Hidden Markov Models for Speech Recognition

Berlin Chen 2003

References:

- 1. Rabiner and Juang, Fundamentals of Speech Recognition, Chapter 6
- 2. X. Huang et. al., Spoken Language Processing, Chapters 4, 8
- 3. Rabiner, "A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition," Proceedings of the IEEE, vol. 77, No. 2, February 1989

Introduction

Hidden Markov Model (HMM)

History

- Published in papers of Baum in late 1960s and early 1970s
- Introduced to speech processing by Baker (CMU) and Jelinek (IBM) in the 1970s

Assumption

- Speech signal can be characterized as a parametric random process
- Parameters can be estimated in a precise, well-defined manner

Three fundamental problems

- Evaluation of probability (likelihood) of a sequence of observations given a specific HMM
- Determination of a best sequence of model states
- Adjustment of model parameters so as to best account for observed signals

Observable Markov Model

- Observable Markov Model (Markov Chain)
 - First-order Markov chain of N states is a triple (S,A,π)
 - **S** is a set of *N* states
 - **A** is the $N \times N$ matrix of transition probabilities between states $P(s_t=j|s_{t-1}=i, s_{t-2}=k, \ldots)=P(s_t=j|s_{t-1}=i)\equiv A_{ij}$
 - π is the vector of initial state probability $\pi_i = P(s_1 = j)$
 - The output of the process is the set of states at each instant of time, when each state corresponds to an observable event
 - The output in any given state is not random (*deterministic!*)
 - Too simple to describe the speech signal characteristics

Fig. 1. A Markov chain with 5 states (labeled S_1 to S_5) with selected state transitions.

Observable Markov Model

Example 1: A 3-state Markov Chain λ

State 1 generates symbol A **only**, State 2 generates symbol B **only**, and State 3 generates symbol C **only**

$$\mathbf{A} = \begin{bmatrix} 0.6 & 0.3 & 0.1 \\ 0.1 & 0.7 & 0.2 \\ 0.3 & 0.2 & 0.5 \end{bmatrix}$$

$$\pi = \begin{bmatrix} 0.4 & 0.5 & 0.1 \end{bmatrix}$$

- Given a sequence of observed symbols $O = \{CABBCABC\}$, the **only one** corresponding state sequence is $\{S_3S_1S_2S_2S_3S_1S_2S_3\}$, and the corresponding probability is

$$P(O|\lambda)$$

= $P(S_3)P(S_1|S_3)P(S_2|S_1)P(S_2|S_2)P(S_3|S_2)P(S_1|S_3)P(S_2|S_1)P(S_3|S_2)$
= $0.1 \times 0.3 \times 0.3 \times 0.7 \times 0.2 \times 0.3 \times 0.3 \times 0.2 = 0.00002268$

Observable Markov Model

 Example 2: A three-state Markov chain for the Dow Jones Industrial average

state 1 - up (in comparison to the index of previous day)

state 2 - down (in comparison to the index of previous day)

state 3 - unchanged (in comparison to the index of previous day)

The probability of 5 consecutive up days

P(5 consecutive up days) = P(1,1,1,1,1)

$$= \pi_1 a_{11} a_{11} a_{11} a_{11} = 0.5 \times (0.6)^4 = 0.0648$$

Figure 8.1 A Markov chain for the Dow Jones Industrial average. Three states represent up, down, and unchanged, respectively.

The parameter for this Dow Jones Markov chain may include a state-transition probability matrix

$$A = \{a_{ij}\} = \begin{bmatrix} 0.6 & 0.2 & 0.2 \\ 0.5 & 0.3 & 0.2 \\ 0.4 & 0.1 & 0.5 \end{bmatrix} \qquad \boldsymbol{\pi} = (\pi_i)^t = \begin{bmatrix} 0.5 \\ 0.2 \\ 0.3 \end{bmatrix}$$

and an initial state probability matrix

- HMM, an extended version of Observable Markov Model
 - The observation is turned to be a probabilistic function (discrete or continuous) of a state instead of an one-to-one correspondence of a state
 - The model is a doubly embedded stochastic process with an underlying stochastic process that is not directly observable (hidden)
 - What is hidden? *The State Sequence!*According to the observation sequence, we are not sure which state sequence generates it!
- Elements of an HMM (the State-Output HMM) λ={S,A,B,π}
 - S is a set of N states
 - **A** is the $N \times N$ matrix of transition probabilities between states
 - B is a set of N probability functions, each describing the observation probability with respect to a state
 - $-\pi$ is the vector of initial state probability

- Two major assumptions
 - First order (Markov) assumption
 - The state transition depends only on the origin and destination
 - Time-invariant
 - Output-independent assumption
 - All observations are dependent on the state that generated them, not on neighboring observations

- Two major types of HMMs according to the observations
 - Discrete and finite observations:
 - The observations that all distinct states generate are finite in number

$$V=\{v_1, v_2, v_3, \dots, v_M\}, v_k \in R^L$$

- In this case, the set of observation probability distributions B={b_j(v_k)}, is defined as b_j(v_k)=P(o_t=v_k|s_t=j), 1≤k≤M, 1≤j≤N o_t: observation at time t, s_t: state at time t
 ⇒ for state j, b_i(v_k) consists of only M probability values

- Two major types of HMMs according to the observations
 - Continuous and infinite observations:
 - The observations that all distinct states generate are infinite and continuous, that is, V={v| v∈R^L}
 - In this case, the set of observation probability distributions $B=\{b_j(\mathbf{v})\}$, is defined as $b_j(\mathbf{v})=f_{O|S}(\mathbf{o}_t=\mathbf{v}|s_t=j)$, $1 \le j \le N$ $\Rightarrow b_j(\mathbf{v})$ is a continuous probability density function (pdf) and is often a mixture of Multivariate Gaussian (Normal) Distributions

$$b_{j}(\mathbf{v}) = \sum_{k=1}^{M} w_{jk} \left(\frac{1}{(2\pi)^{\frac{L}{2}} |\boldsymbol{\Sigma}_{jk}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2} (\mathbf{v} - \boldsymbol{\mu}_{jk})^{t} \boldsymbol{\Sigma}_{jk}^{-1} (\mathbf{v} - \boldsymbol{\mu}_{jk}) \right) \right)$$

$$\mathbf{Covariance}$$

$$\mathbf{Matrix}$$
Observation Vector

- Multivariate Gaussian Distributions
 - When $X=(X_1, X_2,..., X_n)$ is a *n*-dimensional random vector, the multivariate Gaussian pdf has the form:

$$\left| f(\mathbf{X} = \mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = N(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{\frac{n}{2}} |\boldsymbol{\Sigma}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{t} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right) \right|$$

where u is the n - dimensional mean vector,

 Σ is the coverance matrix, $\Sigma = E[(x - \mu)(x - \mu)^t] = E[xx^t] - \mu\mu^t$ and $|\Sigma|$ is the the dterminant of Σ

The *i-j*th elevment
$$\sigma_{ij}^2$$
 of Σ , $\sigma_{ij}^2 = E[(x_i - \mu_i)(x_j - \mu_j)] = E[x_i x_j] - \mu_i \mu_j$

- If $X_1, X_2, ..., X_n$ are independent, the covariance matrix is reduced to diagonal covariance
 - The distribution as *n* independent scalar Gaussian distributions
 - Model complexity is reduced

Multivariate Gaussian Distributions

Figure 3.13 Another two-dimensional multivariate Gaussian distribution with independent random variable x_1 and x_2 which have different variances.

- Covariance matrix of the partially decorrelated feature vectors
 - MFCC cepstrum without C₀

- Multivariate Mixture Gaussian Distributions (cont.)
 - More complex distributions with multiple local maxima can be approximated by Gaussian (a unimodal distribution) mixture

$$f(\mathbf{x}) = \sum_{k=1}^{M} w_k N_k(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k), \qquad \sum_{k=1}^{M} w_k = 1$$

Gaussian mixtures with enough mixture components can approximate any distribution

Example : a 3-state discrete HMM λ

$$\mathbf{A} = \begin{bmatrix} 0.6 & 0.3 & 0.1 \\ 0.1 & 0.7 & 0.2 \\ 0.3 & 0.2 & 0.5 \end{bmatrix}$$

$$b_1(\mathbf{A}) = 0.3, b_1(\mathbf{B}) = 0.2, b_1(\mathbf{C}) = 0.5$$

$$b_2(\mathbf{A}) = 0.7, b_2(\mathbf{B}) = 0.1, b_2(\mathbf{C}) = 0.2$$

$$b_3(\mathbf{A}) = 0.3, b_3(\mathbf{B}) = 0.6, b_3(\mathbf{C}) = 0.1$$

$$\pi = \begin{bmatrix} 0.4 & 0.5 & 0.1 \end{bmatrix}$$

{A:.7,B:.1,C:.2} {A:.3,B:.6,C:.1}

Given a sequence of observations O={ABC}, there are 27
 possible corresponding state sequences, and therefore the
 corresponding probability is

$$P(\mathbf{O}|\lambda) = \sum_{i=1}^{27} P(\mathbf{O}, \mathbf{S}_i | \lambda) = \sum_{i=1}^{27} P(\mathbf{O}|\mathbf{S}_i, \lambda) P(\mathbf{S}_i | \lambda), \quad \mathbf{S}_i : \text{state sequence}$$

$$E.g. \text{ when } \mathbf{S}_i = \{s_2 s_2 s_3\}, P(\mathbf{O}|\mathbf{S}_i, \lambda) = P(\mathbf{A}|s_2) P(\mathbf{B}|s_2) P(\mathbf{C}|s_3) = 0.7 * 0.1 * 0.1 = 0.007$$

$$P(\mathbf{S}_i | \lambda) = P(s_2) P(s_2 | s_2) P(s_3 | s_2) = 0.5 * 0.7 * 0.2 = 0.07$$
14

Notation :

- $O=\{o_1o_2o_3....o_T\}$: the observation (feature) sequence
- $S=\{s_1s_2s_3....s_7\}$: the state sequence
- $-\lambda$: model, for HMM, $\lambda = \{A,B,\pi\}$
- *P(O|λ)*: 用model *λ* 計算 *O* 的機率値
- $P(O|S,\lambda)$:在O是state sequence S 所產生的前提下,用 $model \lambda$ 計算 O 的機率值
- $P(O,S|\lambda)$:用model λ 計算[O,S]兩者同時成立的機率値
- $-P(S/O,\lambda)$:在已知O的前提下,用 $model \lambda$ 計算S的機率值

Useful formula

– Bayesian Rule :

$$P(A|B) = \frac{P(A,B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)} \implies P(A|B,\lambda) = \frac{P(A,B|\lambda)}{P(B|\lambda)} = \frac{P(B|A,\lambda)P(A|\lambda)}{P(B|\lambda)}$$

$$\lambda : \text{model describing the probability}$$

$$P(A,B) = P(B|A)P(A) = P(A|B)P(B)$$

Useful formula (Cont.):

$$P(A) = \begin{cases} \sum_{all \ B} P(A,B) = \sum_{all \ B} P(A|B)P(B), & \text{if } B \text{ is disrete and disjoint} \\ \int_{B} f(A,B)dB = \int_{B} f(A|B)f(B)dB, & \text{if } B \text{ is continuous} \end{cases}$$

if x_1, x_2, \dots, x_n are independent,

$$P(x_1,x_2,...,x_n) = P(x_1)P(x_2)....P(x_n)$$

$$E_{z}(q(z)) = \begin{cases} \sum_{k} P(z=k)q(k), & z : \text{discrete} \\ \int_{z}^{k} f_{z}(z)q(z)dz, & z : \text{continuous} \end{cases}$$

Expectation

- Three Basic Problems for HMMs
 Given an observation sequence O=(o₁,o₂,....,o_T),
 and an HMM λ=(S,A,B,π)
 - Problem 1:

How to *efficiently* compute $P(\mathbf{O}|\lambda)$?

⇒ Evaluation problem

Problem 2:

How to choose an optimal state sequence $S=(s_1, s_2, \ldots, s_T)$?

⇒ Decoding Problem

- Problem 3:

How to adjust the model parameter $\lambda = (A, B, \pi)$ to maximize $P(O|\lambda)$?

⇒ Learning / Training Problem

Given O and λ , find $P(O|\lambda)$ = Prob[observing O given λ]

- Direct Evaluation
 - Evaluating all possible state sequences of length T that generating observation sequence O

$$P\left(\boldsymbol{O}\mid\lambda\right) = \sum_{all\ \boldsymbol{S}} P\left(\boldsymbol{O},\boldsymbol{S}\mid\lambda\right) = \sum_{all\ \boldsymbol{S}} P\left(\boldsymbol{O}\mid\boldsymbol{S},\lambda\right) P\left(\boldsymbol{S}\mid\lambda\right)$$

- $-P(S|\lambda)$: The probability of each path **S**
 - By Markov assumption (First-order HMM)

$$P(\mathbf{S}|\lambda) = P(s_1|\lambda) \prod_{t=2}^{T} P(s_t|s_1^{t-1},\lambda)$$

$$\approx P(s_1|\lambda) \prod_{t=2}^{T} P(s_t|s_{t-1},\lambda)$$

$$= \pi_{s_1} a_{s_1s_2} a_{s_2s_3} \dots a_{s_{T-1}s_T}$$

- Direct Evaluation (cont.)
 - $-P(O|S,\lambda)$: The joint output probability along the path S
 - By output-independent assumption
 - The probability that a particular observation symbol/vector is emitted at time t depends only on the state s_t and is conditionally independent of the past observations

$$P(\boldsymbol{o} | \boldsymbol{S}, \lambda) = P(\boldsymbol{o}_{1}^{T} | s_{1}^{T}, \lambda)$$

$$= P(\boldsymbol{o}_{1} | s_{1}^{T}, \lambda) \prod_{t=2}^{T} P(\boldsymbol{o}_{t} | \boldsymbol{o}_{1}^{t-1}, s_{1}^{T}, \lambda)$$

$$\approx \prod_{t=1}^{T} P(\boldsymbol{o}_{t} | s_{t}, \lambda)$$

$$= \prod_{t=1}^{T} b_{s_{t}}(\boldsymbol{o}_{t})$$

Direct Evaluation (Cont.)

$$P(\mathbf{O}|\lambda) = \sum_{all \ S} P(\mathbf{S}|\lambda) P(\mathbf{O}|\mathbf{S},\lambda)$$

$$= \sum_{all \ S} \left[\left[\pi_{s_1} a_{s_1 s_2} a_{s_2 s_3} \dots a_{s_{T-1} s_T} \right] b_{s_1}(\mathbf{o}_1) b_{s_2}(\mathbf{o}_2) \dots b_{s_T}(\mathbf{o}_T) \right]$$

$$= \sum_{s_1, s_2, \dots, s_T} \pi_{s_1} b_{s_1}(\mathbf{o}_1) a_{s_1 s_2} b_{s_2}(\mathbf{o}_2) \dots a_{s_{T-1} s_T} b_{s_T}(\mathbf{o}_T)$$

- Huge Computation Requirements: $O(N^T)$
 - Exponential computational complexity

Complexity :
$$(2T-1)N^T MUL \approx 2TN^T, N^T-1 ADD$$

- A more efficient algorithms can be used to evaluate $P(\mathbf{O}|\lambda)$
 - Forward/Backward Procedure/Algorithm

Direct Evaluation (Cont.)

Basic Problem 1 of HMM - The Forward Procedure

- Base on the HMM assumptions, the calculation of $P(s_t|s_{t-1},\lambda)$ and $P(o_t|s_t,\lambda)$ involves only s_{t-1} , s_t and o_t , so it is possible to compute the likelihood with recursion on t
- Forward variable: $\alpha_t(i) = P(o_1 o_2 ... o_t, s_t = i | \lambda)$
 - The probability that the HMM is in state i at time t having generating partial observation $o_1 o_2 ... o_t$

Basic Problem 1 of HMM - The Forward Procedure

Algorithm

1. Initialization $\alpha_1(i) = \pi_i b_i(\mathbf{o}_1)$, $1 \le i \le N$

2. Induction
$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_t(i) a_{ij}\right] b_j(\boldsymbol{o}_{t+1}), \quad 1 \le t \le T-1, 1 \le j \le N$$

3. Termination
$$P(\mathbf{O}|\lambda) = \sum_{i=1}^{N} \alpha_{T}(i)$$

Complexity: O(N²T)

MUL :
$$N(N+1)(T-1)+N \approx N^2T$$

ADD :
$$(N-1)N(T-1)+(N-1)\approx N^2T$$

- Based on the lattice (trellis) structure
 - Computed in a time-synchronous fashion from left-to-right, where each cell for time t is completely computed before proceeding to time t+1
- All state sequences, regardless how long previously, merge to N nodes (states) at each time instance t

- The Forward Procedure

$$\alpha_{t}(j) = P(o_{1}o_{2}...o_{t}, s_{t} = j | \lambda)$$

$$= P(o_{1}o_{2}...o_{t} | s_{t} = j, \lambda)P(s_{t} = j | \lambda)$$

$$= P(o_{1}o_{2}...o_{t-1} | s_{t} = j, \lambda)P(o_{t} | s_{t} = j, \lambda)P(s_{t} = j | \lambda)$$

$$= P(o_{1}o_{2}...o_{t-1}, s_{t} = j | \lambda)P(o_{t} | s_{t} = j, \lambda)$$

$$= P(o_{1}o_{2}...o_{t-1}, s_{t} = j | \lambda)P(o_{t} | s_{t} = j, \lambda)$$

$$= P(o_{1}o_{2}...o_{t-1}, s_{t} = j | \lambda)P(o_{t} | s_{t} = j, \lambda)$$

$$= P(o_{1}o_{2}...o_{t-1}, s_{t} = j | \lambda)P(o_{t} | s_{t} = j, \lambda)$$

$$= \left[\sum_{i=1}^{N} P(o_{1}o_{2}...o_{t-1}, s_{t-1} = i, s_{t} = j | \lambda)P(s_{t} = j | o_{1}o_{2}...o_{t-1}, s_{t-1} = i, \lambda)\right]b_{j}(o_{t})$$

$$= \left[\sum_{i=1}^{N} P(o_{1}o_{2}...o_{t-1}, s_{t-1} = i | \lambda)P(s_{t} = j | s_{t-1} = i, \lambda)\right]b_{j}(o_{t})$$

$$= \left[\sum_{i=1}^{N} P(o_{1}o_{2}...o_{t-1}, s_{t-1} = i | \lambda)P(s_{t} = j | s_{t-1} = i, \lambda)\right]b_{j}(o_{t})$$
first-order Markov assumption

- The Forward Procedure

•
$$\alpha_3(3) = P(o_1, o_2, o_3, s_3 = 3 | \lambda)$$

= $[\alpha_2(1)^* a_{13} + \alpha_2(2)^* a_{23} + \alpha_2(3)^* a_{33}] b_3(o_3)$

- The Forward Procedure

A three-state Hidden Markov Model for the *Dow Jones Industrial average*

Figure 8.4 The forward trellis computation for the HMM of the Dow Jones Industrial average.

- The Backward Procedure

- Backward variable : $\beta_t(i) = P(\mathbf{o}_{t+1}, \mathbf{o}_{t+2}, \dots, \mathbf{o}_T | s_t = i, \lambda)$
 - 1. Initialization: $\beta_{\mathrm{T}}(i) = 1, 1 \le i \le N$
 - 2. Induction: $\beta_t(i) = \sum_{j=1}^{N} a_{ij} b_j(\mathbf{o}_{t+1}) \beta_{t+1}(j), \ 1 \le t \le T-1, 1 \le j \le N$
 - 3. Termination : $P(\mathbf{O}|\lambda) = \sum_{j=1}^{N} \pi_j b_j(\mathbf{o}_1) \beta_1(j)$

Complexity MUL:
$$2N^2(T-1) + 2N \approx N^2T$$
;

ADD:
$$(N-1)N(T-1) + N \approx N^2T$$

• Why
$$P(\mathbf{O}, s_t = i | \lambda) = \alpha_t(i) \beta_t(i)$$
 ?
$$\alpha_t(i) \beta_t(i)$$

$$= P(\mathbf{o}_1, \mathbf{o}_2, ..., \mathbf{o}_t, s_t = i | \lambda) \cdot P(\mathbf{o}_{t+1}, \mathbf{o}_{t+2}, ..., \mathbf{o}_T | s_t = i, \lambda)$$

$$= P(\mathbf{o}_1, \mathbf{o}_2, ..., \mathbf{o}_t | s_t = i, \lambda) P(s_t = i | \lambda) P(\mathbf{o}_{t+1}, \mathbf{o}_{t+2}, ..., \mathbf{o}_T | s_t = i, \lambda)$$

$$= P(\mathbf{o}_1, ..., \mathbf{o}_t, ..., \mathbf{o}_T | s_t = i, \lambda) P(s_t = i | \lambda)$$

$$= P(\mathbf{o}_1, ..., \mathbf{o}_t, ..., \mathbf{o}_T, s_t = i | \lambda)$$

$$= P(\mathbf{O}, s_t = i | \lambda)$$

•
$$P(\mathbf{O}|\lambda) = \sum_{i=1}^{N} P(\mathbf{O}, s_t = i|\lambda) = \sum_{i=1}^{N} \alpha_t(i) \beta_t(i)$$

- The Backward Procedure

• $\beta_2(3) = P(o_3, o_4, ..., o_7/s_2 = 3, \lambda)$ = $a_{31}^* b_1(o_3)^* \beta_3(1) + a_{32}^* b_2(o_3)^* \beta_3(2) + a_{33}^* b_1(o_3)^* \beta_3(3)$

How to choose an optimal state sequence $S=(s_1, s_2, \ldots, s_T)$?

 The first optimal criterion: Choose the states s_t are individually most likely at each time t

Define a posteriori probability variable $\gamma_t(i) = P(s_t = i | \mathbf{O}, \lambda)$

$$\gamma_{t}(i) = \frac{P(s_{t} = i, \mathbf{O}|\lambda)}{P(\mathbf{O}|\lambda)} = \frac{P(s_{t} = i, \mathbf{O}|\lambda)}{\sum_{m=1}^{N} P(s_{t} = m, \mathbf{O}|\lambda)} = \frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{m=1}^{N} \alpha_{t}(m) \beta_{t}(m)}$$

- Solution : $s_t^* = arg_i max [\gamma_t(i)], 1 \le t \le T$
 - Problem: maximizing the probability at each time t individually $S^* = s_1^* s_2^* \dots s_T^*$ may not be a valid sequence (e.g. $a_{s_t^* s_{t+1}^*} = 0$)

• $P(s_3 = 3, \mathbf{O} \mid \lambda) = \alpha_3(3) * \beta_3(3)$

- The Viterbi Algorithm
- The second optimal criterion: The Viterbi algorithm can be regarded as the dynamic programming algorithm applied to the HMM or as a modified forward algorithm
 - Instead of summing up probabilities from different paths coming to the same destination state, the Viterbi algorithm picks and remembers the best path
 - Find a single optimal state sequence $S=(s_1, s_2, \ldots, s_T)$
 - The Viterbi algorithm also can be illustrated in a trellis framework similar to the one for the forward algorithm

Basic Problem 2 of HMM - The Viterbi Algorithm

Algorithm

Find a best state sequence $S = (s_1, s_2, ..., s_T)$ for a given observation $O = (o_1, o_2, ..., o_T)$?

Define a new variable

$$\delta_{t}(i) = \max_{s_{1}, s_{2}, ..., s_{t-1}} P[s_{1}, s_{2}, ..., s_{t-1}, s_{t} = i, \boldsymbol{o}_{1}, \boldsymbol{o}_{2}, ..., \boldsymbol{o}_{t} | \lambda]$$

= the best score along a single path at time *t*, which accounts for the first *t* observation and ends in state *i*

By induction
$$\therefore \delta_{t+1}(j) = \left[\max_{1 \le i \le N} \delta_t(i) a_{ij}\right] b_j(\mathbf{o}_{t+1})$$

$$\psi_{t+1}(j) = \arg\max_{1 \le i \le N} \delta_t(i) a_{ij} \quad \text{ For backtracing}$$

We can backtrace from $s_T^* = \arg \max_{1 \le i \le N} \delta_T(i)$

Complexity: O(N²T)

Basic Problem 2 of HMM - The Viterbi Algorithm

Basic Problem 2 of HMM - The Viterbi Algorithm

A three-state Hidden Markov Model for the *Dow Jones Industrial average*

Figure 8.5 The Viterbi trellis computation for the HMM of the Dow Jones Industrial average.

Basic Problem 2 of HMM - The Viterbi Algorithm

Algorithm in the logarithmic form

Find a best state sequence $S = (s_1, s_2, ..., s_T)$ for a given observation $O = (o_1, o_2, ..., o_T)$?

Define a new variable

$$\delta_{t}(i) = \max_{s_{1}, s_{2}, ..., s_{t-1}} \log P[s_{1}, s_{2}, ..., s_{t-1}, s_{t} = i, \boldsymbol{o}_{1}, \boldsymbol{o}_{2}, ..., \boldsymbol{o}_{t} | \lambda]$$

= the best score along a single path at time *t*, which accounts for the first *t* observation and ends in state *i*

By induction :
$$\delta_{t+1}(j) = \left[\max_{1 \le i \le N} \left(\delta_t(i) + \log a_{ij}\right)\right] + \log b_j(\mathbf{o}_{t+1})$$

$$\psi_{t+1}(j) = \arg\max_{1 \le i \le N} \left(\delta_t(i) + \log a_{ij}\right) \dots \text{For backtracing}$$

We can backtrace from $s_T^* = \arg \max_{1 \le i \le N} \delta_T(i)$

Homework-2

 A three-state Hidden Markov Model for the Dow Jones Industrial average

Figure 8.2 A hidden Markov model for the Dow Jones Industrial average. The three states no longer have deterministic meanings as in the Markov chain illustrated in Figure 8.1.

- Find the probability:
 P(up, up, unchanged, down, unchanged, down, up|λ)
- Fnd the optimal state sequence of the model which generates the observation sequence: (up, up, unchanged, down, unchanged, down, up)

Probability Addition in F-B Algorithm

- In Forward-backward algorithm, operations usually implemented in logarithmic domain
- Assume that we want to add P_1 and P_2

if
$$P_1 \ge P_2$$

 $\log_b(P_1 + P_2) = \log_b P_1 + \log_b(1 + b^{\log_b P_2 - \log_b P_1})$
else
 $\log_b(P_1 + P_2) = \log_b P_2 + \log_b(1 + b^{\log_b P_1 - \log_b P_2})$

The values of $\log_b (1+b^x)$ can be saved in in a table to speedup the operations

Probability Addition in F-B Algorithm

An example code

```
#define LZERO (-1.0E10) // ~log(0)
#define LSMALL (-0.5E10) // log values < LSMALL are set to LZERO
#define minLogExp -log(-LZERO)
double LogAdd(double x, double y)
double temp, diff, z;
 if (x < y)
   temp = x; x = y; y = temp;
  diff = y-x;
 if (diff<minLogExp)</pre>
   return (x<LSMALL) ? LZERO:x;
  else
   z = \exp(diff);
   return x+log(1.0+z);
```

Intuitive View

- How to adjust (re-estimate) the model parameter $\lambda = (A, B, \pi)$ to maximize $P(O|\lambda)$?
 - The most difficult of the three problems, because there is no known analytical method that maximizes the joint probability of the training data in a close form
 - The data is incomplete because of the hidden state sequences
 - Well-solved by the Baum-Welch (known as forwardbackward) algorithm and EM (Expectation Maximization) algorithm
 - Iterative update and improvement

Intuitive View

Relation between the forward and backward variables

Figure 8.6 The relationship of α_{t-1} and α_t and β_t and β_{t+1} in the forward-backward algorithm.

Intuitive View

Define a new variable:

$$\xi_t(i,j) = P(s_t = i, s_{t+1} = j | \mathbf{O}, \lambda)$$

Probability being at state i at time t and at state j at time t+1

$$\xi_{t}(i,j) = \frac{P(s_{t} = i, s_{t+1} = j, \mathbf{O}|\lambda)}{P(\mathbf{O}|\lambda)}$$

$$= \frac{\alpha_{t}(i)a_{ij}b_{j}(\mathbf{o}_{t+1})\beta_{t+1}(j)}{P(\mathbf{O}|\lambda)} = \frac{\alpha_{t}(i)a_{ij}b_{j}(\mathbf{o}_{t+1})\beta_{t+1}(j)}{\sum_{m=1}^{N}\sum_{n=1}^{N}\alpha_{t}(m)a_{mn}b_{n}(\mathbf{o}_{t+1})\beta_{t+1}(n)}$$

Recall the posteriori probability variable:

$$\gamma_{t}(i) = \sum_{j=1}^{N} P(s_{t} = j | \boldsymbol{O}, \lambda)$$
Note: $\gamma_{t}(i)$ also can be represented as
$$\frac{\alpha_{t}(i)\beta_{t}(i)}{\sum_{m=1}^{N} \alpha_{t}(m)\beta_{t}(m)}$$

$$\gamma_{t}(i) = \sum_{j=1}^{N} P(s_{t} = i, s_{t+1} = j | \boldsymbol{O}, \lambda) = \sum_{j=1}^{N} \xi_{t}(i, j)$$

Intuitive View

• $P(s_3 = 3, s_4 = 1, \mathbf{O} \mid \lambda) = \alpha_3(3)^* a_{31}^* b_1(o_4)^* \beta_1(4)$

Intuitive View

- $\xi_t(i,j) = P(s_t = i, s_{t+1} = j | \mathbf{O}, \lambda)$ $\sum_{t=1}^{T-1} \xi_t(i,j) = \text{expected number of transitions from state } i \text{ to state } j \text{ in } \mathbf{O}$
- $\gamma_t(i) = \sum_{j=1}^N P(s_t = j | \mathbf{0}, \lambda)$ $\sum_{t=1}^{T-1} \gamma_t(i) = \sum_{t=1}^{T-1} \sum_{j=1}^N \xi_t(i, j) = \text{expected number of transitions from state } i \text{ in } \mathbf{0}$
- A set of reasonable re-estimation formula for $\{A, \pi\}$ is

 $\overline{\pi}_i$ = expected frequency (number of times) in state i at time t = 1 = $\gamma_1(i)$

$$\overline{a}_{ij} = \frac{\text{expected number of transition from state } i \text{ to state } j}{\text{expected number of transition from state } i} = \frac{\sum\limits_{t=1}^{T-1} \xi_t(i,j)}{\sum\limits_{t=1}^{T-1} \gamma_t(i)}$$

Intuitive View

- A set of reasonable re-estimation formula for {B} is
 - For Discrete and finite observation $b_i(\mathbf{v}_k) = P(\mathbf{o}_t = \mathbf{v}_k | \mathbf{s}_t = j)$

$$\overline{b}_{j}(\mathbf{v}_{k}) = \overline{P}(\mathbf{o} = \mathbf{v}_{k} | s = j) = \frac{\text{expected number of times in state } j \text{ and observing symbol } \mathbf{v}_{k}}{\text{expected number of times in state } j} = \frac{\sum_{t=1}^{1} \gamma_{t}(j)}{\sum_{t=1}^{T} \gamma_{t}(j)}$$

- For continuous and infinite observation $b_i(\mathbf{v}) = f_{O/S}(\mathbf{o}_t = \mathbf{v} | \mathbf{s}_t = \mathbf{j})$,

$$\overline{b}_{j}(\mathbf{v}) = \sum_{k=1}^{M} \overline{c}_{jk} N(\mathbf{v}; \overline{\boldsymbol{\mu}}_{jk}, \overline{\boldsymbol{\Sigma}}_{jk}) = \sum_{k=1}^{M} \overline{c}_{jk} \left(\frac{1}{(\sqrt{2\pi})^{L} |\overline{\boldsymbol{\Sigma}}_{jk}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{v} - \overline{\boldsymbol{\mu}}_{jk})^{t} \overline{\boldsymbol{\Sigma}}_{jk}^{-1} (\mathbf{v} - \overline{\boldsymbol{\mu}}_{jk})\right) \right)$$

Modeled as a mixture of multivariate Gaussian distributions

Intuitive View

- For continuous and infinite observation (Cont.)
 - Define a new variable $\gamma_t(j,k)$
 - $-\gamma_t(j,k)$ is the probability of being in state j at time t with the k-th mixture component accounting for \mathbf{o}_t

$$\gamma_{t}(j,k) = P(s_{t} = j, m_{t} = k | \mathbf{O}, \lambda)$$

$$= P(s_{t} = j | \mathbf{O}, \lambda) P(m_{t} = k | s_{t} = j, \mathbf{O}, \lambda)$$

$$= \gamma_{t}(j) P(m_{t} = k | s_{t} = j, \mathbf{O}, \lambda)$$

$$= \gamma_{t}(j) \frac{P(m_{t} = k | s_{t} = j, \lambda) P(\mathbf{O} | s_{t} = j, m_{t} = k, \lambda)}{P(\mathbf{O} | s_{t} = j, \lambda)}$$

(observation - independent assumption is applied)

• • • • •

$$= \left[\frac{\alpha_{t}(j)\beta_{t}(j)}{\sum_{s=1}^{N}\alpha_{t}(s)\beta_{t}(s)}\right] \left[\frac{c_{jk}N(\boldsymbol{o}_{t};\boldsymbol{\mu}_{jk},\boldsymbol{\Sigma}_{jk})}{\sum_{m=1}^{M}c_{jm}N(\boldsymbol{o}_{t};\boldsymbol{\mu}_{jm},\boldsymbol{\Sigma}_{jm})}\right]$$

Distribution for State 1

Note:
$$\gamma_t(j) = \sum_{m=1}^{M} \gamma_t(j, m)$$

Intuitive View

For Continuous and infinite observation (Cont.)

$$\overline{c}_{jk} = \frac{\text{expected number of times in state } j \text{ and mixture } k}{\text{expected number of times in state } j} = \frac{\sum\limits_{t=1}^{T} \gamma_t(j,k)}{\sum\limits_{t=l}^{T} \sum\limits_{m=1}^{M} \gamma_t(j,m)}$$

 $\overline{\mu}_{jk}$ = weighted average (mean) of observations at state j and mixture $k = \frac{\sum_{t=1}^{T} \gamma_{t}(j,k) \cdot o_{t}}{\sum_{t=1}^{T} \gamma_{t}(j,k)}$

$$\overline{\Sigma}_{jk} = \text{weighted covariance of observations at state } j \text{ and mixture } k$$

$$= \frac{\sum_{t=1}^{T} \gamma_{t}(j,k) \cdot \left(\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}\right) \left(\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}\right)^{t}}{\sum_{t=1}^{T} \gamma_{t}(j,k)}$$

Semicontinuous HMMs

- The HMM state mixture density functions are tied together across all the models to form a set of shared kernels
 - The semicontinuous or tied-mixture HMM

$$b_{j}(\boldsymbol{o}) = \sum_{k=1}^{M} b_{j}(k) f(\boldsymbol{o}|v_{k}) = \sum_{k=1}^{M} b_{j}(k) N(\boldsymbol{o}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})$$

state output Probability of state i

k-th mixture weight t of state i

k-th mixture density function or k-th codeword (shared across HMMs, M is very large) (discrete, model-dependent)

- A combination of the discrete HMM and the continuous HMM
 - A combination of discrete model-dependent weight coefficient and continuous codebook probability density function
- Because M is large, we can simply use the L most significant values $f(o|v_k)$
 - Experience showed that *L* is 1~3% of *M* is adequate
- Partial tying of $f(o|v_k)$ for different phonetic class

Semicontinuous HMMs

- A good initialization of HMM training :
 - Segmental K-Means Segmentation into States
 - Assume that we have a training set of observations and an initial estimate of all model parameters
 - Step 1 : The set of training observation sequences is segmented into states, based on the initial model (finding the optimal state sequence by *Viterbi* Algorithm)
 - Step 2 : For discrete density HMM (using M-codeword codebook)

```
\overline{b}_{j}(k) = \frac{\text{the number of vectors with codebook index } k \text{ in state } j}{\text{the number of vectors in state } j}
```

For continuous density HMM (M Gaussian mixtures per state)

```
\Rightarrow cluster the observation vectors within each state j into a set of M clusters \overline{w}_{jm} = number of vectors classified in cluster m of state j divided by the number of vectors in state j \overline{\mu}_{jm} = sample mean of the vectors classified in cluster m of state j \overline{\Sigma}_{jm} = sample covariance matrix of the vectors classified in cluster m of state j
```

Step 3: Evaluate the model score.
 If the difference between the previous and current model scores is greater than a threshold, go back to Step 1, otherwise stop the initial model is generated

- An example for discrete HMM
 - 3 states and 2 codeword

- $b_1(\mathbf{v}_1)=3/4$, $b_1(\mathbf{v}_2)=1/4$
- $b_2(\mathbf{v}_1)=1/3$, $b_2(\mathbf{v}_2)=2/3$
- $b_3(\mathbf{v}_1)=2/3$, $b_3(\mathbf{v}_2)=1/3$

- An example for Continuous HMM
 - 3 states and 4 Gaussian mixtures per state

HMM Topology

- Speech is time-evolving non-stationary signal
 - Each HMM state has the ability to capture some quai-stationary segment in the non-stationary speech signal
 - A *left-to-right* topology is a natural candidate to model the speech signal

Figure 8.8 A typical hidden Markov model used to model phonemes. There are three states (0-2) and each state has an associated output probability distribution.

 It is general to represent a phone using 3~5 states (English) and a syllable using 6~8 states (Mandarin Chinese)

HMM Limitations

- The assumptions of conventional HMMs in Speech Processing
 - The state duration follows an exponential distribution
 - Don't provide adequate representation of the temporal structure of speech

 $d_i(t) = a_{ii}^t (1 - a_{ii})$

- First order (Markov) assumption: the state transition depends only on the origin and destination
- Output-independent assumption: all observation frames are dependent on the state that generated them, not on neighboring observation frames

Researchers have proposed a number of techniques to address these limitations, albeit these solution have not significantly improved speech recognition accuracy for practical applications.

HMM Limitations

 The HMM parameters trained by the Baum-Welch algorithm and EM algorithm were only locally optimized

Observed data : **O** : "ball sequence"

Latent data : **S** : "bottle sequence"

Parameters to be estimated to maximize $\log P(O|\lambda)$ $\lambda = \{P(A), P(B|A), P(A|B), P(R|A), P(G|A), P(R|B), P(G|B)\}$

- Introduction of EM (Expectation Maximization):
 - Why EM?
 - Simple optimization algorithms for likelihood function relies on the intermediate variables, called latent (隱藏的)data In our case here, *the state sequence* is the latent data
 - Direct access to the data necessary to estimate the parameters is impossible or difficult
 In our case here, it is almost impossible to estimate {A,B, π} without consideration of the state sequence
 - Two Major Steps :
 - E: expectation with respect to the latent data using the current estimate of the parameters and conditioned on the observations
 - M: provides a new estimation of the parameters according to Maximum likelihood (ML) or Maximum A Posterior (MAP)
 Criteria

ML and **MAP**

Estimation principle based on observations:

$$\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n) \iff \mathbf{X} = \{X_1, X_2, ..., X_n\}$$

- The Maximum Likelihood (ML) Principle find the model parameter Φ so that the likelihood $p(x|\Phi)$ is maximum for example, if $\Phi = \{\mu, \Sigma\}$ is the parameters of a multivariate normal distribution, and \mathbf{X} is i.i.d. (independent, identically distributed), then the ML estimate of $\Phi = \{\mu, \Sigma\}$ is

$$\mu_{ML} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}, \ \Sigma_{ML} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i} - \mu_{ML})(\mathbf{x}_{i} - \mu_{ML})^{t}$$

- The Maximum A Posteriori (MAP) Principle find the model parameter Φ so that the likelihood $p(\Phi|x)$ is maximum

- The EM Algorithm is important to HMMs and other learning techniques
 - Discover new model parameters to maximize the log-likelihood of incomplete data $\log P(\boldsymbol{o}|\lambda)$ by iteratively maximizing the expectation of log-likelihood from complete data $\log P(\boldsymbol{o}, \boldsymbol{S}|\lambda)$
- Using scalar random variables to introduce the EM algorithm
 - The observable training data $oldsymbol{O}$
 - ullet We want to maximize $Poldsymbol{(O|\lambda)}$, $oldsymbol{\lambda}$ is a parameter vector
 - The hidden (unobservable) data $oldsymbol{S}$
 - ullet E.g. the component densities of observable data $oldsymbol{\mathcal{O}}$, or the underlying state sequence in HMMs

- Assume we have λ and estimate the probability that each Soccurred in the generation of O
- Pretend we had in fact observed a complete data pair (O, S) with frequency proportional to the probability $P(\mathbf{0}, \mathbf{S} | \lambda)$, to computed a new $\bar{\lambda}$, the maximum likelihood estimate of λ
- Does the process converge?
- Algorithm unknown model setting

$$P(O, S | \overline{\lambda}) = P(S | O, \overline{\lambda}) P(O | \overline{\lambda})$$
 Bayes' rule complete data likelihood incomplete data likelihood

• Log-likelihood expression and expectation taken over S

$$\log P(\boldsymbol{o}|\overline{\lambda}) = \log P(\boldsymbol{o}, \boldsymbol{S}|\overline{\lambda}) - \log P(\boldsymbol{S}|\boldsymbol{o}, \overline{\lambda})$$

$$\log P(\boldsymbol{o}|\overline{\lambda}) = \sum_{s} \left[P(\boldsymbol{S}|\boldsymbol{o}, \lambda) \log P(\boldsymbol{o}|\overline{\lambda}) \right]$$

$$= \sum_{s} \left[P(\boldsymbol{S}|\boldsymbol{o}, \lambda) \log P(\boldsymbol{o}, \boldsymbol{S}|\overline{\lambda}) \right] - \sum_{s} \left[P(\boldsymbol{S}|\boldsymbol{o}, \lambda) \log P(\boldsymbol{S}|\boldsymbol{o}, \overline{\lambda}) \right]$$

- Algorithm (Cont.)
 - We can thus express $\log P(\mathbf{O}|\overline{\lambda})$ as follows $\log P(\mathbf{O}|\overline{\lambda})$ $= \sum_{S} \left[P(S|\mathbf{O}, \lambda) \log P(\mathbf{O}, S|\overline{\lambda}) \right] \sum_{S} \left[P(S|\mathbf{O}, \lambda) \log P(S|\mathbf{O}, \overline{\lambda}) \right]$ $= Q(\lambda, \overline{\lambda}) H(\lambda, \overline{\lambda})$ where $Q(\lambda, \overline{\lambda}) = \sum_{S} \left[P(S|\mathbf{O}, \lambda) \log P(\mathbf{O}, S|\overline{\lambda}) \right]$ $H(\lambda, \overline{\lambda}) = \sum_{S} \left[P(S|\mathbf{O}, \lambda) \log P(S|\mathbf{O}, \overline{\lambda}) \right]$
 - We want $\log P(\mathbf{O}|\overline{\lambda}) \ge \log P(\mathbf{O}|\lambda)$ $\log P(\mathbf{O}|\overline{\lambda}) - \log P(\mathbf{O}|\lambda)$ $= [Q(\lambda, \overline{\lambda}) - H(\lambda, \overline{\lambda})] - [Q(\lambda, \lambda) - H(\lambda, \lambda)]$ $= Q(\lambda, \overline{\lambda}) - Q(\lambda, \lambda) - H(\lambda, \overline{\lambda}) + H(\lambda, \lambda)$

• $-H(\lambda, \overline{\lambda}) + H(\lambda, \lambda)$ has the following property $-H(\lambda, \overline{\lambda}) + H(\lambda, \lambda)$ $= -\sum_{S} \left[P(S|O, \lambda) \log \frac{P(S|O, \overline{\lambda})}{P(S|O, \lambda)} \right]$ $\geq \sum_{S} \left[P(S|O, \lambda) \left(1 - \frac{P(S|O, \overline{\lambda})}{P(S|O, \lambda)} \right) \right] \quad (\because \log x \le x - 1)$ $= \sum_{S} \left[P(S|O, \lambda) - P(S|O, \overline{\lambda}) \right]$ = 0 = 0

 $\therefore -H(\lambda, \overline{\lambda}) + H(\lambda, \lambda) \ge 0$ - Therefore, for maximizing $\log P(O|\overline{\lambda})$, we only need to maximize the Q-function (auxiliary function)

$$Q(\lambda, \overline{\lambda}) = \sum_{S} \left[P(S|O, \lambda) \log P(O, S|\overline{\lambda}) \right]$$

Expectation of the complete data log likelihood with respect to the latent state sequences

- Apply EM algorithm to iteratively refine the HMM parameter vector $\lambda = (A, B, \pi)$
 - By maximizing the auxiliary function

$$Q(\lambda, \overline{\lambda}) = \sum_{S} \left[P(S|O, \lambda) \log P(O, S|\overline{\lambda}) \right]$$
$$= \sum_{S} \left[\frac{P(O, S|\lambda)}{P(O|\lambda)} \log P(O, S|\overline{\lambda}) \right]$$

– Where $P(\boldsymbol{o}, \boldsymbol{S}|\lambda)$ and $P(\boldsymbol{o}, \boldsymbol{S}|\overline{\lambda})$ can be expressed as

$$P(\boldsymbol{o}, \boldsymbol{S} | \boldsymbol{\lambda}) = \pi_{s_1} \left[\prod_{t=1}^{T-1} a_{s_t s_{t+1}} \right] \left[\prod_{t=1}^{T} b_{s_t} (\boldsymbol{o}_t) \right]$$

$$\log P(\boldsymbol{o}, \boldsymbol{S} | \boldsymbol{\lambda}) = \log \pi_{s_1} + \sum_{t=1}^{T-1} \log a_{s_t s_{t+1}} + \sum_{t=1}^{T} \log b_{s_t} (\boldsymbol{o}_t)$$

$$\log P(\boldsymbol{o}, \boldsymbol{S} | \overline{\boldsymbol{\lambda}}) = \log \overline{\pi}_{s_1} + \sum_{t=1}^{T-1} \log \overline{a}_{s_t s_{t+1}} + \sum_{t=1}^{T} \log \overline{b}_{s_t} (\boldsymbol{o}_t)$$

Rewrite the auxiliary function as W; $Q(\lambda, \overline{\lambda}) = Q_{\pi}(\lambda, \overline{\pi}) + Q_{\pi}(\lambda, \overline{a}) + Q_{h}(\lambda, \overline{b})$ $Q_{\pi}(\lambda, \overline{\pi}) = \sum_{\text{all } S} \left[\frac{P(\boldsymbol{O}, \boldsymbol{S} | \lambda)}{P(\boldsymbol{O} | \lambda)} \log \overline{\pi}_{s_1} \right] = \sum_{i=1}^{N} \left[\frac{P(\boldsymbol{O}, s_1 = i | \lambda)}{P(\boldsymbol{O} | \lambda)} \log \overline{\pi}_{i} \right]$ $Q_{a}(\lambda, \overline{a}) = \sum_{a|l=S} \left[\frac{P(\boldsymbol{O}, S | \lambda)}{P(\boldsymbol{O} | \lambda)} \sum_{t=1}^{T-1} \log \overline{a}_{s_{t} s_{t+1}} \right] \stackrel{?}{=} \sum_{i=1}^{N} \sum_{t=1}^{N} \sum_{t=1}^{T-1} \left[\frac{P(\boldsymbol{O}, s_{t} = i, s_{t+1} = j | \lambda)}{P(\boldsymbol{O} | \lambda)} \log \overline{a}_{ij} \right]$ $Q_{b}(\lambda, \overline{b}) = \sum_{\text{all } S} \left[\frac{P(\boldsymbol{o}, S | \lambda)}{P(\boldsymbol{o} | \lambda)} \sum_{t=1}^{T} \log \overline{b}_{s_{t}}(k) \right] \stackrel{?}{=} \sum_{j=1}^{N} \sum_{k} \sum_{t \in o_{t} = v_{k}} \left[\frac{P(\boldsymbol{o}, s_{t} = j | \lambda)}{P(\boldsymbol{o} | \lambda)} \log \overline{b}_{j}(k) \right]$ t-2 $a_{ii}b_i(X_{t+1})$ $\alpha_{t-1}(i)$ $\beta_{t}(j)$ $\alpha_{i-1}(i)$ $\beta_{t+1}(j)$

Figure 8.7 Illustration of the operations required for the computation of $\gamma_i(i,j)$, which is the probability of taking the transition from state i to state j at time t.

- The auxiliary function contains three independent terms, π_i , a_{ii} and $b_j(k)$
 - Can be maximized individually
 - All of the same form

$$F(y) = g(y_1, y_2, ..., y_N) = \sum_{j=1}^{N} w_j \log y_j$$
, where $\sum_{j=1}^{N} y_j = 1$, and $y_j \ge 0$

$$F(y)$$
 has maximum value when : $y_j = \frac{w_j}{\sum\limits_{j=1}^{N} w_j}$

Proof: Apply Lagrange Multiplier

By applying Lagrange Multiplier ℓ

Suppose that
$$F = \sum_{j=1}^{N} w_j \log y_j = \sum_{j=1}^{N} w_j \log y_j + \ell \left(\sum_{j=1}^{N} y_j - 1 \right)$$

$$\frac{\partial F}{\partial y_j} = \frac{w_j}{y_j} + \ell = 0 \Longrightarrow \ell = -\frac{w_j}{y_j} \,\forall j$$

$$\ell \sum_{j=1}^{N} y_{j} = -\sum_{j=1}^{N} w_{j} \Longrightarrow \ell = -\sum_{j=1}^{N} w_{j}$$

$$\therefore y_j = \frac{w_j}{\sum\limits_{j=1}^N w_j}$$

Constraint

• The new model parameter set $\overline{\lambda} = (\overline{\pi}, \overline{A}, \overline{B})$ can be expressed as:

$$\overline{a}_{i} = \frac{P\left(\boldsymbol{o}, s_{1} = i | \lambda\right)}{P\left(\boldsymbol{o} | \lambda\right)} = \gamma_{1}(i)$$

$$\overline{a}_{ij} = \frac{\sum_{t=1}^{T-1} P\left(\boldsymbol{o}, s_{t} = i, s_{t+1} = j | \lambda\right)}{\sum_{t=1}^{T-1} P\left(\boldsymbol{o}, s_{t} = i | \lambda\right)} = \frac{\sum_{t=1}^{T-1} \xi_{t}(i, j)}{\sum_{t=1}^{T-1} \gamma_{t}(i)}$$

$$\frac{\sum_{t=1}^{T} P\left(\boldsymbol{o}, s_{t} = i | \lambda\right)}{\sum_{t=1}^{T} P\left(\boldsymbol{o}, s_{t} = i | \lambda\right)} = \frac{\sum_{t=1}^{T} \gamma_{t}(i)}{\sum_{t=1}^{T} \gamma_{t}(i)}$$

$$\overline{b}_{i}(k) = \frac{\sum_{t=1}^{T} P\left(\boldsymbol{o}, s_{t} = i | \lambda\right)}{\sum_{t=1}^{T} P\left(\boldsymbol{o}, s_{t} = i | \lambda\right)} = \frac{\sum_{t=1}^{T} \gamma_{t}(i)}{\sum_{t=1}^{T} \gamma_{t}(i)}$$

- Continuous HMM: the state observation does not come from a finite set, but from a continuous space
 - The difference between the discrete and continuous HMM lies in a different form of state output probability
 - Discrete HMM requires the quantization procedure to map observation vectors from the continuous space to the discrete space
- Continuous Mixture HMM
 - The state observation distribution of HMM is modeled by multivariate Gaussian mixture density functions (*M* mixtures)

$$b_{j}(\boldsymbol{o}) = \sum_{k=1}^{M} c_{jk} b_{jk}(\boldsymbol{o})$$

$$= \sum_{k=1}^{M} c_{jk} N(\boldsymbol{o}; \boldsymbol{\mu}_{jk}, \boldsymbol{\Sigma}_{jk}) = \sum_{k=1}^{M} c_{jk} \left(\frac{1}{\left(\sqrt{2\pi}\right)^{L} \left|\boldsymbol{\Sigma}_{jk}\right|^{1/2}} \exp\left(-\frac{1}{2} (\boldsymbol{o} - \boldsymbol{\mu}_{jk})^{L} \boldsymbol{\Sigma}_{jk}^{-1} (\boldsymbol{o} - \boldsymbol{\mu}_{jk})\right) \right)$$

$$\sum_{k=1}^{M} c_{jk} = 1$$
Distribution for State i
69

Express $b_i(\mathbf{o})$ with respect to each single mixture component $b_{ik}(o)$

Component
$$\delta_{jk}(\boldsymbol{o})$$

$$\prod_{t=1}^{T} \left(\sum_{k_{t}=1}^{M} a_{k_{t}}\right)$$

$$= (a_{11} + a_{12} + \dots + a_{1M})(a_{21} + a_{22} + \dots + a_{2M}) \dots (a_{T1} + a_{T2} + \dots + a_{TM})$$

$$= \sum_{k_{t}=1}^{M} \sum_{k_{t}=1}^{M} \dots \sum_{k_{t}=1}^{M} \prod_{t=1}^{T} a_{k_{t}}$$

$$= \pi_{s_{1}} \left\{ \prod_{t=1}^{T-1} a_{s_{t}} s_{t+1} \right\} \left\{ \sum_{k_{1}=1}^{M} \sum_{k_{2}=1}^{M} \dots \sum_{k_{T}=1}^{M} \prod_{t=1}^{T} \left[c_{s_{t}k_{t}} b_{s_{t}k_{t}}(\boldsymbol{o}_{t}) \right] \right\}$$

$$P(\boldsymbol{o}, \boldsymbol{S}, \boldsymbol{K} | \boldsymbol{\lambda}) = \pi \left\{ \prod_{t=1}^{T-1} a_{s_{t}} \right\} \left\{ \prod_{t=1}^{T} \left[c_{s_{t}k_{t}} b_{s_{t}k_{t}}(\boldsymbol{o}_{t}) \right] \right\}$$

$$P(\boldsymbol{O}, \boldsymbol{S}, \boldsymbol{K} | \boldsymbol{\lambda}) = \pi_{s_1} \left\{ \prod_{t=1}^{T-1} a_{s_t s_{t+1}} \right\} \left\{ \prod_{t=1}^{T} \left[c_{s_t k_t} b_{s_t k_t} (\boldsymbol{o}_t) \right] \right\}$$

K: one of the possible mixture component sequence along with the state sequence S

$$P(\mathbf{O}|\lambda) = \sum_{S} \sum_{K} P(\mathbf{O}, S, K|\lambda)$$

 Therefore, an auxiliary function for the EM algorithm can be written as:

$$Q(\lambda, \overline{\lambda}) = \sum_{S} \sum_{K} \left[P(S, K | O, \lambda) \log P(O, S, K | \overline{\lambda}) \right]$$
$$= \sum_{S} \sum_{K} \left[\frac{P(O, S, K | \lambda)}{P(O | \lambda)} \log P(O, S, K | \overline{\lambda}) \right]$$

$$\log P(\boldsymbol{O}, \boldsymbol{S}, \boldsymbol{K} | \overline{\lambda}) = \log \overline{\pi}_{s_1} + \sum_{t=1}^{T-1} \log \overline{a}_{s_t s_{t+1}} + \sum_{t=1}^{T} \log \overline{b}_{s_t k_t}(\boldsymbol{o}_t) + \sum_{t=1}^{T} \log \overline{c}_{s_t k_t}$$

$$Q(\lambda, \overline{\lambda}) = Q_{\pi}(\lambda, \overline{\pi}) + Q_{a}(\lambda, \overline{a}) + Q_{b}(\lambda, \overline{b}) + Q_{c}(\lambda, \overline{c})$$

initial probabilities

state transition probabilities

Gaussian density functions

mixture components

 The only difference we have when compared with Discrete HMM training

$$Q_{b}(\lambda, \overline{b}) = \sum_{t=1}^{T} \left\{ \left[\sum_{j=1}^{N} \sum_{k=1}^{M} P(s_{t} = j, k_{t} = k | \mathbf{O}, \lambda) \right] \log \overline{b}_{jk}(\mathbf{o}_{t}) \right\}$$

$$Q_{c}(\boldsymbol{\lambda}, \overline{c}) = \sum_{t=1}^{T} \left\{ \left[\sum_{j=1}^{N} \sum_{k=1}^{M} P(s_{t} = j, k_{t} = k | \boldsymbol{O}, \boldsymbol{\lambda}) \right] \log \overline{c}_{jk}(\boldsymbol{o}_{t}) \right\}$$

Let
$$\gamma_{t}(j,k) = \sum_{k=1}^{M} P(s_{t} = j, k_{t} = k | \boldsymbol{O}, \boldsymbol{\lambda})$$

$$\overline{b}_{jk}(\boldsymbol{o}_{t}) = N(\boldsymbol{o}_{t}; \overline{\boldsymbol{\mu}}_{jk}, \overline{\boldsymbol{\Sigma}}_{jk}) = \frac{1}{(2\pi)^{L/2} |\overline{\boldsymbol{\Sigma}}_{jk}|^{1/2}} \exp\left(-\frac{1}{2}(\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk})^{T} \overline{\boldsymbol{\Sigma}}_{jk}^{-1}(\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk})\right)$$

$$\log \overline{b}_{jk}(\boldsymbol{o}_{t}) = -\frac{L}{2} \cdot \log(2\pi) + \frac{1}{2} \cdot \log|\overline{\boldsymbol{\Sigma}}_{jk}^{-1}| - \left(\frac{1}{2}(\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk})^{T} \overline{\boldsymbol{\Sigma}}_{jk}^{-1}(\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk})\right)$$

$$\frac{1}{2} \log \overline{b}_{t}(\boldsymbol{o}_{t})$$

$$\frac{\partial \log \overline{b}_{jk} \left(\boldsymbol{o}_{t}\right)}{\partial \overline{\boldsymbol{\mu}}_{jk}} = \overline{\boldsymbol{\Sigma}}_{jk}^{-1} \left(\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}\right)$$

$$\frac{\partial Q_{b}(\lambda, \overline{b})}{\partial \overline{\mu}_{jk}} = \frac{\partial \sum_{t=1}^{T} \left\{ \left[\sum_{j=1}^{N} \sum_{k=1}^{M} \gamma_{t}(j, k) \log \overline{b}_{jk}(\boldsymbol{o}_{t}) \right] \right\}}{\partial \overline{\mu}_{jk}}$$

$$\Rightarrow \sum_{t=1}^{T} \left\{ \gamma_{t} \left(j, k \right) \overline{\Sigma}_{jk}^{-1} \left(\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk} \right) \right\} = 0$$

$$\Rightarrow \overline{\boldsymbol{\mu}}_{jk} = \frac{\sum_{t=1}^{T} \left[\gamma_{t} (j,k) \cdot \boldsymbol{o}_{t} \right]}{\sum_{t=1}^{T} \gamma_{t} (j,k)}$$

$$\frac{d (x^T C x)}{d x} = (C + C^T) x$$

and Σ_{jk}^{-1} is symmetric here

$$\log \overline{b}_{jk}(\boldsymbol{o}_{t}) = -\frac{L}{2} \cdot \log \left(2\pi\right) - \frac{1}{2} \cdot \log \left|\overline{\boldsymbol{\Sigma}}_{jk}\right| - \left(\frac{1}{2}(\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) \overline{\boldsymbol{\Sigma}}_{jk}^{-1}(\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk})\right)$$

$$\frac{\partial \log \overline{b}_{jk}(\boldsymbol{o}_{t})}{\partial (\overline{\boldsymbol{\Sigma}}_{jk})} = -\left[\frac{1}{2} \cdot \left|\overline{\boldsymbol{\Sigma}}_{jk}\right| - \left(\overline{\boldsymbol{\Sigma}}_{jk}\right| \cdot \overline{\boldsymbol{\Sigma}}_{jk}^{-1} - \left(\overline{\boldsymbol{\Sigma}}_{jk}^{-1} + \frac{1}{2}(\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) (\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) \overline{\boldsymbol{\Sigma}}_{jk}^{-1}\right)\right]$$

$$= -\frac{1}{2} \cdot \left[\overline{\boldsymbol{\Sigma}}_{jk}^{-1} - \overline{\boldsymbol{\Sigma}}_{jk}^{-1}(\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) (\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) \overline{\boldsymbol{\Sigma}}_{jk}^{-1}\right]$$

$$= -\frac{1}{2} \cdot \left[\overline{\boldsymbol{\Sigma}}_{jk}^{-1} - \overline{\boldsymbol{\Sigma}}_{jk}^{-1}(\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) (\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) \overline{\boldsymbol{\Sigma}}_{jk}^{-1}\right]$$

$$= -\frac{1}{2} \cdot \left[\overline{\boldsymbol{\Sigma}}_{jk}^{-1} - \overline{\boldsymbol{\Sigma}}_{jk}^{-1}(\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) (\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) \overline{\boldsymbol{\Sigma}}_{jk}^{-1}\right]$$

$$= -\frac{1}{2} \cdot \left[\overline{\boldsymbol{\Sigma}}_{jk}^{-1} - \overline{\boldsymbol{\Sigma}}_{jk}^{-1}(\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) (\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) \overline{\boldsymbol{\Sigma}}_{jk}^{-1}\right]$$

$$= -\frac{1}{2} \cdot \left[\overline{\boldsymbol{\Sigma}}_{jk}^{-1} - \overline{\boldsymbol{\Sigma}}_{jk}^{-1}(\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) (\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) \overline{\boldsymbol{\Sigma}}_{jk}^{-1}\right]$$

$$= -\frac{1}{2} \cdot \left[\overline{\boldsymbol{\Sigma}}_{jk}^{-1} - \overline{\boldsymbol{\Sigma}}_{jk}^{-1}(\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) (\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) \overline{\boldsymbol{\Sigma}}_{jk}^{-1}\right]$$

$$= -\frac{1}{2} \cdot \left[\overline{\boldsymbol{\Sigma}}_{jk}^{-1} - \overline{\boldsymbol{\Sigma}}_{jk}^{-1}(\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) (\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) \overline{\boldsymbol{\Sigma}}_{jk}^{-1}\right]$$

$$= -\frac{1}{2} \cdot \left[\overline{\boldsymbol{\Sigma}}_{jk}^{-1} - \overline{\boldsymbol{\Sigma}}_{jk}^{-1}(\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) (\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) \overline{\boldsymbol{\Sigma}}_{jk}^{-1}\right]$$

$$= -\frac{1}{2} \cdot \left[\overline{\boldsymbol{\Sigma}}_{jk}^{-1} - \overline{\boldsymbol{\Sigma}}_{jk}^{-1}(\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) (\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) \overline{\boldsymbol{\Sigma}}_{jk}^{-1}\right]$$

$$= -\frac{1}{2} \cdot \left[\overline{\boldsymbol{\Sigma}}_{jk}^{-1} - \overline{\boldsymbol{\Sigma}}_{jk}^{-1}(\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) (\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) \overline{\boldsymbol{\Sigma}}_{jk}^{-1}\right]$$

$$= -\frac{1}{2} \cdot \left[\overline{\boldsymbol{\Sigma}}_{jk}^{-1} - \overline{\boldsymbol{\Sigma}}_{jk}^{-1}(\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) (\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) \overline{\boldsymbol{\Sigma}}_{jk}^{-1}\right]$$

$$= -\frac{1}{2} \cdot \left[\overline{\boldsymbol{\Sigma}}_{jk}^{-1} - \overline{\boldsymbol{\Sigma}}_{jk}^{-1}(\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) (\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) \overline{\boldsymbol{\Sigma}}_{jk}^{-1}\right]$$

$$= -\frac{1}{2} \cdot \left[\overline{\boldsymbol{\Sigma}}_{jk}^{-1} - \overline{\boldsymbol{\Sigma}}_{jk}^{-1}(\boldsymbol{\sigma}_{t} - \overline{\boldsymbol{\mu}}_{jk}) (\boldsymbol{\sigma}_{t} - \overline{\boldsymbol{\mu}}_{jk}) \overline{\boldsymbol{\Sigma}}_{jk}^{-1}\right]$$

$$= -\frac{1}{2} \cdot \left[\overline{\boldsymbol{\Sigma}}_{$$

 The new model parameter set for each mixture component and mixture weight can be expressed as:

$$\overline{\boldsymbol{\mu}}_{jk} = \frac{\sum_{t=1}^{T} \left[\frac{P(\boldsymbol{O}, s_{t} = j, k_{t} = k | \boldsymbol{\lambda})}{P(\boldsymbol{O} | \boldsymbol{\lambda})} \boldsymbol{o}_{t} \right]}{\sum_{t=1}^{T} \frac{P(\boldsymbol{O}, s_{t} = j, k_{t} = k | \boldsymbol{\lambda})}{P(\boldsymbol{O} | \boldsymbol{\lambda})}} = \frac{\sum_{t=1}^{T} \left[\gamma_{t}(j, k) \boldsymbol{o}_{t} \right]}{\sum_{t=1}^{T} \gamma_{t}(j, k)}$$

$$\overline{\boldsymbol{\Sigma}}_{jk} = \frac{\sum_{t=1}^{T} \left[\frac{P(\boldsymbol{O}, s_{t} = j, k_{t} = k | \boldsymbol{\lambda})}{P(\boldsymbol{O} | \boldsymbol{\lambda})} (\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) (\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk})^{t} \right]}{\sum_{t=1}^{T} P(\boldsymbol{O}, s_{t} = j, k_{t} = k | \boldsymbol{\lambda})} = \frac{\sum_{t=1}^{T} \left[\gamma_{t} (j, k) (\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk}) (\boldsymbol{o}_{t} - \overline{\boldsymbol{\mu}}_{jk})^{t} \right]}{\sum_{t=1}^{T} \gamma_{t} (j, k)}$$

$$\overline{c}_{jk} = \frac{\sum_{t=1}^{T} \gamma_{t}(j,k)}{\sum_{t=1}^{T} \sum_{k=1}^{M} \gamma_{t}(j,k)}$$

Symbols for Mathematical Operations

Αα	alpha	Ιι	iota	Pβ	0	rho
	beta	$K \hspace{0.1cm} \kappa$	kappa	Σ	σ	sigma
	gamma	$\Lambda \lambda$	lambda	Τ -	τ	tau
	epsilon	$M \mu$	mu	Υ ′	υ	upsilon
Δδ	delta	Nν	nu	Φ	φ	pĥi
Ζζ		Ξξ				chi
•	eta	0 0	omicron	Ψ	ψ	psi
Θθ	theta	Ππ	pi	Ω	ω	omega