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Introduction

• Current speech recognition systems are mainly 
composed of :
– A front-end feature extractor (feature extraction 

module)
• Required to discover salient characteristics suited for classification
• Based on scientific and/or heuristic knowledge about patterns to

recognize

– A back-end classifier (classification module)
• Required to set class boundaries accurately in the feature space
• Statistically designed according to the fundamental Bayes’ decision 

theory
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Background Review:

Digital Signal Processing
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Analog Signal to Digital Signal
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Analog Signal to Digital Signal
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Analog Signal to Digital Signal

• A continuous signal sampled at different periods
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Analog Signal to Digital Signal
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Analog Signal to Digital Signal

• To avoid aliasing (overlapping, fold over)
– The sampling frequency should be greater than two times of 

frequency of the signal to be sampled →
– (Nyquist) sampling theorem

• To reconstruct the original continuous signal
– Filtered with a low pass filter with band limit

• Convolved in time domain 
sΩ
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Two Main Approaches to
Digital Signal Processing

• Filtering

• Parameter Extraction

Filter
Signal in Signal out
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Sinusoid Signals

– : amplitude (振幅)
– : angular frequency (角頻率), 
– : phase (相角)
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Sinusoid Signals

• is periodic with a period of N (samples)

• Examples (sinusoid signals)

– is periodic with period N=8
– is periodic with period N=16
– is not periodic
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Sinusoid Signals
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Sinusoid Signals

• Complex Exponential Signal
– Use Euler’s relation to express complex numbers
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Sinusoid Signals

• A Sinusoid Signal
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Sinusoid Signals

• Sum of two complex exponential signals with 
same frequency

– When only the real part is considered

– The sum of N sinusoids of the same frequency is 
another sinusoid of the same frequency
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Some Digital Signals
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Some Digital Signals

• Any signal sequence            can be represented 
as a sum of shift and scaled unit impulse 
sequences (signals) 
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Digital Systems

• A digital system T is a system that, given an 
input signal x[n], generates an output signal y[n]

[ ] [ ]{ }nxTny =

[ ]nx { }  T [ ]ny
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Properties of Digital Systems

• Linear
– Linear combination of inputs maps to linear 

combination of outputs

• Time-invariant (Time-shift)
– A time shift of in the input by m samples give a shift in 

the output by m samples

[ ] [ ]{ } [ ]{ } [ ]{ }nxbTnxaTnbxnaxT 2121 +=+

[ ] [ ]{ } mmnxTmny ∀±=±    ,
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Properties of Digital Systems

• Linear time-invariant (LTI)
– The system output can be expressed as a 

convolution (迴旋積分) of the input x[n] and the 
impulse response h[n]

– The system can be characterized by the system’s 
impulse response h[n], which also is a signal 
sequence 

• If the input x[n] is impulse        , the output is h[n][ ]nδ
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Properties of Digital Systems

• Linear time-invariant (LTI)
– Explanation: 

[ ] [ ] [ ]knkxnx
k

−= ∑
∞

−∞=
δ  

[ ]{ } [ ] [ ]{ }
[ ] [ ]{ }

[ ] [ ]
[ ] [ ]nhnx

knhkx

knTkx

knkxTnxT

k

k

k

∗=

−=

−=

−=⇒

∑

∑

∑

∞

−∞=

∞

−∞=

∞

−∞=

                 

                  

                  

  

δ

δ

scale

Time-shifted unit 
impulse sequence 

Time invariant 

Digital
System

[ ]nδ [ ]nh

linear 

Time-invariant

[ ] [ ]
[ ] [ ]knhkn

nhn
T

T

−→−

→

δ

δ

Impulse response 

convolution



22

Properties of Digital Systems

• Linear time-invariant (LTI)
– Convolution

• Example
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Properties of Digital Systems

• Linear time-invariant (LTI)
– Convolution: Generalization

• Reflect h[k] about the origin (→ h[-k]) 
• Slide (h[-k] → h[-k+n] or h[-(k-n)] ), multiply it with x[k]
• Sum up 
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Properties of Digital Systems

• Linear time-invariant (LTI)
– Convolution is commutative and distributive
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Properties of Digital Systems

• Bounded Input and Bounded Output (BIBO): stable

– A LTI system is BIBO if only if h[n] is absolutely summable
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Properties of Digital Systems

• Causality
– A system is “casual” if for every choice of n0, the output 

sequence value at indexing n=n0 depends on only the input 
sequence value for n≤n0

– Any noncausal FIR can be made causal by adding sufficient long 
delay
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Discrete-Time Fourier Transform (DTFT)

• Frequency Response
– Defined as the discrete-time Fourier Transform 

of
– is continuous and is periodic with period=

– is a complex function of 
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Discrete-Time Fourier Transform

• Representation of Sequences by Fourier Transform

– A sufficient condition for the existence of Fourier transform
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Discrete-Time Fourier Transform
• Convolution Property
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Discrete-Time Fourier Transform

• Parseval’s Theorem

– Define the autocorrelation of signal 
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Discrete-Time Fourier Transform
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Z-Transform

• z-transform is a generalization of (Discrete-Time) 
Fourier transform

– z-transform of               is defined as

• Where                        , a complex-variable
• For Fourier transform

– z-transform evaluated on 
the unit circle
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Z-Transform
• Fourier transform vs. z-transform

– Fourier transform used to plot the frequency response 
of a filter

– z-transform used to analyze more general filter 
characteristics, e.g. stability 

• ROC (Region of Converge)
– Is the set of z for which z-transform exists (converges)

– In general, ROC is a ring-shaped region and the 
Fourier transform exists if ROC includes the unit circle
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Z-Transform

• An LTI system is defined to be causal, if its 
impulse response is a causal signal, i.e.

– Similarly, anti-causal can be defined as

• An LTI system is defined to be stable, if for every 
bounded input it produces a bounded output
– Necessary condition:

• That is Fourier transform exists, and therefore z-transform 
include the unit circle in its region of converge  
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Z-Transform

• Right-Sided Sequence
– E.g., the exponential signal

[ ] [ ] [ ]




<
≥

==
0for    0
0for     1

  ere        wh,    .1 1 n
n

nunuanh n

( ) ( ) 1
1

1 1
1

−

∞

−∞=

−−∞

−∞= −
=== ∑∑

az
azzazH

n

nn

n

n

If 11 <−az

azROC >∴    is 1

Re

Im

a
[ ] 1  if exists  

ofansformFourier tr

1 <anh×

have a pole at
(Pole: z-transform goes to infinity) 

az =

the unit cycle

0



37

Z-Transform

• Left-Sided Sequence
– E.g.
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Z-Transform

• Two-Sided Sequence
– E.g.
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Z-Transform

• Finite-length Sequence
– E.g.

[ ]


 −≤≤

=
others             ,0

10           ,
    .3 4

Nna
nh

n

( ) ( ) ( )
az
az

zaz
azazzazH

NN

N

N
N

n

nN

n

nn

−
−

=
−

−
=== −−

−−

=

−−

=

− ∑∑ 11

11

0

11

0
4

1
1

1

0except  plane-  entire  is 4 =∴ zzROC

13221 ..... −−−− ++++ NNNN azaazz

Im

×

the unit cycle

3
1

−

7 poles at zero A pole and zero at 
is cancelled az =

4
π

( ) 11  ,
2

−== ,..,N  kaez N
kj

k

π

If N=8

0 N-1

Re



40

Z-Transform

• Properties of z-transform
1. If            is right-sided sequence, i.e.                         and if ROC

is the exterior of some circle, the all finite for which             
will be in ROC

• If             ,ROC will include 

2. If            is left-sided sequence, i.e.                         , the ROC is 
the interior of some circle, 

• If             ,ROC will include 
3. If            is two-sided sequence, the ROC is a ring
4. The ROC can’t contain any poles

[ ]nh [ ] 1  ,0 nnnh ≤=

01 ≥n

0rz >z

∞=z

[ ]nh [ ] 2  ,0 nnnh ≥=

02 <n 0=z
[ ]nh

A causal sequence is right-sided with               
ROC is the exterior of circle including  

01 ≥n
∞=z∴
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Summary of the Fourier and z-transforms
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LTI Systems in the Frequency Domain

• Example 1: A complex exponential 
sequence
– System impulse response

– Therefore, a complex exponential input to an LTI 
system results in the same complex exponential at 
the output, but modified by

• The complex exponential is an eigenfunction of an LTI 
system, and               is the associated eigenvalue
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LTI Systems in the Frequency Domain

• Example 2: A sinusoidal sequence

– System impulse response
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LTI Systems in the Frequency Domain

• Example 3: A sum of sinusoidal sequences

– A similar expression is obtained for an input 
consisting of a sum of complex exponentials 
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LTI Systems in the Frequency Domain

• Example 4: Convolution Theorem
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LTI Systems in the Frequency Domain

• Example 5: Windowing Theorem [ ] [ ] ( ) ( )ωω
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Difference Equation Realization 
for a Digital Filter

• The relation between the output and input of a 
digital filter can be expressed by
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Difference Equation Realization 
for a Digital Filter
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Magnitude-Phase Relationship

• Minimum phase system:
– The z-transform of a system impulse response 

sequence ( a rational transfer function) has all zeros as 
well as poles inside the unit cycle

– Poles and zeros called “minimum phase components”
– Maximum phase: all zeros (or poles) outside the unit 

cycle
• All-pass system:

– Consist a cascade of factor of the form

– Characterized by a frequency response
with unit (or flat) magnitude for all frequencies
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− az
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Magnitude-Phase Relationship

• Any digital filter can be represented by the cascade of a 
minimum-phase system and an all-pass system 
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FIR Filters

• FIR (Finite Impulse Response)
– The impulse response of an FIR filter has finite duration
– Have no denominator in the rational function

• No feedback in the difference equation

– Can be implemented with simple a train of delay, 
multiple, and add operations
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First-Order FIR Filters

• A special case of FIR filters
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Discrete Fourier Transform (DFT)

• The Fourier transform of a discrete-time 
sequence is a continuous function of frequency
– We need to sample the Fourier transform finely 

enough to be able to recover the sequence
– For a sequence of finite length N, sampling yields the 

new transform referred to as discrete Fourier 
transform (DFT)
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Discrete Fourier Transform (DFT)
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Discrete Fourier Transform (DFT)

• Orthogonality of Complex Exponentials
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Discrete Fourier Transform (DFT)

• Parseval’s theorem
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