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What is Language Modeling ?

• Language Modeling (LM) deals with the probability 
distribution of word sequences, e.g.:

P(“hi”)=0.01, P(“and nothing but the truth”)  ≈ 0.001
P(“and nuts sing on the roof”) ≈ 0

From Joshua Goodman’s material
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What is Language Modeling ?

• For a word sequence     ,          can be decomposed into 
a product of conditional probabilities:

– E.g.: P(“and nothing but the truth”) = P(“and”) ×P(“nothing|and”) 
× P(“but|and nothing”) × P(“the|and nothing but”) 
× P(“truth|and nothing but the”) 

– However, it’s impossible to estimate and store                              
if      is large (data sparseness problem etc.)
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What is LM Used for ?

• Statistical language modeling attempts to capture the 
regularities of natural languages

– Improve the performance of various natural language 
applications by estimating the probability distribution of various 
linguistic units, such as words, sentences, and whole documents

– First significant model was proposed in 1980
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What is LM Used for ?

• Statistical language modeling is most prevailing in many 
application domains

– Speech recognition

– Spelling correction

– Handwriting recognition

– Optical character recognition (OCR)

– Machine translation

– Document classification and routing

– Information retrieval
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Current Status

• Ironically, the most successful statistical language 
modeling techniques use very little knowledge of what 
language is

– The most prevailing n-gram language models take no advantage 
of the fact that what is being modeled is language

– it may be a sequence of arbitrary symbols, with no deep 
structure, intention, or though behind then

– F. Jelinek said “put language back into language modeling”
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LM in Speech Recognition

• For a given acoustic observation                    , the goal of 
speech recognition is to find out the corresponding word 
sequence                            that has the maximum 
posterior probability 
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The Trigram Approximation
• The trigram modeling assumes that each word depends 

only on the previous two words (a window of three words 
total)
– “tri” means three, “gram” means writing
– E.g.:

P(“the|… whole truth and nothing but”) ≈ P(“the|nothing but”)
P(“truth|… whole truth and nothing but the”) ≈ P(“truth|but the”)

– Similar definition for bigram (a window of two words total)

• How do we find probabilities?
– Get real text, and start counting (empirically) !

P(“the | nothing but”) ≈C[“nothing but the”]/C[“nothing but”]

count Probability may be 0
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Maximum Likelihood Estimate (ML/MLE) for LM

• Given a a training corpus T and the language model

– Essentially,  the distribution of the sample counts             with  
the same history        referred as a multinominal (polynominal) 
distribution
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Maximum Likelihood Estimate (ML/MLE) for LM

• Take logarithm of                ,  we have 

• For any pair            , try to maximize              and subject
to   
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Main Issues for LM

• Evaluation
– How can you tell a good language model from a bad one
– Run a speech recognizer or adopt other statistical measurements

• Smoothing
– Deal with data sparseness of real training data
– Variant approaches have been proposed

• Caching
– If you say something, you are likely to say it again later
– Adjust word frequencies observed in the current conversation

• Clustering
– Group words with similar properties (similar semantic or 

grammatical) into the same class
– Another efficient way to handle the data sparseness problem



12

Evaluation

• Two most common metrics for evaluation a language 
model
– Word Recognition Error Rate (WER)
– Perplexity (PP)

• Word Recognition Error Rate

– Requires the participation of a speech recognition system
(slow!)

– Need to deal with the combination of acoustic probabilities and 
language model probabilities (penalizing or weighting between 
them)
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Evaluation

• Perplexity
– Perplexity is geometric average inverse language model 

probability (measure language model difficulty, not acoustic 
difficulty/confusability)

– Can be roughly interpreted as the geometric mean of the 
branching factor of the text when presented to the language 
model

– For trigram modeling:
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Evaluation

• More about Perplexity
– Perplexity is an indication of the complexity of the language if we 

have an accurate estimate of  
– A language with higher perplexity means that the number of 

words branching from a previous word is larger on average
– A langue model with perplexity L has roughly the same difficulty 

as another language model in which every word can be followed 
by L different words with equal probabilities

– Examples: 
• Ask a speech recognizer to recognize digits: “0, 1, 2, 3, 4, 5, 6, 7, 8, 

9” – easy – perplexity ≈10

• Ask a speech recognizer to recognize names at a large institute 
(10,000 persons) – hard  – perplexity ≈ 10,000

( )WP
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Evaluation

• More about Perplexity (Cont.)
– Training-set perplexity: measures how the language model fits the 

training data

– Test-set perplexity: evaluates the generalization capability of the 
language model
• When we say perplexity, we mean “test-set perplexity”
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Evaluation

• Is a language model with lower perplexity is better?

– The true (optimal) model for data has the lowest possible 
perplexity

– Lower the perplexity, the closer we are to true model

– Typically, perplexity correlates well with speech recognition word 
error rate

• Correlates better when both models are trained on same data
• Doesn’t correlate well when training data changes

– The 20,000-word continuous speech recognition for Wall Street 
Journal (WSJ) task has a perplexity about 128 ~ 176 (trigram) 

– The 2,000-word conversational Air Travel Information System
(ATIS) task has a perplexity less than 20 
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Evaluation

• The perplexity of bigram with different vocabulary size 
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Evaluation

• A rough rule of thumb (by Rosenfeld)

– Reduction of 5% in perplexity is usually not practically 
significant

– A 10% ~ 20% reduction is noteworthy, and usually 
translates into some improvement in application 
performance

– A perplexity improvement of 30% or more over a 
good baseline is quite significant
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Smoothing

• Maximum likelihood (ML) estimate of language models 
has been shown previously, e.g.:
– Trigam probabilities    

– Bigram probabilities 
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Smoothing

• Data Sparseness 
– Many actually possible events (word successions) in the test set

may not be well observed in the training set/data

• E.g. bigram modeling  

P(read|Mulan)=0           P(Mulan read a book)=0

P(W)=0                          P(X|W)P(W)=0

– Whenever a string         such that                    occurs during 
speech recognition task, an error will be made

( ) 0=WPW
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Smoothing

• Operations of smoothing
– Assign all strings (or events/word successions) a nonzero 

probability if they never occur in the training data

– Tend to make distributions flatter by adjusting lower 
probabilities upward and high probabilities downward
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Smoothing: Simple Models

• Add-one smoothing
– For example, pretend each trigram occurs once more than it 

actually does

• Add delta smoothing
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Smoothing: Back-Off Models

• The general form for n-gram back-off

– : normalizing/scaling factor chosen to make 
the conditional probability sum to 1

• I.e., 
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Smoothing: Interpolated Models

• The general form for Interpolated n-gram back-off

• The key difference between backoff and interpolated 
models 
– For n-grams with nonzero counts, interpolated models use 

information from lower-order distributions while back-off models 
do not

– Moreover, n-grams with the same counts can have different 
probability estimates
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Clustering

• Class-based language Models
– Define classes for words that exhibit similar semantic or 

grammatical behavior

WEEKDAY = Sunday, Monday, Tuesday, …
MONTH = January, February, April, May, June, …
EVENT=meeting, class, party, …

• P(Tuesday| party on) is similar to P(Monday| party on)
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Clustering

• A word may belong to more than one class and a class 
may contain more than one word (many-to-many 
mapping)

a              meeting                                Sunday    is                      canceled 
the           date                  on                Monday    will be               postponed
one          party                                     Tuesday  

in                January                                       prepared
February                                     arranged
April       
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Clustering

• The n-gram model can be computed based on the 
previous n-1 classes

– If trigram approximation and unique mappings from words to 
word classes are used

– Empirically estimate the probabilities
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Clustering

• Clustering is another way to battle data sparseness 
problem (smoothing of the language model)

• For general-purpose large vocabulary dictation 
application, class-based n-grams have not significant 
improved recognition accuracy
– Mainly used as a back-off model to complement the lower-order 

n-grams for better smoothing

• For limited (or narrow discourse) domain speech 
recognition, the class-based n-gram is very helpful
– Because the class can efficiently encode semantic information 

for improved keyword-spotting and speech understanding 
accuracy

– Good results are often achieved by manual clustering of 
semantic categories
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Caching

• The basic idea of cashing is to accumulate n-grams 
dictated so far in the current document/conversation and 
use these to create dynamic n-grams model 

• Trigram interpolated with unigram cache

• Trigram interpolated with bigram cache
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Caching

• Real Life of Caching 
– Someone says “I swear to tell the truth”
– System hears “I swerve to smell the soup”
– Someone says “The whole truth”, and, with cache, system hears 

“The toll booth.” – errors are locked in

– Caching works well when users corrects as they go, poorly or 
even hurts without correction

Cache remembers!
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Known Weakness in Current LM

• Brittleness Across Domain
– Current language models are extremely sensitive to changes in 

the style or topic of the text on which they are trained

– E.g., conversations vs. news broadcasts

• False Independent Assumption
– In order to remain trainable, the n-gram modeling assumes the 

probability of next word in a sentence depends only on the 
identity of last n-1 words
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LM Integrated into Speech Recognition 

• Theoretically,

• Practically, language model is a better predictor while 
acoustic probabilities aren’t “real” probabilities

– Penalize insertions
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Good-Turing Estimate

• First published by Good (1953) while Turing is 
acknowledged

• A smoothing technique to deal with infrequent m-grams 
(m-gram smoothing), but it usually needs to be used 
together with other back-off schemes to achieve good 
performance

• How many words were seen once? Estimate for how 
many are unseen. All other estimates are adjusted 
(down) to give probabilities for unseen

Use the notation 
m-grams instead of 
n-grams here 
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Good-Turing Estimate

• For any m-gram,             ,that occurs r times (             ), 
we pretend it occurs r* times (                ),

– The probability estimate for a m-gram,                , with r counts

• The size (word counts) of the training data remains the 
same
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Good-Turing Estimate

• It follows from above that the total probability estimate 
using for the set of m-grams that actually occurred in the 
sample is

• The probability of observing some previously unseen m-
grams is

– Which is just a fraction of the singletons (m-grams occurring only 
once) in the text sample  
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Good-Turing Estimate: Example
• Imagine you are fishing. You have caught 10 Carp (鯉魚), 

3 Cod (鱈魚), 2 tuna(鮪魚), 1 trout(鱒魚), 1 salmon(鮭魚), 
1 eel(鰻魚)

• How likely is it that next species is new? 
– p0=n1/N=3/18= 1/6

• How likely is eel? 1*

– n1 =3, n2 =1
– 1* =2 ×1/3 = 2/3
– P(eel) = 1* /N = (2/3)/18 = 1/27

• How likely is tuna? 2*

– n2 =1, n3 =1
– 2* =3 ×1/1 = 3
– P(tuna) = 2* /N = 3/18 = 1/6

• But how likely is Cod? 3*

– Need smoothing for n4 in advance
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Good-Turing Estimate

• The Good-Turing estimate may yield some problems 
when nr+1=0
– An alternative strategy is to apply Good-Turing to the n-grams 

(events) seem at most k times, where k is a parameter chosen 
so that nr+1 ≠0, r=1,…,k
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Good-Turing Estimate

• For Good-Turing estimate, it may happen that an m-gram 
(event) occurring k times takes on a higher probability 
than an event occurring k+1 times
– The choice of k may be selected in an attempt to overcome such 

a drawback  

– Experimentally, k ranging from 4 to 8 will not allow the about 
condition to be true (for r ≤ k)
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Katz Back-off Smoothing

• Extend the intuition of the Good-Turing estimate by 
adding the combination of higher-order language 
models with lower-order ones
– E.g., bigrams and unigram language models

• Larger counts are taken to be reliable, so they are not 
discounted
– E.g., for frequency counts r > k

• Lower counts are discounted, with total reduced counts 
assigned to unseen events, based on the Good-Turning 
estimate
– E.g., for frequency counts r ≤ k
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Assume lower level
LM probability has
been defined

Katz Back-off Smoothing

• Take the bigram (m-gram, m=2) counts for example:

1. 

2.                     : discount constant, satisfying to the following 
two equations

and 
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Katz Back-off Smoothing

• Derivation of the discount constant: 
( )

( )
1

1

1

1
*

11

1

n
nk

n
nk

r
r

d
k

k

r
+

+

+
−

+
−

=

( )

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

=−∑
=

r
rd

nrdn

r

k

r
rr

*
1

11

imposed are sconstraint Two

µ

[ ]

[ ] ( )2    

1 

1     

1
1

*

1
1

*

1
1

∑

∑

∑

=

=

=

=−⇒

=⎥
⎦

⎤
⎢
⎣

⎡
−⇒

=−

k

r
r

k

r
r

k

r
r

nrrn

nr
r

rn

nrdn

µ

µ

( )

( ) ( )

( )
( )

( )
( )

( )
( ) ( )1     

1

1

1
1

1

1    

knownisequation  followingtheAlso,

1
1 11

1
*

1
11

1
1

*

11

1

*

11
1

*

11
1

*

1

n
nkn
nrrn

n
nkn

nrrn

nkn

rrn

nknnrrn

nknnrrn

k

r k

r

k

k

r
r

k

k

r
r

k

k

r
rr

k

k

r
r

k

r
r

=
+−

−
⇒

=
+−

−
⇒

=
+−

−
⇒

+−=−⇒

+−=−

∑

∑

∑

∑

∑∑

= +

+

=

+

=

+
=

+
==

( )
( ) ( )

( )
( )[ ]

( )
( )[ ]11

1
*

*

11

1
*

*

11

1
*

1
1

11
1

3     
1

have  we together,related are (2) and (1) equations If

+

+

+

+−
−

−=⇒

−=−=
+−

−
⇒

−=
+−

−
⇒

k
r

r
k

k

nknr
nrrd

d
r
ru

nknr
nrr

rur
nkn

nrr
Both sides
multiplied by n1

Both sides
divided by r



42

Katz Back-off Smoothing

• Derivation of the discount constant rd
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Katz Back-off Smoothing

• Take the conditional probabilities of  bigrams (m-gram, m=2) 
for example:

1. discount constant

2. normalizing constant
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Katz Back-off Smoothing: Example

• A small vocabulary consists of only five words, 
i.e.,                        . The frequency counts for word pairs 
started with      are:

, and the word frequency counts are:
.

Katz back-off smoothing with Good-Turing estimate is 
used here for word pairs with frequency counts equal to 
or less than two. Show the conditional probabilities of 
word bigrams started with         , i.e., 

{ }521 ,...,, wwwV =

1w

[ ] [ ] [ ] [ ] [ ] 0,, ,1,  ,2, ,3, 5111413121 ===== wwCwwCwwCwwCwwC

[ ] [ ] [ ] [ ] [ ] 4 ,6 ,10 ,8 ,6 54321 ===== wCwCwCwCwC

1w

( ) ( ) ( ) ?  ...., , , 151211 wwPwwPwwP KatzKatzKatz
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Katz Back-off Smoothing: Example
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Kneser-Ney Back-off Smoothing

• Absolute discounting without the Good-Turning 
estimate

• The lower n-gram (back-off n-gram) is not proportional 
to the number of occurrences of a word but instead to 
the number of different words that it follows, e.g.:
– In “San Francisco”, “Francisco” only follows a single history, it 

should receive a low unigram probability

– In “US dollars”, “TW dollars” etc., “dollars” should receive a 
high unigram probability

C(US dollars)=200
C(HK dollars)=100 
C(TW dollars)=25

.

.
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Kneser-Ney Back-off Smoothing

• Take the conditional probabilities of  bigrams (m-gram, m=2) 
for example:

1.             

2. normalizing constant
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Kneser-Ney Back-off Smoothing: Example

• Given a text sequence as the following:
SABCAABBCS                    (S is the sequence’s start/end marks)

Show the corresponding unigram conditional    
probabilities:

[ ] [ ]
[ ] [ ]
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Katz vs. Kneser-Ney Back-off Smoothing

• Example 1: Wall Street Journal (JSW), English 
– A vocabulary of 60,000 words and a corpus of 260 million words 

(read speech) from a newspaper such as Wall Street Journal
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Katz vs. Kneser-Ney Back-off Smoothing

• Example 2: Broadcast News Speech, Mandarin 
– A vocabulary of 72,000 words and a corpus of 170 million Chinese

characters from Central News Agency (CNA)
– Tested on Mandarin broadcast news speech collected in Taiwan, 

September 2002, about 3.7 hours

– The perplexities are high here, because the LM training materials 
are not speech transcripts but merely newswire texts

14.90670.24Tigram Kneser-Ney

14.62752.49Tigram Katz

18.17942.34Bigram Kneser-Ney

16.81959.56Bigram Katz

Character Error Rate
(after tree-copy search, TC )

PerplexityModels
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Interpolated Kneser-Ney Smoothing 

• Always combine both the higher-order and the lower-
order LM probability distributions

• Take the bigram (m-gram, m=2) conditional probabilities
for example:

– Where 
• : the number of unique words that precede

• : a normalizing constant that makes the probabilities      
sum to 1
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Interpolated Kneser-Ney Smoothing

• The exact formula for interpolated Kneser-Ney smoothed 
trigram conditional probabilities
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For the IKN bigram and unigram, the number of 
unique words that precede a given history is 
considered, instead of the frequency counts.
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Back-off  vs. Interpolation 

• When determining the probability of n-grams with 
nonzero counts, interpolated models use information 
from lower-order distributions while back-off models do 
not

• In both back-off and interpolated models, lower-order 
distributions are used in determining the probability 
of n-grams with zero counts

• It is easy to create a back-off version of an interpolated 
algorithm by modifying the normalizing constant


