Speech Signal Representations

Berlin Chen 2003

References:

1. X. Huang et. al., Spoken Language Processing, Chapters 5, 6
2. J. R. Deller et. al., Discrete-Time Processing of Speech Signals, Chapters 4-6
3. J. W. Picone, "Signal modeling techniques in speech recognition," proceedings of the IEEE, September 1993, pp. 1215-1247

Introduction

- Current speech recognition systems are mainly composed of :
- A front-end feature extractor (feature extraction module)
- Required to discover salient characteristics suited for classification
- Based on scientific and/or heuristic knowledge about patterns to recognize
- A back-end classifier (classification module)
- Required to set class boundaries accurately in the feature space
- Statistically designed according to the fundamental Bayes' decision theory

Background Review: Digital Signal Processing

Analog Signal to Digital Signal

Analog Signal

Discrete-time Signal or Digital Signal

Digital Signal: Discrete-time signal with discrete

Analog Signal to Digital Signal

Continuous-Time
Signal
$x_{a}(t)$
Continuous-Time to Discrete-Time Conversion

Analog Signal to Digital Signal

- A continuous signal sampled at different periods

Analog Signal to Digital Signal

- Spectra

$$
S(j \Omega)=\frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\Omega-k \Omega_{s}\right) \quad \underbrace{S(j \Omega)}_{0} \Omega_{s}=\frac{2 \pi}{T}=2 \pi F_{s} \text { (sampling frequency) }
$$

$$
X_{s}(j \Omega)=\frac{1}{2 \pi} X_{a}(j \Omega) * S(j \Omega) \quad \text { (b) } \quad R_{\Omega_{s}}(j \Omega)=\left\{\begin{array}{ll}
T & |\Omega|<\Omega_{s} / 2 \\
0 & \text { otherwise }
\end{array} \quad \Longleftrightarrow X_{a}(j \Omega)=R_{\Omega_{s}}(j \Omega) X_{p}(j \Omega)\right.
$$

high frequency components
(c)

$$
\begin{gathered}
\Omega_{N}<\frac{1}{2} \Omega_{s}\left(=\frac{\pi}{T}\right) \\
\left\{\begin{array}{l}
\because\left(\Omega_{s}-\Omega_{N}\right)>\Omega_{N} \\
\Rightarrow \Omega_{s}>2 \Omega_{N}
\end{array}\right\}
\end{gathered}
$$

$\Omega_{N}>\frac{1}{2} \Omega_{s}\left(=\frac{\pi}{T}\right)$
$\left\{\begin{array}{l}\because\left(\Omega_{s}-\Omega_{N}\right)<\Omega_{N} \\ \Rightarrow \Omega_{s}<2 \Omega_{N}\end{array}\right\}$
aliasing distortion $\Longleftrightarrow X_{a}(j \Omega)$ can't be recovered from $X_{p}(j \Omega)$

Analog Signal to Digital Signal

- To avoid aliasing (overlapping, fold over)
- The sampling frequency should be greater than two times of frequency of the signal to be sampled $\rightarrow \Omega_{s}>2 \Omega_{N}$
- (Nyquist) sampling theorem
- To reconstruct the original continuous signal
- Filtered with a low pass filter with band limit Ω,
- Convolved in time domain

$$
\begin{aligned}
x_{a}(t) & =\sum_{n=-\infty}^{\infty} x_{a}(n T) h(t-n T) \\
& =\sum_{n=-\infty}^{\infty} x_{a}(n T) \operatorname{sinc} \Omega_{s}(t-n T)
\end{aligned}
$$

Two Main Approaches to Digital Signal Processing

- Filtering

Amplify or attenuate some frequency components of $x[n]$

- Parameter Extraction

Sinusoid Signals

$$
x[n]=A \cos (\omega n+\phi)
$$

－A ：amplitude（振幅）
$\begin{array}{lll}\text {－} \quad \omega & \text { ：angular frequency（角頻率）}, ~ & =2 \pi f=\frac{2 \pi}{T} \\ \text {＿} \quad \phi & \text { ：phase（相角）}\end{array}$
－ϕ ：phase（相角）
f ：normalizedfrequency $0 \leq f \leq 1$

Period，represented

Sinusoid Signals

- $x[n]$ is periodic with a period of N (samples)
$\Longrightarrow x[n+N]=x[n]$
$\Longrightarrow A \cos (\omega(n+N)+\phi)=A \cos (\omega n+\phi)$
$\overrightarrow{ } \overrightarrow{ } \omega N=2 \pi$
$\Rightarrow \omega=\frac{2 \pi}{N}$
- Examples (sinusoid signals)
- $\quad x_{1}[n]=\cos (\pi n / 4) \quad$ is periodic with period $N=8$
- $\quad x_{2}[n]=\cos (3 \pi n / 8) \quad$ is periodic with period $N=16$
- $\quad x_{3}[n]=\cos (n)$ is not periodic

Sinusoid Signals

$$
\begin{aligned}
& x_{1}[n]= \cos (\pi n / 4) \\
&=\cos \left(\frac{\pi}{4} n\right)=\cos \left(\frac{\pi}{4}\left(n+N_{1}\right)\right)=\cos \left(\frac{\pi}{4} n+\frac{\pi}{4} N_{1}\right) \\
& \Rightarrow \frac{\pi}{4} N_{1}=2 \pi \cdot k \Rightarrow 8 \cdot k \quad\left(N_{1} \text { and } k \text { are positive integers }\right) \\
& \begin{aligned}
\therefore N_{1}= & 8 \\
x_{2}[n]= & \cos (3 \pi n / 8) \\
& =\cos \left(\frac{3 \pi}{8} \cdot n\right)=\cos \left(\frac{3 \pi}{8}\left(n+N_{2}\right)\right)=\cos \left(\frac{3 \pi}{8} \cdot n+\frac{3 \pi}{8} \cdot N_{2}\right) \\
& \Rightarrow \frac{3 \pi}{8} \cdot N_{2}=2 \pi \cdot k \Rightarrow N_{2}=\frac{16}{3} k \quad\left(N_{2} \text { and } k \text { are positive numbers }\right) \\
\therefore N_{2}= & 16 \\
x_{3}[n] & =\cos (n) \\
& =\cos (1 \cdot n)=\cos \left(1 \cdot\left(n+N_{3}\right)\right)=\cos \left(n+N_{3}\right) \\
& \Rightarrow N_{3}=2 \pi \cdot k
\end{aligned}
\end{aligned}
$$

$\because N_{3}$ and k are positive integers
$\therefore N_{3}$ doesn' t exist !

Sinusoid Signals

- Complex Exponential Signal
- Use Euler's relation to express complex numbers

$$
\begin{aligned}
& \quad z=x+j y \\
& \Rightarrow z=A e^{j \phi}=A(\cos \phi+j \sin \phi) \\
& \underbrace{\operatorname{lm}}_{x} \quad \begin{array}{l}
x=A \cos \phi \\
y=A \sin \phi
\end{array}
\end{aligned}
$$

Sinusoid Signals

- A Sinusoid Signal

$$
\begin{aligned}
x[n] & =A \cos (\omega n+\phi) \\
& =\operatorname{Re}\left\{A e^{j(\omega n+\phi)}\right\} \\
& =\operatorname{Re}\left\{A e^{j \omega n} e^{j \phi}\right\}
\end{aligned}
$$

Sinusoid Signals

- Sum of two complex exponential signals with same frequency

$$
\begin{aligned}
& A_{0} e^{j\left(\omega n+\phi_{0}\right)}+A_{1} e^{j\left(\omega n+\phi_{1}\right)} \\
& =e^{j \omega n}\left(A_{0} e^{j \phi_{0}}+A_{1} e^{j \phi_{1}}\right) \\
& =e^{j \omega n} A e^{j \phi} \\
& =A e^{j(\omega n+\phi)}
\end{aligned}
$$

A, A_{0} and A_{1} are real numbers

- When only the real part is considered

$$
A_{0} \cos \left(\omega n+\phi_{0}\right)+A_{1} \cos \left(\omega n+\phi_{1}\right)=A \cos (\omega n+\phi)
$$

- The sum of N sinusoids of the same frequency is another sinusoid of the same frequency

Some Digital Signals

Table 5.1 Some useful digital signals: the Kronecker delta, unit step, rectangular signal, real exponential $(a<1)$ and real part of a complex exponential $(r<1)$.

Kronecker delta, or unit impulse	$\delta[n]=\left\{\begin{array}{cc} 1 & n=0 \\ 0 & \text { otherwise } \end{array}\right.$	
Unit step	$u[n]= \begin{cases}1 & n \geq 0 \\ 0 & n<0\end{cases}$	
Rectangular signal	$\operatorname{rect}_{N}[n]= \begin{cases}1 & 0 \leq n<N \\ 0 & \text { otherwise }\end{cases}$	
Real exponential	$x[n]=a^{n} u[n]$	
Complex exponential	$\begin{aligned} & x[n]=a^{n} u[n]=r^{n} e^{j n \omega_{0}} u[n] \\ & =r^{n}\left(\cos n \omega_{0}+j \sin n \omega_{0}\right) u[n] \end{aligned}$	

Some Digital Signals

- Any signal sequence $x[n]$ can be represented as a sum of shift and scaled unit impulse sequences (signals)

$$
x[n]=\sum_{\substack{k=-\infty \\
\text { scale/weighted }}}^{\sum_{i}^{\infty}[k][n-k]} \begin{gathered}
\text { Time-shifted unit } \\
\text { impulse sequence }
\end{gathered}
$$

$$
\begin{aligned}
x[n] & =\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]=\sum_{k=-2}^{3} x[k] \delta[n-k] \\
& =x[-2] \delta[n+2]+x[-1] \delta[n+1]+x[0] \delta[n]+x[1] \delta[n-1]+x[2] \delta[n-2]+x[3] \delta[n-3] \\
& =(1) \delta[n+2]+(-2) \delta[n+1]+(2) \delta[n]+(1) \delta[n-1]+(-1) \delta[n-2]+(1) \delta[n-3]
\end{aligned}
$$

Digital Systems

- A digital system T is a system that, given an input signal $x[n]$, generates an output signal $y[n]$

$$
y[n]=T\{x[n]\}
$$

Properties of Digital Systems

- Linear
- Linear combination of inputs maps to linear combination of outputs

$$
T\left\{a x_{1}[n]+b x_{2}[n]\right\}=a T\left\{x_{1}[n]\right\}+b T\left\{x_{2}[n]\right\}
$$

- Time-invariant (Time-shift)
- A time shift of in the input by m samples give a shift in the output by m samples

$$
y[n \pm m]=T\{x[n \pm m]\}, \quad \forall m
$$

Properties of Digital Systems

－Linear time－invariant（LTI）
－The system output can be expressed as a convolution（迴旋積分）of the input $x[n]$ and the impulse response $h[n]$
－The system can be characterized by the system＇s impulse response $h[n]$ ，which also is a signal sequence
－If the input $x[n]$ is impulse $\delta[n]$ ，the output is $h[n]$

Properties of Digital Systems

- Linear time-invariant (LTI)
- Explanation:

$$
\begin{aligned}
& x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k] \text { impulse sequence } \\
& \Rightarrow \quad T\{x[n]\}=T\left\{\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]\right\} \\
&=\sum_{k=-\infty}^{\infty} x[k] T\{\delta[n-k]\} \text { Iimear } \\
&=\sum_{k=-\infty}^{\infty} x[k] h[n-k] \\
&=x[n] * h[n] \quad \text { Time-invariant }
\end{aligned}
$$

Time invariant

$$
\begin{aligned}
& \delta[n] \xrightarrow[\longrightarrow]{T} h[n] \\
& \delta[n-k] \xrightarrow{T} h[n-k]
\end{aligned}
$$

Properties of Digital Systems

- Linear time-invariant (LTI)
- Convolution
- Example

Sum up

Properties of Digital Systems

- Linear time-invariant (LTI)
- Convolution: Generalization
- Reflect $h[k]$ about the origin ($\rightarrow h[-k]$)
- Slide ($h[-k] \rightarrow h[-k+n]$ or $h[-(k-n)]$), multiply it with $x[k]$
- Sum up

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

Convolution

$$
\begin{aligned}
y[n] & =x[n] * h[n] \\
& =\sum_{k=-\infty}^{\infty} x[k] h[n-k]
\end{aligned}
$$

Reflect

Sum up

$h[-k+4] \ldots \underbrace{2}_{0}{\underset{0}{4}}_{\substack{9 \\ 9}}^{\rightarrow}$

Properties of Digital Systems

- Linear time-invariant (LTI)
- Convolution is commutative and distributive

Commutation

$$
\rightarrow \xrightarrow[{h_{1}[n}]]{h_{2}[n]} \rightarrow
$$

$$
\rightarrow \stackrel{h_{2}[n]}{h_{1}[n]}=
$$

Distribution

- An impulse response has finite duration
» Finite-Impulse Response (FIR)
- An impulse response has infinite duration
» Infinite-Impulse Response (IIR)

$$
\begin{aligned}
y[n] & =x[n] * h[n] \\
& =h[n] * x[n] \\
& =\sum_{k=-\infty}^{\infty} x[k] h[n-k] \\
& =\sum_{k=-\infty}^{\infty} h[k] x[n-k]
\end{aligned}
$$

Properties of Digital Systems

- Bounded Input and Bounded Output (BIBO): stable

$$
\left\lvert\, \begin{aligned}
& x[n] \mid \leq B_{x}<\infty \quad \forall n \\
& |y[n]| \leq B_{y}<\infty \quad \forall n
\end{aligned}\right.
$$

- A LTI system is BIBO if only if $h[n]$ is absolutely summable

$$
\sum_{k=-\infty}^{\infty}|h[k]| \leq \infty
$$

Properties of Digital Systems

- Causality
- A system is "casual" if for every choice of n_{0}, the output sequence value at indexing $n=n_{0}$ depends on only the input sequence value for $n \leq n_{0}$

$$
\begin{aligned}
& y\left[n_{0}\right]=\sum_{k=1}^{K} \alpha_{k} y\left[n_{0}-k\right]+\sum_{k=m}^{M} \beta_{k} x\left[n_{0}-m\right]
\end{aligned}
$$

- Any noncausal FIR can be made causal by adding sufficient long delay

Discrete-Time Fourier Transform (DTFT)

- Frequency Response $H\left(e^{j \omega}\right)$
- Defined as the discrete-time Fourier Transform of $h[n]$
$-H\left(e^{j o}\right)$ is continuous and is periodic with period $=2 \pi$

proportional to two times of the sampling frequency

Figure 5.8 $H\left(e^{j \omega}\right)$ is a periodic function of ω.

- $H\left(e^{j \omega}\right)$ is a complex function of ω

$$
\begin{aligned}
H\left(e^{j \omega}\right) & =\underset{r}{ }\left(e^{j \omega}\right)+j H_{i}\left(e^{j \omega}\right) \\
& =\underset{ }{\left|H\left(e^{j \omega}\right)\right| e^{j \angle H\left(e^{j \omega}\right)}-\mathrm{phase}} \\
& \text { magnitude }
\end{aligned}
$$

Discrete-Time Fourier Transform

- Representation of Sequences by Fourier Transform

$$
\begin{aligned}
& H\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} h[n] e^{-j \omega n} \text { DTFT } \\
& h[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} H\left(e^{j \omega}\right) e^{j \omega n} d \omega \quad \text { Inverse DTFT }
\end{aligned}
$$

- A sufficient condition for the existence of Fourier transform

$$
\sum_{n=-\infty}^{\infty}|h[n]|<\infty \quad \text { absolutely summable }
$$

Fourier transform is invertible:

$$
\begin{aligned}
& H\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} h[n] e^{-j \omega n} \\
& h[n] \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} H\left(e^{j \omega}\right) e^{j \omega n} d \omega=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sum_{m=-\infty}^{\infty} h[m] e^{-j \omega m} e^{j \omega n} d \omega \\
& \\
& \\
& \\
& \sum_{m=-\infty}^{\infty} h[m] \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{j \omega(n-m)} d \omega=\sum_{m=-\infty}^{\infty} h[m] \delta[n-m]=h[n]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{j \omega(n-m)} d \omega \\
& =\frac{1}{j 2 \pi(n-m)}\left[e^{j \omega(n-m)}\right]_{-\pi}^{\pi} \\
& =\frac{\sin \pi(n-m)}{\pi(n-m)} \\
& = \begin{cases}1, m=n \\
0, & m \neq n\end{cases} \\
& =\delta[n-m]
\end{aligned}
$$

Discrete-Time Fourier Transform

- Convolution Property

$$
\begin{aligned}
& H\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} h[n] e^{-j \omega n} \\
& y[n]=x[n] * h[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=-\infty}^{\infty} x[k] e^{-j \omega k}\left(\sum_{n^{\prime}=-\infty}^{\infty} h\left[n^{\prime}\right] e^{-j \omega n^{\prime}}\right) \\
& =X\left(e^{j \omega}\right) H\left(e^{j \omega}\right) \\
& Y\left(e^{j \omega}\right)=X\left(e^{j \omega}\right) H\left(e^{j \omega}\right) \\
& \therefore \quad x[n] * h[n] \Leftrightarrow \quad X\left(e^{j \omega}\right) H\left(e^{j \omega}\right) \Rightarrow\left|Y\left(e^{j \omega}\right)\right|=\left|X\left(e^{j \omega}\right)\right| H\left(e^{j \omega}\right) \mid
\end{aligned}
$$

Discrete-Time Fourier Transform

- Parseval's Theorem

power spectrum

$\sum_{n=-\infty}^{\infty}|x[n]|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|X\left(e^{j \omega}\right)\right|^{2} d \omega$

The total energy of a signal can be given in either the time or frequency domain.

- Define the autocorrelation of signal $x[n]$

$$
R_{x x}[n]=\sum_{m=-\infty}^{\infty} x[m+n] x^{*}[m] \quad \begin{aligned}
& l=m+n \\
& \Rightarrow m=l-n=-(n-l)
\end{aligned}
$$

$$
\Leftrightarrow \quad=\sum_{l=-\infty}^{\infty} x[l] x^{*}[-(n-l)]=x[n] * x^{*}[-n]
$$

$$
S_{x x}(\omega)=X(\omega) X^{*}(\omega)=|X(\omega)|^{2}
$$

$$
R_{x x}[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} S_{x x}(\omega) e^{j \omega n} d \omega=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|X(\omega)|^{2} e^{j \omega n} d \omega
$$

Set $n=0$
$R_{x x}[0]=\sum_{m=-\infty}^{\infty} x[m] x^{*}[m]=\sum_{m=-\infty}^{\infty}|x[m]|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|X(\omega)|^{2} d \omega$

Discrete-Time Fourier Transform

Z-Transform

- z-transform is a generalization of (Discrete-Time) Fourier transform

$$
\begin{aligned}
& h[n] \longrightarrow H\left(e^{j \omega}\right) \\
& h[n] \longrightarrow H(z)
\end{aligned}
$$

- z-transform of $h[n]$ is defined as

$$
H(z)=\sum_{n=-\infty}^{\infty} h[n] z^{-n}
$$

- Where $z=r e^{j \omega}$, a complex-variable \quad Im \uparrow complex plan
- For Fourier transform

$$
H\left(e^{j \omega}\right)=\left.H(z)\right|_{z=e^{j \omega}}
$$

- z-transform evaluated on the unit circle

Z-Transform

- Fourier transform vs. z-transform
- Fourier transform used to plot the frequency response of a filter
- z-transform used to analyze more general filter characteristics, e.g. stability
- ROC (Region of Converge)

- Is the set of z for which z-transform exists (converges)

$$
\sum_{n=-\infty}^{\infty}|h[n]||z|^{-n}<\infty \text { absolutelly summable }
$$

- In general, ROC is a ring-shaped region and the Fourier transform exists if ROC includes the unit circle

Z-Transform

$$
\begin{aligned}
y[n] & =x[n] * h[n] \\
& =h[n] * x[n] \\
& =\sum_{k=-\infty}^{\infty} x[k] h[n-k] \\
& =\sum_{k=-\infty}^{\infty} h[k] x[n-k]
\end{aligned}
$$

- An LTI system is defined to be causal, if its impulse response is a causal signal, i.e.

$$
h[n]=0 \text { for } n<0 \quad \text { Right-sided sequence }
$$

- Similarly, anti-causal can be defined as

$$
h[n]=0 \text { for } n>0
$$

Left-sided sequence

- An LTI system is defined to be stable, if for every bounded input it produces a bounded output
- Necessary condition:

$$
\sum_{n=-\infty}^{\infty}|h[n]|<\infty
$$

- That is Fourier transform exists, and therefore z-transform include the unit circle in its region of converge

Z-Transform

- Right-Sided Sequence

- E.g., the exponential signal

1. $h_{1}[n]=a^{n} u[n], \quad$ where $u[n]= \begin{cases}1 & \text { for } n \geq 0 \\ 0 & \text { for } n<0\end{cases}$
$H_{1}(z)=\sum_{n=-\infty}^{\infty} a^{n} z^{-n}=\sum_{n=-\infty}^{\infty}\left(a z^{-1}\right)^{n} \underset{\substack{n \\ \\ \\ \\ \text { If }\left|a z^{-1}\right|<1}}{\substack{\text { have a pole at } z=a \\ \text { (Pole: } z \text {-transform goes to infinity) }}}$
$\therefore R O C_{1}$ is $|z|>|a|$
the unit cycle

Fourier transform of
$h_{1}[n]$ exists if $|a|<1$

Z-Transform

- Left-Sided Sequence
- E.g.

2. $h_{2}[n]=-a^{n} u[-n-1]$

$$
\begin{aligned}
H_{2}(z) & =-\sum_{n=-\infty}^{\infty} a^{n} u[-n-1] z^{-n}=-\sum_{n=-\infty}^{-1} a^{n} z^{-n} \quad \text { If }\left|a^{-1} z\right|<1 \\
& =-\sum_{n=1}^{\infty} a^{-n} z^{n}=1-\sum_{n=0}^{\infty}\left(a^{-1} z\right)^{n} \stackrel{1-\frac{1}{1-a^{-1} z}=-\frac{-a^{-1} z}{1-a^{-1} z}=\frac{1}{1-a z^{-1}}}{ } .1 \text {. }
\end{aligned}
$$

the unit cycle

$$
\therefore R O C_{2} \text { is }|z|<|a|
$$

when $|a|<1$, the Fourier transform of $h_{2}[n]$ doesn't exist, because $h_{2}[n]$ will go exponentially as $n \rightarrow-\infty$

Z-Transform

- Two-Sided Sequence

- Egg.

$$
\text { 3. } h_{3}[n]=\left(-\frac{1}{3}\right)^{n} u[n]-\left(\frac{1}{2}\right)^{n} u[-n-1]
$$

$$
\begin{array}{ll}
\left(-\frac{1}{3}\right)^{n} u[n] & \stackrel{z}{\longleftrightarrow} \rightarrow \frac{1}{1+\frac{1}{3} z^{-1}}, \quad|z|>\frac{1}{3} \\
-\left(\frac{1}{2}\right)^{n} u[-n-1] & \leftarrow z \rightarrow \frac{1}{1-\frac{1}{2} z^{-1}}, \quad|z|<\frac{1}{2}
\end{array}
$$

$$
\therefore R O C_{3} \text { is }|z|<\left|\frac{1}{2}\right| \text { and }|z|>\left|\frac{1}{3}\right|
$$

Fourier transform of $h_{3}[n]$ does' t exist, because $R O C_{3}$ doesn' t include the unit circle

Z-Transform

- Finite-length Sequence
- E.g.

3. $h_{4}[n]= \begin{cases}a^{n}, & 0 \leq n \leq N-1 \\ 0, & \text { others }\end{cases}$

$$
z^{N-1}+a z^{N-2}+a^{2} z^{N-3}+\ldots .+a^{N-1}
$$

$$
H_{4}(z)=\sum_{n=0}^{N-1} a^{n} z^{-n}=\sum_{n=0}^{N-1}\left(a z^{-1}\right)^{n}=\frac{1-\left(a z^{-1}\right)^{N}}{1-a z^{-1}}=\frac{1}{z^{N-1}} \frac{z^{N}-a^{N}}{z-a}
$$

$\therefore R O C_{4}$ is entire z-plane except $z=0$

Z-Transform

- Properties of z-transform

1. If $h[n]$ is right-sided sequence, i.e. $h[n]=0, n \leq n_{1}$ and if $R O C$ is the exterior of some circle, the all finite z for which $|z|>r_{0}$ will be in ROC

- If $n_{1} \geq 0, R O C$ will include $z=\infty$

A causal sequence is right-sided with $n_{1} \geq 0$
\therefore ROC is the exterior of circle including $z=\infty$
2. If $h[n]$ is left-sided sequence, i.e. $h[n]=0, n \geq n_{2}$, the $R O C$ is the interior of some circle,

- If $n_{2}<0, R O C$ will include $z=0$

3. If $h[n]$ is two-sided sequence, the $R O C$ is a ring
4. The ROC can't contain any poles

Summary of the Fourier and z-transforms

Table 5.5 Properties of the Fourier and z-transforms.

Property	Signal	Fourier Transform	\boldsymbol{z}-Transform
Linearity	$a x_{1}[n]+b x_{2}[n]$	$a X_{1}\left(e^{j \omega}\right)+b X_{2}\left(e^{j \omega}\right)$	$a X_{1}(z)+b X_{2}(z)$
Symmetry	$x[-n]$	$X\left(e^{-j \omega}\right)$	$X\left(z^{-1}\right)$
	$x^{*}[n]$	$X^{*}\left(e^{-j \omega}\right)$	$X^{*}\left(z^{*}\right)$
	$x^{*}[-n]$	$X^{*}\left(e^{j \omega}\right)$	$X^{*}\left(1 / z^{*}\right)$
	$x[n]$ real	$X\left(e^{j \omega}\right)$ is Hermitian $X\left(e^{-j \omega}\right)=X^{*}\left(e^{j \omega}\right)$ $\left\|X\left(e^{j \omega}\right)\right\|$ is even ${ }^{6}$ $\operatorname{Re}\left\{X\left(e^{j \omega}\right)\right\}$ is even $\arg \left\{X\left(e^{j \omega}\right)\right\}$ is odd ${ }^{7}$ $\operatorname{Im}\left\{X\left(e^{j \omega}\right)\right\}$ is odd	$X\left(z^{*}\right)=X^{*}(z)$
	Even $\{x[n]\}$	$\operatorname{Re}\left\{X\left(e^{j \omega}\right)\right\}$	
	$\operatorname{Odd}\{x[n]\}$	$j \operatorname{Im}\left\{X\left(e^{j \omega}\right)\right\}$	
Time-shifting	$x\left[n-n_{0}\right]$	$X\left(e^{j \omega}\right) e^{-j \omega n_{0}}$	$X(z) z^{-n_{0}}$
Modulation	$x[n] e^{j \omega_{0} n}$	$X\left(e^{j\left(\omega-\omega_{0}\right)}\right)$	$X\left(e^{-j \omega_{0}} z\right)$
	$x[n] z_{0}^{n}$		$X\left(z / z_{0}\right)$
Convolution	$x[n] * h[n]$	$X\left(e^{j \omega}\right) H\left(e^{j \omega}\right)$	$X(z) H(z)$
	$x[n] y[n]$	$\frac{1}{2 \pi} X\left(e^{j \omega}\right) * Y\left(e^{j \omega}\right)$	
Parseval's Theorem	$R_{x x}[n]=\sum_{m=-\infty}^{\infty} x[m+n] x^{*}[m]$	$S_{x x}(\omega)=\|X(\omega)\|^{2}$	$X(z) X^{*}\left(1 / z^{*}\right)$

LTI Systems in the Frequency Domain

- Example 1: A complex exponential sequence $x[n]=e^{j \omega n}$

$$
y[n]=x[n] * h[n]
$$

$$
=h[n] * x[n]
$$

- System impulse response $h[n]$

$$
=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

$$
y[n]=x[n] * h[n]=\sum_{\mathrm{k}=-\infty}^{\infty} h[k] e^{j \omega(n-k)}
$$

$$
=\sum_{k=-\infty}^{\infty} h[k] x[n-k]
$$

$$
\begin{aligned}
& =e^{j \omega n} \sum_{\mathrm{k}=-\infty}^{\infty} h[k] e^{-j \omega k} \\
& =H\left(e^{j \omega}\right) e^{j \omega n}
\end{aligned}
$$

$H\left(e^{j \omega}\right)$: the Fourier tr ansform of the system impulse response. It is often referred to as the system frequency response.

- Therefore, a complex exponential input to an LTI system results in the same complex exponential at the output, but modified by $H\left(e^{i \omega}\right)$
- The complex exponential is an eigenfunction of an LTI system, and $H\left(e^{j \omega}\right)$ is the associated eigenvalue

$$
T\{x[n]\}=H\left(e^{j \omega}\right) x[n]
$$

LTI Systems in the Frequency Domain

- Example 2: A sinusoidal sequence $x[n]=A \cos \left(w_{0} n+\phi\right)$

$$
\begin{aligned}
x[n] & =A \cos \left(\omega_{0} n+\phi\right) \\
& =\frac{A}{2} e^{j \phi} e^{j \omega_{0} n}+\frac{A}{2} e^{-j \phi} e^{-j \omega_{0} n}
\end{aligned}
$$

$$
e^{j \theta}=\cos \theta+i \sin \theta
$$

$$
e^{-j \theta}=\cos \theta-i \sin \theta
$$

$$
\Rightarrow \cos \theta=\frac{1}{2}\left(e^{j \theta}+e^{-j \theta}\right)
$$

- System impulse response $h[n]$

$$
\begin{aligned}
y[n] & =H\left(e^{j \omega_{0}}\right) \frac{A}{2} e^{j \phi} e^{j \omega_{0} n}+H\left(e^{-j \omega_{0}}\right) \frac{A}{2} e^{-j \phi} e^{-j \omega_{0} n} \quad H\left(e^{-j \omega_{0}}\right)=H^{*}\left(e^{i \omega_{0}}\right) \\
& =\frac{A}{2}\left[H\left(e^{j \omega_{0}}\right) e^{j\left(\omega_{0} n+\phi\right)}+H^{*}\left(e^{j \omega_{0}}\right) e^{-j\left(\omega_{0} n+\phi\right)}\right] \quad H^{*}\left(e^{j \omega_{0}}\right)=H\left(e^{j \omega_{0}}\right) e^{-j H\left(e^{\left(\omega_{0}\right)}\right)} \\
& =\frac{A}{2}\left[H\left(e^{j \omega_{0}}\right) e^{j \angle H\left(e^{j \omega_{0}}\right)} e^{j\left(\omega_{0} n+\phi\right)}+H\left(e^{\left.j \omega_{0}\right)}\right) e^{-j H\left(e^{j \omega_{0}}\right)} e^{-j\left(\omega_{0} n+\phi\right)}\right]
\end{aligned}
$$

$$
=A \mid H\left(e^{j \omega_{0}}\right) \cos \left[\omega_{0} n+\phi+\angle H\left(e^{j \omega_{0}}\right)\right]
$$

LTI Systems in the Frequency Domain

- Example 3: A sum of sinusoidal sequences

$$
\begin{aligned}
& x[n]=\sum_{k=1}^{K} A_{k} \cos \left(\omega_{k} n+\phi_{k}\right) \\
& y[n]=\sum_{k=1}^{K} A_{k} \mid H\left(e^{j \omega_{k}}\right) \cos \left[\omega_{k} n+\phi_{k}+\angle H\left(e^{j \omega_{k}}\right)\right]
\end{aligned}
$$

- A similar expression is obtained for an input consisting of a sum of complex exponentials

LTI Systems in the Frequency Domain

- Example 4: Convolution Theorem $x[n] * h[n] \Leftrightarrow X\left(e^{i \omega}\right) H\left(e^{(i \omega}\right)$

$$
\begin{aligned}
& x[n]=\sum_{k=-\infty}^{\infty} \delta[n-k P] \\
& \leadsto X\left(e^{j \omega}\right)=\sum_{k=-\infty}^{\infty} \frac{2 \pi}{P} \delta\left[\left(\omega-\frac{2 \pi}{P} k\right)\right] \\
& h[n]=\sum_{k=-\infty}^{\infty} a^{n} u[n],|a|<1 \quad \Rightarrow H\left(e^{j \omega}\right)=\frac{1}{1-a e^{-j \omega}} \\
& Y\left(e^{j \omega}\right)=H\left(e^{j \omega}\right) X\left(e^{j \omega}\right) \\
& =\frac{1}{1-a e^{-j \omega}} \sum_{k=-\infty}^{\infty} \frac{2 \pi}{P} \delta\left[\left(\omega-\frac{2 \pi}{P} k\right)\right] \\
& =\frac{2 \pi}{P} \sum_{k=-\infty}^{\infty} \frac{1}{1-a e^{-j \frac{2 \pi}{P} k} \delta} \delta\left[\left(\omega-\frac{2 \pi}{P} k\right)\right]
\end{aligned}
$$

LTI Systems in the Frequency Domain

- Example 5: Windowing Theorem $x[n]\left[n[n] \Leftrightarrow \frac{1}{2 \pi} W\left(e^{i \omega}\right) * X\left(e^{i \omega}\right)\right.$

$$
x[n]=\sum_{k=-\infty}^{\infty} \delta[n-k P]
$$

$w[n]=\left\{\begin{array}{cc}0.54-0.46 \cos \left(\frac{2 \pi n}{N-1}\right), & n=0,1, \ldots \ldots, N-1 \\ 0 & \text { otherwise }\end{array}\right.$ Hamming window

$$
\begin{aligned}
& Y\left(e^{j \omega}\right)=\frac{1}{2 \pi} W\left(e^{j \omega}\right) * X\left(e^{j \omega}\right) \\
= & \frac{1}{2 \pi} W\left(e^{j \omega}\right) * \sum_{k=-\infty}^{\infty} \frac{2 \pi}{P} \delta\left(\omega-\frac{2 \pi}{P} k\right) \\
= & \frac{1}{P} \sum_{k=-\infty}^{\infty}\left\{W\left(e^{j \omega}\right) * \delta\left(\omega-\frac{2 \pi}{P} k\right)\right\} \\
= & \frac{1}{P} \sum_{k=-\infty}^{\infty}\left\{\sum_{m=-\infty}^{m=\infty} W\left(e^{j m}\right) \delta\left(\omega-\frac{2 \pi}{P} k-m\right)\right\} \\
= & \frac{1}{P} \sum_{k=-\infty}^{\infty} W\left(e^{j\left(\omega-\frac{2 \pi}{P} k\right)}\right)
\end{aligned}
$$

Difference Equation Realization for a Digital Filter

- The relation between the output and input of a digital filter can be expressed by

$$
y[n]=\sum_{k=1}^{N} \alpha_{k} y[n-k]+\sum_{k=0}^{M} \beta_{k} x[n-k]
$$

linearity and delay properties

$$
\begin{aligned}
& \text { delay property } \\
& x[n] \rightarrow X(z) \\
& x\left[n-n_{0}\right] \rightarrow X(z) z^{-n_{0}}
\end{aligned}
$$

$$
Y(z)=\sum_{k=1}^{N} \alpha_{k} Y(z) z^{-k}+\sum_{k=0}^{M} \beta_{k} X(z) z^{-k}
$$

Causal:
Rightsided, the ROC outside the outmost pole Stable:
The ROC includes the unit circle Causal and Stable:
all poles must fall inside the unit circle (not including zeros)

Difference Equation Realization for a Digital Filter

Figure 2.8 Pole-zero configuration for a causal and stable discrete-time system.

Magnitude-Phase Relationship

- Minimum phase system:
- The z-transform of a system impulse response sequence (a rational transfer function) has all zeros as well as poles inside the unit cycle
- Poles and zeros called "minimum phase components"
- Maximum phase: all zeros (or poles) outside the unit cycle
- All-pass system: $\left[\frac{1-a^{*} z}{1-a z^{-1}}\right]^{11}$
- Consist a cascade of factor of the form

Poles and zeros occur at conjugate reciprocal locations

- Characterized by a frequency response with unit (or flat) magnitude for all frequencies

Magnitude-Phase Relationship

- Any digital filter can be represented by the cascade of a minimum-phase system and an all-pass system

$$
H(z)=H_{\min }(z) H_{a p}(z)
$$

Suppose that $H(z)$ has only one zero $1 / a^{*}(|a|<1)$ outside the unit circle. $H(z)$ can be expressed as :

$$
\begin{aligned}
H(z) & =H_{1}(z)\left(1-a^{*} z\right)\left(H_{1}(z) \text { is a minimum phase filter }\right) \\
& =H_{1}(z)\left(1-a z^{-1}\right) \frac{\left(1-a^{*} z\right)}{\left(1-a z^{-1}\right)}
\end{aligned}
$$

where :
$H_{1}(z)\left(1-a z^{-1}\right)$ is also a minimum phase filter.
$\frac{\left(1-a^{*} z\right)}{\left(1-a z^{-1}\right)}$ is a all - pass filter.

FIR Filters

- FIR (Finite Impulse Response)
- The impulse response of an FIR filter has finite duration
- Have no denominator in the rational function $H(z)$
- No feedback in the difference equation

$$
\begin{aligned}
& y[n]=\sum_{r=0}^{M} \beta_{r} x[n-r] \\
& h[n]= \begin{cases}\beta_{n}, & 0 \leq n \leq M \\
0, & \text { otherwise }\end{cases} \\
& H(z)=\frac{x[n]}{P(z)}=\sum_{k=0}^{M} \beta_{k} z^{-k}
\end{aligned}
$$

- Can be implemented with simple a train of delay, multiple, and add operations

First-Order FIR Filters

- A special case of FIR filters

$$
\begin{aligned}
& y[n]=x[n]+\alpha x[n-1] \\
& \left|H\left(e^{j \omega}\right)\right|^{2}=|1+\alpha(\cos \omega-j \sin \omega)|^{2} \\
& H(z)=1+\alpha z^{-1} \\
& H\left(e^{j \omega}\right)=1+\alpha e^{-j \omega} \\
& =(1+\alpha \cos \omega)^{2}+(\alpha \sin \omega)^{2}=1+2 \alpha \cos \omega \\
& \theta\left(e^{j \omega}\right)=-\arctan \left(\frac{\alpha \sin \omega}{1+\alpha \cos \omega}\right)
\end{aligned}
$$

Figure 5.21 Frequency response of the first order FIR filter for various values of α.

Discrete Fourier Transform (DFT)

- The Fourier transform of a discrete-time sequence is a continuous function of frequency
- We need to sample the Fourier transform finely enough to be able to recover the sequence
- For a sequence of finite length N, sampling yields the new transform referred to as discrete Fourier transform (DFT)

$$
\begin{array}{lll}
X(k)=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k n}, & 0 \leq n \leq N-1 & \text { DFT, Analysis } \\
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j \frac{2 \pi}{N} k n}, \quad 0 \leq n \leq N-1 & \text { Inverse DFT, Synthesis }
\end{array}
$$

Discrete Fourier Transform (DFT)

$$
\forall 0 \leq k \leq N-1
$$

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k n}, \quad 0 \leq n \leq N-1
$$

$$
\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & e^{-j \frac{2 \pi}{N} \cdot 1} & \cdots & e^{-j \frac{2 \pi}{N} \cdot(N-1)} \\
\vdots & \vdots & \cdots & \vdots \\
1 & e^{-j \frac{2 \pi}{N}(N-1) \cdot 1} & \cdots & e^{-j \frac{2 \pi}{N}(N-1) \cdot(N-1)}
\end{array}\right]\left[\begin{array}{c}
x[0] \\
x[1] \\
\vdots \\
x[N-1]
\end{array}\right]=\left[\begin{array}{c}
X[0] \\
X[1] \\
\vdots \\
X[N-1]
\end{array}\right]
$$

Discrete Fourier Transform (DFT)

- Orthogonality of Complex Exponential

$$
\frac{1}{N} \sum_{n=0}^{N-1} e^{j \frac{2 \pi}{N}(k-r)_{n}}= \begin{cases}1, & \text { if } k-r=m N \\ 0, & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
& x[n]=\frac{1}{N} \sum_{k=0}^{N} \sum_{0}^{-1} X[k] e^{j \frac{2 \pi}{N} k n} \\
& \Rightarrow \sum_{n=0}^{N} \sum_{n}^{-1} x[n] e^{-\frac{2 \pi}{N} m}=\sum_{n=0}^{N} \sum_{n}^{-1} \frac{1}{N} \sum_{k=0}^{N} \sum_{0}^{-1} X[k] e^{j \frac{2 \pi}{N}(k-r) n} \\
& ={ }_{k=0}^{N} \sum_{k=0}^{-1} X\left[k\left[\frac{1}{N}{ }_{n=0}^{N} \sum^{-1} e^{j \frac{j \pi}{N}(k-r) n}\right] \quad \begin{array}{c}
X[k]=X[r+m N] \\
=X[r]
\end{array}\right. \\
& =X[r] \\
& \Rightarrow \quad X[k]=\sum_{r=0}^{N} x[n] e^{-j \frac{2 \pi}{N} t n}
\end{aligned}
$$

Discrete Fourier Transform (DFT)

- Parseval's theorem

$$
\sum_{n=0}^{N-1}|x[n]|^{2}=\frac{1}{N} \sum_{k=0}^{N-1}|X(k)|^{2} \quad \text { Energy density }
$$

