} c_{j m} N\left(\boldsymbol{o}_{t} ; \boldsymbol{\mu}_{j m}, \boldsymbol{\Sigma}_{j m}\right)}\right]
$$



Distribution for State 1
Note: $\gamma_{t}(j)=\sum_{m=1}^{M} \gamma_{t}(j, m)$

## Basic Problem 3 of HMM Intuitive View

- For Continuous and infinite observation (Cont.)

$$
\bar{c}_{j k}=\frac{\text { expected number of times in state } j \text { and mixture } k}{\text { expected number of times in state } j}=\frac{\sum_{t=1}^{T} \gamma_{t}(j, k)}{\sum_{t=1 m=1}^{T} \sum_{m}^{M} \gamma_{t}(j, m)}
$$

$\overline{\boldsymbol{\mu}}_{j k}=$ weighted average (mean) of observations at state $j$ and mixture $k=\frac{\sum_{t=1}^{\mathrm{T}} \gamma_{t}(j, k) \cdot \boldsymbol{o}_{t}}{\sum_{t=1}^{\mathrm{T}} \gamma_{t}(j, k)}$
$\bar{\Sigma}_{j k}=$ weighted covariance of observations at state $j$ and mixture $k$
$=\frac{\sum_{\mathrm{t}=1}^{\mathrm{T}} \gamma_{t}(j, k) \cdot\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)^{t}}{\sum_{\mathrm{t}=1}^{\mathrm{T}} \gamma_{t}(j, k)}$

## Semicontinuous HMMs

- The HMM state mixture density functions are tied together across all the models to form a set of shared kernels
- The semicontinuous or tied-mixture HMM
state output
Probability of state $j$

$$
b_{j}(\boldsymbol{o})=\sum_{k=1}^{M} b_{j}(k) f\left(\boldsymbol{o} \mid v_{k}\right)=\sum_{k=1}^{M} b_{j}(k) N\left(\boldsymbol{o}, \boldsymbol{\mu}_{k}, \Sigma_{k}\right)
$$


(discrete, model-dependent)

- A combination of the discrete HMM and the continuous HMM
- A combination of discrete model-dependent weight coefficient and continuous codebook probability density function
- Because $M$ is large, we can simply use the $L$ most significant values $f\left(o \mid v_{k}\right)$
- Experience showed that $L$ is $1 \sim 3 \%$ of $M$ is adequate
- Partial tying of $f\left(\boldsymbol{o} \mid v_{k}\right)$ for different phonetic class


## Semicontinuous HMMs



## Initialization of HMM

## - A good initialization of HMM training :

## Segmental K-Means Segmentation into States

- Assume that we have a training set of observations and an initial estimate of all model parameters
- Step 1 : The set of training observation sequences is segmented into states, based on the initial model (finding the optimal state sequence by Viterbi Algorithm)
- Step 2 : For discrete density HMM (using M-codeword codebook)

$$
\bar{b}_{j}(k)=\frac{\text { the number } \begin{array}{l}
\text { of vectors } \text { with codebook index } k \text { in state } j \\
\text { the number of vectors in state } j
\end{array}, \frac{}{j}}{\text { ther }}
$$

- For continuous density HMM (M Gaussian mixtures per state)
$\Rightarrow$ cluster the observation vectors within each state $j$ into a set of $M$ clusters
$\bar{w}_{j m}=$ number of vectors classified in cluster $m$ of state $j$
divided by the number of vectors in state $j$
$\bar{\mu}_{j m}=$ sample mean of the vectors classified in cluster $m$ of state $j$
$\bar{\Sigma}_{j m}=$ sample covariance matrix of the vectors classified in cluster $m$ of state $j$
- Step 3: Evaluate the model score.

If the difference between the previous and current model scores is greater than a threshold, go back to Step 1, otherwise stop the initial model is generated

## Initialization of HMM



## Initialization of HMM

- An example for discrete HMM
- 3 states and 2 codeword

- $b_{1}\left(v_{1}\right)=3 / 4, b_{1}\left(v_{2}\right)=1 / 4$
- $b_{2}\left(v_{1}\right)=1 / 3, b_{2}\left(v_{2}\right)=2 / 3$
- $b_{3}\left(v_{1}\right)=2 / 3, b_{3}\left(v_{2}\right)=1 / 3$

$$
\begin{aligned}
& \mathbf{v}_{1} \square \\
& \mathbf{v}_{2} \square
\end{aligned}
$$

## Initialization of HMM

- An example for Continuous HMM
- 3 states and 4 Gaussian mixtures per state



## HMM Topology

- Speech is time-evolving non-stationary signal
- Each HMM state has the ability to capture some quai-stationary segment in the non-stationary speech signal
- A left-to-right topology is a natural candidate to model the speech signal


Figure 8.8 A typical hidden Markov model used to model phonemes. There are three states (0-2) and each state has an associated output probability distribution.

- It is general to represent a phone using 3~5 states (English) and a syllable using 6~8 states (Mandarin Chinese)


## HMM Limitations

- The assumptions of conventional HMMs in Speech Processing
- The state duration follows an exponential distribution
- Don't provide adequate representation of the temporal structure of speech

$$
d_{i}(t)=a_{i i}^{t}\left(1-a_{i i}\right)
$$

- First order (Markov) assumption: the state transition depends only on the origin and destination
- Output-independent assumption: all observation frames are dependent on the state that generated them, not on neighboring observation frames

Researchers have proposed a number of techniques to address these limitations, albeit these solution have not significantly improved speech recognition accuracy for practical applications.

## HMM Limitations

- The HMM parameters trained by the Baum-Welch algorithm and EM algorithm were only locally optimized



## The EM Algorithm



Observed data : O : "ball sequence"
Latent data : S : "bottle sequence"
Parameters to be estimated to maximize $\log P(O \mid \lambda)$ $\lambda=\{P(A), P(B), P(B \mid A), P(A \mid B), P(R \mid A), P(G \mid A), P(R \mid B), P(G \mid B)\}$

## The EM Algorithm

－Introduction of EM（Expectation Maximization）：
－Why EM？
－Simple optimization algorithms for likelihood function relies on the intermediate variables，called latent（隱藏的）data In our case here，the state sequence is the latent data
－Direct access to the data necessary to estimate the parameters is impossible or difficult
In our case here，it is almost impossible to estimate $\{\boldsymbol{A}, \boldsymbol{B}, \pi\}$ without consideration of the state sequence
－Two Major Steps ：
－E ：expectation with respect to the latent data using the current estimate of the parameters and conditioned on the observations
－$M$ ：provides a new estimation of the parameters according to Maximum likelihood（ML）or Maximum A Posterior（MAP） Criteria

## The EM Algorithm

## ML and MAP

- Estimation principle based on observations:

$$
\boldsymbol{x}=\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}\right) \Longleftrightarrow \boldsymbol{X}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}
$$

- The Maximum Likelihood (ML) Principle
find the model parameter $\Phi$ so that the likelihood $p(x \mid \boldsymbol{\Phi})$ is maximum
 normal distribution, and $\boldsymbol{X}$ is i.i.d. (independent, identically distributed), then the ML estimate of $\boldsymbol{\Phi = \{ \mu , \Sigma \}}$ is

$$
\boldsymbol{\mu}_{M L}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}, \boldsymbol{\Sigma}_{M L}=\frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{M L}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}_{M L}\right)^{t}
$$

- The Maximum A Posteriori (MAP) Principle find the model parameter $\boldsymbol{\Phi}$ so that the likelihood $p(\boldsymbol{\Phi} \mid \boldsymbol{x})$ is maximum


## The EM Algorithm

- The EM Algorithm is important to HMMs and other learning techniques
- Discover new model parameters to maximize the log-likelihood of incomplete data $\log P(\boldsymbol{O} \mid \lambda)$ by iteratively maximizing the expectation of log-likelihood from complete datalog $P(\boldsymbol{O}, \boldsymbol{S} \mid \lambda)$
- Using scalar random variables to introduce the EM algorithm
- The observable training data $\boldsymbol{O}$
- We want to maximize $P(\boldsymbol{O} \mid \lambda)$, $\lambda$ is a parameter vector
- The hidden (unobservable) data $\boldsymbol{S}$
- E.g. the component densities of observable data $\boldsymbol{O}$, or the underlying state sequence in HMMs


## The EM Algorithm

- Assume we have $\lambda$ and estimate the probability that each $\boldsymbol{S}$ occurred in the generation of $\boldsymbol{O}$
- Pretend we had in fact observed a complete data pair $(\boldsymbol{O}, \boldsymbol{S})$ with frequency proportional to the probability $P(\boldsymbol{O}, \boldsymbol{S} \mid \lambda)$, to computed a new $\bar{\lambda}$, the maximum likelihood estimate of $\lambda$
- Does the process converge?
- Algorithm unknown model setting

$$
P(\boldsymbol{O}, \boldsymbol{S} \mid \bar{\lambda})=P(\boldsymbol{S} \mid \boldsymbol{O}, \bar{\lambda}) P(\boldsymbol{O} \mid \bar{\lambda}) \quad \text { Bayes' rule }
$$

complete data likelihood incomplete data likelihood

- Log-likelihood expression and expectation taken over $\boldsymbol{S}$

$$
\begin{aligned}
& \log P(\boldsymbol{O} \mid \bar{\lambda})=\log P(\boldsymbol{O}, \boldsymbol{S} \mid \bar{\lambda})-\log P(\boldsymbol{S} \mid \boldsymbol{O}, \bar{\lambda}) \\
& \log P(\boldsymbol{O} \mid \bar{\lambda})=\sum_{s}[P(\boldsymbol{S} \mid \boldsymbol{O}, \lambda) \log P(\boldsymbol{O} \mid \bar{\lambda})] \quad \text { take expecta } \\
& =\sum_{S}[P(\boldsymbol{S} \mid \boldsymbol{O}, \lambda) \log P(\boldsymbol{O}, \boldsymbol{S} \mid \bar{\lambda})]-\sum_{s}[P(\boldsymbol{S} \mid \boldsymbol{O}, \lambda) \log P(\boldsymbol{S} \mid \boldsymbol{O}, \bar{\lambda})]
\end{aligned}
$$

## The EM Algorithm

- Algorithm (Cont.)
- We can thus express $\log P(\boldsymbol{O} \mid \bar{\lambda})$ as follows

$$
\log P(\boldsymbol{O} \mid \bar{\lambda})
$$

$$
=\sum_{S}[P(\boldsymbol{S} \mid \boldsymbol{O}, \lambda) \log P(\boldsymbol{O}, \boldsymbol{S} \mid \bar{\lambda})]-\sum_{\boldsymbol{S}}[P(\boldsymbol{S} \mid \boldsymbol{O}, \lambda) \log P(\boldsymbol{S} \mid \boldsymbol{O}, \bar{\lambda})]
$$

$$
=Q(\lambda, \bar{\lambda})-H(\lambda, \bar{\lambda})
$$

where

$$
\begin{aligned}
& Q(\lambda, \bar{\lambda})=\sum_{s}[P(\boldsymbol{S} \mid \boldsymbol{O}, \lambda) \log P(\boldsymbol{O}, \boldsymbol{S} \mid \bar{\lambda})] \\
& H(\lambda, \bar{\lambda})=\sum_{S}[P(\boldsymbol{S} \mid \boldsymbol{O}, \lambda) \log P(\boldsymbol{S} \mid \boldsymbol{O}, \bar{\lambda})]
\end{aligned}
$$

- We want $\log P(\boldsymbol{O} \mid \bar{\lambda}) \geq \log P(\boldsymbol{O} \mid \lambda)$

$$
\begin{aligned}
& \log P(\boldsymbol{O} \mid \bar{\lambda})-\log P(\boldsymbol{O} \mid \lambda) \\
& =[Q(\lambda, \bar{\lambda})-H(\lambda, \bar{\lambda})]-[Q(\lambda, \lambda)-H(\lambda, \lambda)] \\
& =Q(\lambda, \bar{\lambda})-Q(\lambda, \lambda)-H(\lambda ; \cdot \bar{\lambda})+H(\lambda, \lambda)
\end{aligned}
$$

## The EM Algorithm

- $-H(\lambda, \bar{\lambda})+H(\lambda, \lambda)$ has the following property

$$
\begin{aligned}
& -H(\lambda, \bar{\lambda})+H(\lambda, \lambda) \\
& =-\sum_{s}\left[P(\boldsymbol{S} \mid \boldsymbol{O}, \lambda) \log \frac{P(\boldsymbol{S} \mid \boldsymbol{O}, \bar{\lambda})}{P(\boldsymbol{S} \mid \boldsymbol{O}, \lambda)}\right] \quad \text { Kullbuack-Leibler (KL) distance } \\
& \geq \sum_{s}\left[P(\boldsymbol{S} \mid \boldsymbol{O}, \lambda)\left(1-\frac{P(\boldsymbol{S} \mid \boldsymbol{O}, \bar{\lambda})}{P(\boldsymbol{S} \mid \boldsymbol{O}, \lambda)}\right)\right] \quad(\because \log x \leq x-1) \quad \text { Jensen's inequality } \\
& =\sum_{\boldsymbol{s}}[P(\boldsymbol{S} \mid \boldsymbol{O}, \lambda)-P(\boldsymbol{S} \mid \boldsymbol{O}, \bar{\lambda})] \\
& =0 \\
& \therefore-H(\lambda, \bar{\lambda})+H(\lambda, \lambda) \geq 0
\end{aligned}
$$

- Therefore, for maximizing $\log P(\boldsymbol{O} \mid \bar{\lambda})$, we only need to maximize the $Q$-function (auxiliary function)

$$
Q(\lambda, \bar{\lambda})=\sum_{S}[P(\boldsymbol{S} \mid \boldsymbol{O}, \lambda) \log P(\boldsymbol{O}, \boldsymbol{S} \mid \bar{\lambda})] \begin{aligned}
& \text { Expectation of the complete } \\
& \text { data log likelihood with respect } \\
& \text { to the latent state sequences }
\end{aligned}
$$

## EM Applied to Discrete HMM Training

- Apply EM algorithm to iteratively refine the HMM parameter vector $\lambda=(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{\pi})$
- By maximizing the auxiliary function

$$
\begin{aligned}
Q(\lambda, \bar{\lambda}) & =\sum_{S}[P(\boldsymbol{S} \mid \boldsymbol{O}, \lambda) \log P(\boldsymbol{O}, \boldsymbol{S} \mid \bar{\lambda})] \\
& =\sum_{S}\left[\frac{P(\boldsymbol{O}, \boldsymbol{S} \mid \lambda)}{P(\boldsymbol{O} \mid \lambda)} \log P(\boldsymbol{O}, \boldsymbol{S} \mid \bar{\lambda})\right]
\end{aligned}
$$

- Where $P(\boldsymbol{o}, \boldsymbol{S} \mid \lambda)$ and $P(\boldsymbol{O}, \boldsymbol{S} \mid \bar{\lambda})$ can be expressed as

$$
\begin{aligned}
& P(\boldsymbol{O}, \boldsymbol{S} \mid \lambda)=\pi \pi_{s_{1}}\left[\prod_{t=1}^{T-1} a_{s_{t} s_{t+1}}\right]\left[\prod_{t=1}^{T} b_{s_{t}}\left(\boldsymbol{o}_{t}\right)\right] \\
& \log P(\boldsymbol{O}, \boldsymbol{S} \mid \lambda)=\log \pi_{s_{1}}+\sum_{t=1}^{T-1} \log a_{s_{s}, s_{t+1}}+\sum_{t=1}^{T} \log b_{s_{t}}\left(\boldsymbol{o}_{t}\right) \\
& \log P(\boldsymbol{O}, \boldsymbol{S} \mid \bar{\lambda})=\log \bar{\pi}_{s_{1}}+\sum_{t=1}^{T-1} \log \overline{a_{s, s_{t+1}}}+\sum_{t=1}^{T} \log \overline{b_{s_{t}}}\left(\boldsymbol{o}_{t}\right)
\end{aligned}
$$

## EM Applied to Discrete HMM Training

- Rewrite the auxiliary function as
$Q(\lambda, \bar{\lambda})=Q_{\pi}(\lambda, \bar{\pi})+Q_{a}(\lambda, \overline{\boldsymbol{a}})+Q_{b}(\lambda, \overline{\boldsymbol{b}})$

$Q_{\pi}(\lambda, \bar{\pi})=\sum_{\text {all } s}\left[\frac{P(\boldsymbol{O}, \boldsymbol{S} \mid \boldsymbol{\lambda})}{P(\boldsymbol{O} \mid \lambda)} \log \bar{\pi}_{s_{1}}\right] \stackrel{?}{=} \sum_{i=1}^{N}\left[\frac{P\left(\boldsymbol{O}, s_{1}=i \mid \lambda\right)}{P(\boldsymbol{O} \mid \lambda)} \log \bar{\pi}_{i}\right]$
$Q_{a}(\lambda, \overline{\boldsymbol{a}})=\sum_{\text {all } s}\left[\frac{P(\boldsymbol{O}, \boldsymbol{S} \mid \lambda)}{P(\boldsymbol{O} \mid \lambda)} \sum_{t=1}^{T-1} \log \bar{a}_{s, s_{t+1}}\right] \stackrel{?}{=} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{t=1}^{T-1}\left[\frac{P\left(\boldsymbol{O}, s_{t}=i, s_{t+1}=j \mid \lambda\right)}{P(\boldsymbol{O} \mid \lambda)} \log \bar{a}_{i j}\right]$
$Q_{b}(\lambda, \overline{\boldsymbol{b}})=\sum_{\mathrm{ails}}\left[\frac{P(\boldsymbol{O}, \boldsymbol{S} \mid \lambda)}{P(\boldsymbol{O} \mid \lambda)} \sum_{t=1}^{T} \log \bar{b}_{s_{s}}(k)\right] ?{ }^{2} \sum_{j=1}^{N} \sum_{k} \sum_{t \in o_{i}=v_{k}}\left[\frac{P\left(\boldsymbol{O}, s_{t}=j \mid \lambda\right)}{P(\boldsymbol{O} \mid \lambda)} \log \bar{b}_{j}(k)\right]$



## EM Applied to Discrete HMM Training

- The auxiliary function contains three independent terms, $\pi_{i}, a_{i j}$ and $b_{j}(k)$
- Can be maximized individually
- All of the same form
$F(\boldsymbol{y})=g\left(y_{1}, y_{2}, \ldots,, y_{N}\right)=\sum_{j=1}^{N} w_{j} \log y_{j}$, where $\sum_{j=1}^{N} y_{j}=1$, and $y_{j} \geq 0$
$F(\boldsymbol{y})$ has maximum value when : $y_{j}=\frac{w_{j}}{\sum_{j=l}^{N} w_{j}}$


## EM Applied to Discrete HMM Training

- Proof: Apply Lagrange Multiplier

By applying Lagrange Multiplier $\ell$
Suppose that $F=\sum_{j=1}^{N} w_{j} \log y_{j}=\sum_{j=1}^{N} w_{j} \log y_{j}+\ell\left(\sum_{j=1}^{N} y_{j}-1\right)$

$$
\frac{\partial F}{\partial y_{j}}=\frac{w_{j}}{y_{j}}+\ell=0 \Rightarrow \ell=-\frac{w_{j}}{y_{j}} \forall j
$$

Constraint
$\ell \sum_{j=1}^{N} y_{j}=-\sum_{j=1}^{N} w_{j} \Rightarrow \ell=-\sum_{j=1}^{N} w_{j}$
$\therefore y_{j}=\frac{w_{j}}{\sum_{j=1}^{N} w_{j}}$

## EM Applied to Discrete HMM Training

- The new model parameter set $\bar{\lambda}=(\overline{\boldsymbol{\pi}}, \overline{\boldsymbol{A}}, \overline{\boldsymbol{B}})$ can be expressed as:

$$
\begin{aligned}
& \bar{\pi}_{i}=\frac{P\left(\boldsymbol{O}, s_{1}=i \mid \lambda\right)}{P(\boldsymbol{O} \mid \lambda)}=\gamma_{1}(i) \\
& \bar{a}_{i j}=\frac{\sum_{t=1}^{T-1} P\left(\boldsymbol{O}, s_{t}=i, s_{t+1}=j \mid \lambda\right)}{\sum_{t=1}^{T-1} P\left(\boldsymbol{O}, s_{t}=i \mid \lambda\right)}=\frac{\sum_{t=1}^{T-1} \xi_{t}(i, j)}{\sum_{t=1}^{T-1} \gamma_{t}(i)} \\
& \overline{b_{i}}(k)=\frac{\sum_{\substack{t=1 \\
T}}^{T-1} P\left(\boldsymbol{O}, s_{t}=i \mid \lambda\right)}{\sum_{t=1}^{T} P\left(\boldsymbol{o}, v_{k}\right.} \boldsymbol{T} P\left(s_{t}=i \mid \lambda\right)
\end{aligned} \frac{\sum_{\substack{t=1 \\
\text { s.t }}}^{T} \gamma_{t}(i)}{\sum_{t=1}^{T} \gamma_{t}(i)}
$$

## EM Applied to Continuous HMM Training

- Continuous HMM: the state observation does not come from a finite set, but from a continuous space
- The difference between the discrete and continuous HMM lies in a different form of state output probability
- Discrete HMM requires the quantization procedure to map observation vectors from the continuous space to the discrete space
- Continuous Mixture HMM
- The state observation distribution of HMM is modeled by multivariate Gaussian mixture density functions ( $M$ mixtures)

$$
\begin{aligned}
b_{j}(\boldsymbol{o}) & =\sum_{k=1}^{M} c_{j k} b_{j k}(\boldsymbol{o}) \\
& \left.=\sum_{k=1}^{M} c_{j k} N\left(\boldsymbol{o}, \boldsymbol{\mu}_{j k}, \boldsymbol{\Sigma}_{j k}\right)=\sum_{k=1}^{M} c_{j k}\left(\frac{1}{(\sqrt{2 \pi})^{2}\left|\Sigma_{j k}\right|^{1 / 2}} \exp \left(-\frac{1}{2}\left(\boldsymbol{o}-\boldsymbol{\mu}_{j k}\right)\right)^{\prime} \boldsymbol{\Sigma}_{j k}^{-1}\left(\boldsymbol{o}-\boldsymbol{\mu}_{j k}\right)\right)\right) \\
& \sum_{k=1}^{M} c_{j k}=1
\end{aligned}
$$



## EM Applied to Continuous HMM Training

- Express $b_{j}(\boldsymbol{o})$ with respect to each single mixture component $b_{j k}(\boldsymbol{o})$

> Note:


$$
=\left(a_{11}+a_{12}+\ldots+a_{1 M}\right)\left(a_{21}+a_{22}+\ldots+a_{2 M}\right) \ldots\left(a_{T 1}+a_{T 2}+\ldots+a_{T M}\right)
$$

$$
\downarrow=\pi_{s_{1}}\left\{\prod_{i=1}^{T-1} a_{s, s_{t+1}}\right\}\left\{\sum_{k_{1}=k_{k_{2}=1}^{M}}^{M} \cdots \cdots \sum_{k_{T}=1}^{M} \prod_{t=1}^{T}\left[c_{s, k_{i}} b_{s, k_{i}}\left(\boldsymbol{o}_{t}\right)\right]\right\}
$$

$P(\boldsymbol{O}, \boldsymbol{S}, \boldsymbol{K} \mid \boldsymbol{\lambda})=\pi_{s_{1}}\left\{\prod_{l=1}^{T-1} a_{s, s_{t, 1}}\right\}\left\{\prod_{i=1}^{T}\left[c_{s, t, t} b_{s, k_{i}}\left(\boldsymbol{o}_{\boldsymbol{t}}\right)\right]\right\}$
$\boldsymbol{K}$ : one of the possible mixture component sequence along with the state sequence $\boldsymbol{S}$

$$
P(\boldsymbol{O} \mid \lambda)=\sum_{S} \sum_{\boldsymbol{K}} P(\boldsymbol{O}, \boldsymbol{S}, \boldsymbol{K} \mid \lambda)
$$

## EM Applied to Continuous HMM Training

- Therefore, an auxiliary function for the EM algorithm can be written as:

$$
\begin{aligned}
& Q(\lambda, \bar{\lambda})=\sum_{\boldsymbol{S}} \sum_{\boldsymbol{K}}[P(\boldsymbol{S}, \boldsymbol{K} \mid \boldsymbol{O}, \lambda) \log P(\boldsymbol{O}, \boldsymbol{S}, \boldsymbol{K} \mid \bar{\lambda})] \\
& =\sum_{S} \sum_{K}\left[\frac{P(\boldsymbol{o}, \boldsymbol{S}, \boldsymbol{K} \mid \lambda)}{P(\boldsymbol{o} \mid \lambda)} \log P(\boldsymbol{o}, \boldsymbol{S}, \boldsymbol{K} \mid \bar{\lambda})\right] \\
& \log P(\boldsymbol{O}, \boldsymbol{S}, \boldsymbol{K} \mid \bar{\lambda})=\log \bar{\pi}_{s_{1}}+\sum_{t=1}^{T-1} \log \bar{a}_{s_{s} s_{t+1}}+\sum_{t=1}^{T} \log \bar{s}_{s_{t} k_{t}}\left(\boldsymbol{o}_{t}\right)+\sum_{t=1}^{T} \log \bar{c}_{s_{t} k_{t}} \\
& Q(\lambda, \bar{\lambda})=Q_{\pi}(\lambda, \bar{\pi})+Q_{a}(\lambda, \overline{\boldsymbol{a}})+Q_{b}(\lambda, \overline{\boldsymbol{b}})+Q_{c}(\lambda, \bar{c})
\end{aligned}
$$

## EM Applied to Continuous HMM Training

- The only difference we have when compared with Discrete HMM training

$$
\begin{aligned}
& Q_{b}(\lambda, \overline{\boldsymbol{b}})=\sum_{t=1}^{T}\left\{\left[\sum_{j=1}^{N} \sum_{k=1}^{M}\left(j, k\left(s_{t}=j, k_{t}=k \mid \boldsymbol{O}, \lambda\right)\right] \log \bar{b}_{j k}\left(\boldsymbol{o}_{t}\right)\right\}\right. \\
& Q_{c}(\lambda, \overline{\boldsymbol{c}})=\sum_{t=1}^{T}\left\{\left[\sum_{j=1}^{N} \sum_{k=1}^{M} P\left(s_{t}=j, k_{t}=k \mid \boldsymbol{O}, \lambda\right)\right] \log \bar{c}_{j k}\left(\boldsymbol{o}_{t}\right)\right\}
\end{aligned}
$$

## EM Applied to Continuous HMM Training

Let $\gamma_{t}(j, k)=\sum_{k=1}^{M} P\left(s_{t}=j, k_{t}=k \mid \boldsymbol{O}, \lambda\right)$

$$
\bar{b}_{j k}\left(\boldsymbol{o}_{t}\right)=N\left(\boldsymbol{o}_{t} ; \overline{\boldsymbol{\mu}}_{j k}, \overline{\boldsymbol{\Sigma}}_{j k}\right)=\frac{1}{(2 \pi)^{L / 2}\left|\overline{\boldsymbol{\Sigma}}_{j k}\right|^{1 / 2}} \exp \left(-\frac{1}{2}\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)^{\prime} \overline{\boldsymbol{\Sigma}}_{j k}^{-1}\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)\right)
$$

$\log \bar{b}_{j k}\left(\boldsymbol{o}_{t}\right)=-L / 2 \cdot \log (2 \pi)+1 / 2 \cdot \log \left|\bar{\Sigma}_{j k}^{-1}\right|-\left(\frac{1}{2}\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)^{\prime} \overline{\boldsymbol{\Sigma}}_{j k}^{-1}\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)\right)$

$$
\frac{\partial \log \bar{b}_{j k}\left(\boldsymbol{o}_{t}\right)}{\partial \overline{\boldsymbol{\mu}}_{j k}}=\overline{\boldsymbol{\Sigma}}_{j k}^{-1}\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right) \quad \frac{d\left(\boldsymbol{x}^{T} \boldsymbol{C} \boldsymbol{x}\right)}{d \boldsymbol{x}}=\left(\boldsymbol{C}+\boldsymbol{C}^{T}\right) \boldsymbol{x}
$$

$\partial Q_{b}(\lambda, \bar{b}) \quad \partial \sum_{i=1}^{T}\left\{\left[\sum_{j=1}^{N} \sum_{k=1}^{M} \gamma_{t}(j, k) \log \bar{b}_{j k}\left(\boldsymbol{o}_{t}\right)\right]\right\} \quad$ and $\Sigma_{j k}^{-1}$ is symmetric here
$\frac{\partial Q_{b}(\lambda, \overline{\boldsymbol{b}})}{\partial \overline{\boldsymbol{\mu}}_{j k}}=\frac{\sum_{t=1}\left[\sum_{j=1} \sum_{k=1} \lambda\left(\overline{\boldsymbol{\mu}}_{j k}\right.\right.}{}$
$\Rightarrow \sum_{t=1}^{T}\left\{\gamma_{t}(j, k) \overline{\boldsymbol{\Sigma}}_{j k}^{-1}\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)\right\}=0$
$\Rightarrow \overline{\boldsymbol{\mu}}_{j k}=\frac{\sum_{t=1}^{T}\left[\gamma_{t}(j, k) \cdot \boldsymbol{o}_{t}\right]}{\sum_{t=1}^{T} \gamma_{t}(j, k)}$

## EM Applied to Continuous HMM Training

$$
\begin{aligned}
& \log \bar{b}_{j k}\left(\boldsymbol{o}_{t}\right)=-L / 2 \cdot \log (2 \pi)-1 / 2 \cdot \log \left|\bar{\Sigma}_{j k}\right|-\left(\frac{1}{2}\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)^{\prime} \overline{\boldsymbol{\Sigma}}_{j k}^{-1}\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)\right) \\
& \frac{\partial \log \bar{b}_{j k}\left(\boldsymbol{o}_{t}\right)}{\partial\left(\overline{\boldsymbol{\Sigma}}_{j k}\right)}=-\left[\frac{1}{2} \cdot\left|\overline{\overline{\boldsymbol{\Sigma}}_{j k}}\right|^{-1} \cdot\left|\overline{\bar{\Sigma}}_{\dot{j k}}\right| \cdot \overline{\boldsymbol{\Sigma}}_{j k}^{-1}-\left(\overline{\boldsymbol{\Sigma}}_{j k}^{-1} \frac{1}{2}\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)^{\prime} \overline{\boldsymbol{\Sigma}}_{j k}^{-1}\right)\right] \\
& =-\frac{1}{2} \cdot\left[\overline{\boldsymbol{\Sigma}}_{j k}^{-1}-\overline{\boldsymbol{\Sigma}}_{j k}^{-1}\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)^{\prime} \overline{\boldsymbol{\Sigma}}_{j k}^{-1}\right] \quad \frac{d\left(\boldsymbol{a}^{T} \boldsymbol{X}^{-1} \boldsymbol{b}\right)}{d \boldsymbol{X}}=-\boldsymbol{X}^{T} \boldsymbol{a} \boldsymbol{b}^{T} \boldsymbol{X}^{T} \\
& \frac{\partial Q_{b}(\lambda, \overline{\boldsymbol{b}})}{\partial\left(\overline{\boldsymbol{\Sigma}}_{j k}\right)}=\frac{\partial \sum_{t=1}^{T}\left\{\left[\sum_{j=1}^{N} \sum_{k=1}^{M} \gamma_{t}(j, k) \log \bar{b}_{j k}\left(\boldsymbol{o}_{t}\right)\right]\right\}}{\partial\left(\overline{\bar{\Sigma}^{-1}}\right)} \quad \frac{d[\operatorname{det}(\boldsymbol{X})]}{d \boldsymbol{X}}=\operatorname{det}(\boldsymbol{X}) \cdot \boldsymbol{X}^{-\boldsymbol{T}} \\
& \Rightarrow \sum_{t=1}^{T}\left\{\gamma_{t}(j, k)\left(-\frac{1}{2}\right) \cdot\left[\overline{\boldsymbol{\Sigma}}_{j k}^{-1}-\overline{\boldsymbol{\Sigma}}_{j k}^{-1}\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)^{\prime} \overline{\boldsymbol{\Sigma}}_{j k}^{-1}\right]\right\}=0 \\
& \Rightarrow \sum_{t=1}^{T} \gamma_{t}(j, k) \bar{\Sigma}_{j k}^{-1}=\sum_{t=1}^{T} \gamma_{t}(j, k) \bar{\Sigma}_{j k}^{-1}\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)^{\prime} \overline{\boldsymbol{\Sigma}}_{j k}^{-1} \\
& \left.\Rightarrow \sum_{t=1}^{T} \gamma_{t}(j, k) \widehat{\bar{\Sigma}}_{j k} \overline{\boldsymbol{\Sigma}}_{j k}^{-1} \widehat{\overline{\boldsymbol{\Sigma}}}_{j k}\right)=\sum_{t=1}^{T} \gamma_{t}(j, k) \overline{\boldsymbol{\Sigma}}_{j k} \overline{\boldsymbol{\Sigma}}_{j k}^{-1}\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)^{\prime} \overline{\boldsymbol{\Sigma}}_{j k}^{-1} \overline{\boldsymbol{\Sigma}}_{j k} \\
& \Rightarrow \overline{\boldsymbol{\Sigma}}_{j k}=\frac{\sum_{t=1}^{T}\left[\gamma_{t}(j, k) \cdot\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)\right]}{\sum_{t=1}^{T} \gamma_{t}(j, k)}
\end{aligned}
$$

## EM Applied to Continuous HMM Training

- The new model parameter set for each mixture component and mixture weight can be expressed as:

$$
\begin{aligned}
& \overline{\boldsymbol{\mu}}_{j k}=\frac{\sum_{i=1}^{T}\left[\frac{P\left(\boldsymbol{O}, s_{t}=j, k_{t}=k \mid \lambda\right)}{P(\boldsymbol{O} \mid \lambda)} \boldsymbol{o}_{t}\right]}{\sum_{i=1}^{T} \frac{P\left(\boldsymbol{O}, s_{t}=j, k_{t}=k \mid \lambda\right)}{P(\boldsymbol{O} \mid \lambda)}=\frac{\sum_{t=1}^{T}\left[\gamma_{t}(j, k) \boldsymbol{o}_{t}\right]}{\sum_{t=1}^{T} \gamma_{t}(j, k)}} \\
& \overline{\boldsymbol{\Sigma}}_{j k k}=\frac{\sum_{i=1}^{T} \frac{\left[\frac{P\left(\boldsymbol{O}, s_{t}=j, k_{t}=k \mid \lambda\right)}{P(\boldsymbol{O} \mid \lambda)}\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)^{\prime}\right]}{\sum_{t=1}^{T} \frac{P\left(\boldsymbol{O}, s_{t}=j, k_{t}=k \mid \lambda\right)}{P(\boldsymbol{O} \mid \lambda)}=\frac{\sum_{t=1}^{T}\left[\gamma_{t}(j, k)\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)\left(\boldsymbol{o}_{t}-\overline{\boldsymbol{\mu}}_{j k}\right)^{k}\right]}{\sum_{t=1}^{T} \gamma_{t}(j, k)}}}{\overline{\boldsymbol{c}}_{j k}=\frac{\sum_{t=1}^{T} \gamma_{t}(j, k)}{\sum_{t=1 k=1}^{T} \sum_{t}^{M} \gamma_{t}(j, k)}}
\end{aligned}
$$

## Symbols for Mathematical Operations

| A a | alpha |  |
| :--- | :--- | :--- |
| B $\beta$ | beta |  |
| $\Gamma$ | $y$ | gamma |
| E $\varepsilon$ | epsilon |  |
| $\Delta \delta$ | delta |  |
| $Z$ | $\zeta$ | zeta |
| H $\eta$ | eta |  |
| $\Theta \theta$ | theta |  |

I i iota<br>K к kappa<br>A $\lambda$ lambda<br>$\mathrm{M} \mu \mathrm{mu}$<br>N v nu<br>$\Xi \xi \mathrm{xi}$<br>O o omicron<br>$\Pi \pi$ рі

|  |  | rho |
| :---: | :---: | :---: |
| $\Sigma$ |  | sigma |
| T |  | tau |
|  | $v$ | upsilon |
|  |  | phi |
|  | $\chi$ | chi |
|  | $\psi$ | psi |
|  | 0 | omega |

