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Introduction 

• Template-based: without statistical modeling/training
– Directly compare/align the testing and reference waveforms on 

their features vector sequences (with different length, respectively) 
to derive the overall distortion between them 

– Dynamic Time Warping (DTW): warp speech templates in the 
time dimension to alleviate the distortion

• Model-based: HMM are using for recognition systems
– Concatenate the subword models according to the pronunciation 

of the words in a lexicon  
– The states in the HMM can be expanded to form the state-search 

space (HMM state transition network) in the search
– Apply appropriate search strategies
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Template-based Speech Recognition

• Dynamic Time Warping (DTW) is simple to implement and 
fairly effective for small-vocabulary Isolated word speech 
recognition
– Use dynamic programming (DP) to temporally align patterns to 

account for differences in speaking rates across speakers as well 
as across repetitions of the word by the same speakers

• Drawback
– Do not have a principled way to derive an averaged template for 

each pattern from a large training samples
– A multiplicity of reference templates is required to characterize the 

variation among different utterances 
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Template-based Speech Recognition

• Example
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Model-based Speech Recognition

• A search process to uncover the word sequence 
that has the maximum posterior probability m21 w,...,wwˆ =W
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Model-based Speech Recognition

• Therefore, the model-based continuous speech 
recognition is both a pattern recognition and search 
problems
– The acoustic and language models are built upon a statistical 

pattern recognition framework
– In speech recognition, making a search decision is also referred

as a decoding process (or a search process)
• Find a sequence of words whose corresponding acoustic and 

language models best match the input signal
• The search space (complexity) is highly imposed by the 

language models

• The model-based continuous speech recognition is 
usually with the Viterbi (plus beam, or Viterbi beam) 
search or A* stack decoders
– The relative merits of both search algorithms were quite 

controversial in the 1980s
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Model-based Speech Recognition

• Simplified Block Diagrams

• Statistical Modeling Paradigm



Basic Search Algorithms
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What Is “Search”?

• What Is “Search”: Moving around, examining things, and 
making decisions about whether the sought object has yet 
been found
– Classical problems in AI:

traveling salesman’s problem, 8-queens, etc.

• The directions of the search process
– Forward search (reasoning): from initial state to goal state(s)
– Backward search (reasoning): from goal state(s) to goal state
– Bidirectional search

• Seems particular appealing if the number of nodes at each 
step grows exponential with the depth that need to be explored
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What Is “Search”?

• Two sategories of search algorithms
– Uninformed Search (Blind Search)

• Depth-First Search
• Breadth-First Search

Have no sense of where the goal node lies ahead!

– Informed Search (Heuristic Search)
• A* search (Best-First Search)

The search is guided by some domain knowledge (or heuristic 
information)! (e.g. the predicted distance/cost from the current
node to the goal node)

– Some heuristic can reduce search effort without sacrificing 
optimality
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Depth-First Search

• The deepest nodes are expanded first 
and nodes of equal depth are ordered 
arbitrary

• Pick up an arbitrary alternative at 
each node visited

• Stick with this partial path and walks 
forward from the partial path, other 
alternatives at the same level are 
ignored completely

• When reach a dead-end, go back to 
last decision point ad proceed with 
another alternative

• Depth-first search could be dangerous because it might 
search an impossible path that is actually an infinite dead-
end
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Breadth-First Search

• Examine all the nodes on one level before considering 
any of the nodes on the next level (depth)

• Breadth-first search is guaranteed to find a solution if one 
exists
– But it might not find a short-distance path, it’s guaranteed 

to find one with few nodes visited
(minimum-length path)

• Could be inefficient
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A*  search

• History of A* Search in AI
– The most studied version of the best-first strategies (Hert, Nilsson,1968)
– Developed for additive cost measures (The cost of a path = sum of the 

costs of its arcs)

• Properties
– Can sequentially generate multiple recognition candidates
– Need a good heuristic function

• Heuristic 
– A technique (domain knowledge) that improves the efficiency of a search 

process
– Inaccurate heuristic function results in a less efficient search
– The heuristic function helps the search to satisfy admissible condition

• Admissibility
– The property that a search algorithm guarantees to find an optimal solution, 

if there is one
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A*  search

• A Simple Example
– Problem: Find a path with highest score form root node “A” to 

some leaf node (one of “L1”,”L2”,”L3”,”L4”)
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A*  search
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List or Stack(sorted)
Stack Top Stack Elements 

A(15) A(15) 
C(15) C(15), B(13), D(7) 
G(14) G(14), B(13), F(9), D(7) 
B(13) B(13), L3(12), F(9), D(7) 

L3(12) L3(12), E(11), F(9), D(7) 

Node     g(n) h(n) f(n)
A             0         15       15
B             4          9        13
C             3         12       15
D             2          5          7
E             7          4        11
F             7          2          9
G            11         3        14  
L1           9           0          9
L2           8           0          8
L3          12          0        12
L4           5           0          5

( ) ( ) ( )
 

:  node offunction  Evaluation
nhngnf

n
+=

Proving the Admissibility of A* Algorithm:

Suppose  when algorithm terminates, “G “ is a complete path  
on the top of the stack and “p” is a partial path  which presents
somewhere on the stack. 
There exists a complete path “P” passing through “p”, which
is not equal to “G” and is optimal.

Proof:
1. “P” is a complete which passes through “p”,   f(P)<=f(p)
2.Because “G” is on the top of the stack ,     f(G)>=f(p)>=f(P)
3. Therefore, it makes contrariety !!

• A Simple Example: 
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A*  search: Exercises

• Please find a path from the initial stat α to one of the four goal 
states (β1, β2, β3, β4) with the shortest path cost. Each arc is 
associated with a number representing its corresponding cost to be 
taken, while each node is associated with a number standing for the 
expected cost (the heuristic score/function) to one of the four goal 
states
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A*  search: Exercises

• Problems
– What is the first goal state found by the depth-first search, which 

always selects a node’s left-most child node for path expansion? 
Is it an optimal solution? What is the total search cost?

– What is the first goal state found by the bread-first search, which 
always expends all child nodes at the same level from left to 
right? Is it an optimal solution? What is the total search cost?

– What is the first goal state found by the A* search using the path 
cost and heuristic function for path expansion? Is it an optimal
solution? What is the total search cost? 

– What is the search path cost if the A* search was used to 
sequentially visit the four goal states?
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Beam Search

• Widely used search technique for speech recognition 
systems
– It’s a breadth-first search and progresses along with the depth
– Unlike traditional breadth-first search, beam search only expands 

nodes that are likely to succeed at each level
• Keep up to m-best nodes at each level (stage)
• Only these nodes are kept in the beam, the rest are ignored 

(pruned)
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Beam Search

• Used to prune unlikely paths in recognition task
• Need some criteria (hypotheses) to prune paths
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Fast-Match Search

• Two Stage Processing
– First stage: use a simplified grammar network (or acoustic 

models) to generate N likely words
– Second stage: use a precise grammar network to reorder these 

N words

Simplified
 Grammar Network

Find  N  Most Likely Words

 (Fast-Match  Procedure) 

Speech Feature
Vector

Precise
 Grammar Network

Reorder Words in the List 

    (Reorder Procedure)

A List of  N Most
 

 Likely Words

The Most Likely
    One

 
 

The fast-match algorithm paradigm 



Review:
Search Within a Given HMM
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Calculating the Probability of  an 
Observation Sequence on an HMM Model

• Direct Evaluation: without using recursion (DP, 
dynamic programming) and memory

– Huge Computation Requirements: O(NT)
• Exponential computational complexity

•

• A more efficient algorithms can 
be used to evaluate   
– Forward/Backward Procedure/Algorithm
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Calculating the Probability of  an 
Observation Sequence on an HMM Model

• Forward Procedure
– Base on the HMM assumptions, the calculation of

and                    involves only        ,          and      , so it is 
possible to compute the likelihood              with recursion on 

– Forward variable :  
• The probability that the HMM is in state i at time t having generating 

partial observation o1o2…ot

( )λ,ssP 1tt −

( )λ,soP tt 1ts − ts
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Calculating the Probability of  an 
Observation Sequence on an HMM Model

• Forward Procedure (Cont.)
– Algorithm

– Complexity: O(N2T)

– Based on the lattice (trellis) structure
• Computed in a time-synchronous fashion from left-to-right, where 

each cell for time t is completely computed before proceeding to 
time t+1

• All state sequences, regardless how long previously, merge to N
nodes (states) at each time instance t
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Calculating the Probability of  an Observation 
Sequence on an HMM Model

• Backward Procedure
– Backward variable : βt(i)=P(ot+1,ot+2,…..,oT|st=i , λ)
– Algorithm

– Complexity: O(N2T)
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Choosing an Optimal State Sequence 
S=(s1,s2,……, sT) on an HMM Model

• Viterbi Algorithm
– The Viterbi algorithm can be regarded as the dynamic 

programming algorithm applied to the HMM or as a modified 
forward algorithm

• Instead of summing up probabilities from different paths 
coming to the same destination state, the Viterbi algorithm 
picks and remembers the best path

• Find a single optimal state sequence S=(s1,s2,……, sT)

– The Viterbi algorithm also can be illustrated in a trellis framework 
similar to the one for the forward algorithm
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Choosing an Optimal State Sequence 
S=(s1,s2,……, sT) on an HMM Model

• Viterbi Algorithm (Cont.)
– Algorithm

– Complexity: O(N2T)
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Choosing an Optimal State Sequence 
S=(s1,s2,……, sT) on an HMM Model

• Viterbi Algorithm (Cont.)
– In practice, we calculate the logarithmic value of a given 

state sequence instead of its real value 
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Search in the HMM Networks
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Digit/Syllable Recognition

• One-stage Search
– Unknown number of digits/syllables
– Search over a 3-dim grid

– At each frame iteration, the maximum value achieved from the end
states of all models in previous frame will be propagated and used 
to compete for the values of the start states of all models

– May result with substitutions, deletions and insertions
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Digit/Syllable Recognition
• Level-Building

– Known number of digits/syllables
– Higher computation complexity, no deletions and insertions

– Number of levels: number of digits in an utterance
– Transitions from the last states of the 

previous models (previous level) to
the first states of specific models 
(current level)
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Isolated Word Recognition
• Word boundaries are known (after endpoint detection)
• Two search structures

– Lexicon-List (Linear Lexicon)
• Each word is individually represented as a huge composite 

HMM by concatenating corresponding subword-level 
(phone/Initial-Final/syllable) HMMs

• No sharing of computation between words when performing 
search

• The search becomes a simple pattern recognition problem, 
and the word with the highest forward or Viterbi probability is 
chosen as the recognition word 

– Tree Structure (Tree Lexicon)
• Arrange the subword-level (phone/Initial-Final/syllable) 

representations of the words in vocabulary into a tree structure
• Each arc stands for an HMM or subword-level modeling
• Sharing of computation between word as much as possible
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Isolated Word Recognition

• Two search structures (Cont.)

18 arcs

l in d eng h uei

l i j empt shi ian

l i d eng h uei

wang d eng shi ian

wang d eng h uei

林 登 輝

Linear lexicon

李 志 賢

l in d eng shi ian
林 登 賢

李 登 輝

王 登 賢

王 登 輝

l in 

d eng

shi ian

l i 

wang

h uei

d eng

d eng

shi ian

h uei

shi ian

h uei

Tree lexicon

j empt

13 arcs
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Isolated Word Recognition

• More about the Tree Lexicon
– The idea of using a tree represented was already suggested in 

1970s in the CASPERS system and the LAFS system

– When using such a lexical tree in a language model (bigram or 
trigram) and dynamic programming, there are technical details that 
have to taken into account and require a careful structuring of the 
search space (especially for continuous speech recognition to be
discussed later)

• Delayed application of language model until reaching tree leaf 
nodes

• A copy of the lexical tree for each alive language model history 
in dynamic programming for continuous speech recognition
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Continuous Speech Recognition (CSR)

• CSR is rather complicated, since the search algorithm 
has to consider the possibility of each word starting at 
arbitrary time frame

• Linear Lexicon Without Language Modeling
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Continuous Speech Recognition

• Linear Lexicon With Unigram Language Modeling
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Continuous Speech Recognition

• Linear Lexicon With Bigram Language Modeling
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Continuous Speech Recognition

• Linear Lexicon With Trigram Language Modeling

history=w1

history=w1

history=w2

history=w2

language model recombination
(keep only n-2 gram history 
distinct when recombining)



Further Studies on 
Implementation Techniques 

for Speech Recognition
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Isolated Word Recognition
Search Strategy: Beam search

• Tree Structure for Pronunciation Lexicon

• Initialization for Dynamic Programming

• Two-Level Dynamic Programming
– Within HMM
– Between HMMs (Arc extension)

l in 

d eng

shi ian

l i 

wang

h uei

d eng

d eng

shi ian

h uei

shi ian

h uei

j empt
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Isolated Word Recognition
Search Strategy: A* Search

• Applied to Mandarin Isolated Word Recognition
– Forward Trellis Search (Heuristic Scoring)

• A forward time-synchronous Viterbi-like trellis search
for generating  the heuristic score

• Using a simplified grammar network of different degree
grammar type : (Over-generated Grammar)

– No grammar
– Syllable-pair grammar
– No grammar with string length constraint grammar

• Syllable-pair with string length constraint grammar
– Backward A* Tree Search

• A backward time-asynchronous Viterbi-like A* tree search for 
finding the “exact” word

• A backward syllabic tree without overgenerating the lexical  
vocabulary
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Isolated Word Recognition
Search Strategy: A* Search

– Grammar Networks for Heuristic Scoring

syllable i

syllable j

syllable k

No gram m ar 

syllable i

syllable j

syllable k

Syllable-pair  gramm ar

212 / 275/335 212 / 275/335

N o   g ra m m a r
w ith  s t r in g  le n g th
c o n s t ra in t  g ra m m a r

8 9 /1 4 6 /2 0 2 1 3 7 /2 2 2 /2 8 0 1 3 6 /2 2 3 /3 0 0

8 9 /1 4 6 /2 0 2 1 3 7 /2 2 2 /2 8 0 1 3 6 /2 2 3 /3 0 0

S y lla b le -p a ir
w ith  s t r in g  le n g th
c o n s t ra in t  g ra m m a r

Four types of simplified grammar networks used in the tree search.
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Isolated Word Recognition
Search Strategy: A* Search

– Backward Search Tree

shi ian

h uei

d eng

j empt

d engl i

l in

li

wang

l in

l in 

wang

Steps in A* Search :
At each iteration of the algorithm-

A sorted list (or stack) of partial paths, 
each with a evaluation function

The partial path with the highest  evaluation 
function -

Expanded 
For each one -phone( or one syllable or 
one arc ) extensions permitted by the 
lexicon, the evaluation functions of the 
extended paths are calculated
And the extended partial paths are 
inserted into the stack at the appropriate 
position (sorted according to " 
evaluation function ")

The algorithm terminates -
When a complete path ( or word)  
appears on the top of the stack
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Keyword Spotting

• The Common Aspect of Most Word Spotting 
Applications

– It is only necessary to extract partial information from the input 
speech utterance

– Many automated speech recognition problems can be loosely 
described by this requirement

• Speech message browsing
• Command spotting
• Telecommunications services (applications)

Hesitation, 
Repetition, 
Out-of-vocabulary words (OOV)

“Mm,...,”
“I wanna talk ..talk to..”

“What?”
幫我找台..台灣銀行的ㄟ電話
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Keyword Spotting

KW1

KW2

KWN

FIL1

FIL2

FILM

Ck1

Ck2

CkN

CF1

CF2

CFM

Pk

PF

Viterbi
Decoder

Utterance 
Verification

… FIL FIL KW FIL KW …

Filler Models Language Model

Kyeyword Models Thresholds

Speech

Anti Models

Decoded

Keywords

• General Framework of Keyword Spotting
– Viterbi Decoding (Continuous Speech Recognition)
– Utterance Verification (a two-stage approach)

A continuous stream of 
keywords and fillers.

A simple, unconstrained finite state 
network contains N keywords and 
M fillers. Associated with each 
keyword and filler are word 
transition penalties.
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Keyword Spotting

• Single-keyword Spotting

Left filler Right fillerkeyword

DeltaW(SW,T-1)

DeltaF(SF2,T-1)

T-1

Max{ DeltaF(SF2,T-1),
DeltaW(SW,T-1) }DeltaF2(SF2,t-1)

DeltaF2(1,t-1)

Deltaw(SW,t-1)

DeltaF1(SF1,t-1)

DeltaF1(1,t-1)

DeltaF2(1,t)

DeltaF1(1,t)

DeltaW(1,t)

Right-Filler

Keyword

Left-Filler
Prob.=1.0

Prob.=1.0 tt-1

s1 s1 sWis1 s1 sF1 s1 s1 sF2

0
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Keyword Spotting

Case Study: A* search for Mandarin Keyword Spotting
• Search Framework

– Forward Heuristic Scoring

The structure of the compact syllable lattice 
and the filler models in the first pass

ㄨㄛ

ㄧㄣ

ㄧㄣ

ㄨㄢ

ㄊㄞ ㄑㄧ

ㄏㄨㄚ

ㄈㄣ

ㄕㄤ

ㄏㄞ

ㄧㄝ

ㄙㄨㄥ

ㄕㄢ

ㄧ

ㄓㄠㄒ一ㄤ

ㄅㄤ

ㄏㄤ

Left Filler Model                            Syllable Lattice   Right Filler Model 

ㄨㄛ

Silence
Model

General 
Acoustic 
Model

Syllable n

Syllable 1

Silence
Model

General 
Acoustic 
Model

Syllable n

Syllable 1

( ) )()1()()( tfilbatsylbtsilatf ⋅−−+⋅+⋅=

( )[ ]),1,(
0

),( 11
1

* ttnhtf
tt

MAX
tnh kLk ++

<≤
=
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Keyword Spotting

Case Study: A* search for Mandarin Keyword Spotting
• Search Framework

– Backward Time-Asynchronous A* Search

The search framework of key-phrase spotting

Left Filler Model                         Lexical Network       Right Filler Model 

行

灣

台 旗

花 分
上

海 商

松 山

銀
一

找

想

我

幫

我

銀

Silence
Model

General 
Acoustic 
Model

Syllable n

Syllable 1

Silence
Model

General 
Acoustic 
Model

Syllable n

Syllable 1

( )[ ])1,(,
0

)( * −+
<<

= tnhtnd
Tt

MAX
nE kkpkp

( )[ ])(1,,),( 22
2

tfttng
Ttt

MAX
tnd Rkpkp +−

<<
=
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Data Structure for the Lexicon Tree  

• Trie Structure

struct DEF_LEXICON_TREE
{      

short    Model_ID;
short    WD_NO;
int *WD_ID;
int Leaf;
struct Tree *Child;
struct Tree *Brother;
struct Tree *Father;

};

A

D C B

EFGH

IJK

Tree

A

BC

GH

D

K J

EF

I

Trie
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Data Structure for the Lexicon Tree

• Trie Structure Do_Build_Word_Tree(int Word_Pos,int MODEL_LEN,int *Model_ID)
{

struct Tree *ptr1,*ptr2,*ptrTmp,*TreeNew;
int i=0,find=-1;
ptr1=Root; 
while(i<MODEL_LEN)
{ 

ptrTmp=ptr1;   ptr1=ptr1->Child; 
if(ptr1==(struct Tree *) NULL)
{ 
TreeNew=(struct Tree *) malloc(sizeof (struct Tree));
ptrTmp->Child=ptr1=TreeNew;
ptr1->Brother=(struct Tree *) NULL;  ptr1->Child=(struct Tree *) NULL;
ptr1->Father=ptrTmp; ptr1->Model_ID=Model_ID[i];
if(i==MODEL_LEN-1) 
{ 

ptr1->WD_NO=1;
ptr1->WD_ID=(int *) malloc((1)*sizeof(int));

}
else   ptr1->WD_NO=0;

}
else  { ………………….} ;

}//While Loop
}//Do_Build_Tree
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Initialization for Two-level DP 
for the Lexicon Tree

• Initialization: put all the 0-th states of the arcs (HMMs) 
connecting to the root node into the active state list

//-------------Initialization for DP------------
ActiveTreeStateNo=0;
ptrTree=Root->Child;
while(ptrTree!=(struct Tree *) NULL)
{

LEX_STATE[PT1][ActiveTreeStateNo].TPTR=ptrTree;
LEX_STATE[PT1][ActiveTreeStateNo].HMM_state=0;
LEX_STATE[PT1][ActiveTreeStateNo].Score=(float) 0.0;
ptrTree=ptrTree->Brother;
ATreeState++;

}
//--------------------------------------------

struct DEF_LEX_STATE
{

struct Tree *TPTR;
short  HMM_state;
float  Score;

};
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Dynamic Programming: Within HMM

NewActiveTreeStateNo=0; 
for(state_no=0;state_no<ActiveTreeStateNo;state_no++)
{ 

cur_HMM=LEX_STATE[PT1][state_no].TPTR->Model_ID; cur_state=LEX_STATE[PT1][state_no].HMM_state;
if(cur_state!=0) 

{
FindNewState=-1;//Global Variable
next_state_no=Find_NewTreeState_POS(Frame_Num,state_no,cur_state,0);
//看看LEX_STATE[PT2]是否存已在這個Tree-Node:LEX_STATE[PT1]

if(FindNewState==1)
{

Cur_Score=LEX_STATE[PT1][state_no].Score+B_O[Frame_Num][cur_HMM][cur_state]
+Model[cur_HMM].Trans[cur_state][cur_state];

if(Cur_Score>LEX_STATE[PT2][next_state_no].Score) LEX_STATE[PT2][next_state_no].Score=Cur_Score;    
} 

}  //if cur_state !=0  
if(cur_state<Model[cur_HMM].State-2)
{

FindNewState=-1;
next_state_no=Find_NewTreeState_POS(Frame_Num,state_no,cur_state+1,1);
if(FindNewState==1)
{
Cur_Score=LEX_STATE[PT1][state_no].Score+B_O[Frame_Num][cur_HMM][cur_state+1]

+Model[cur_HMM].Trans[cur_state][cur_state+1];
if(Cur_Score>LEX_STATE[PT2][next_state_no].Score)LEX_STATE[PT2][next_state_no].Score=Cur_Score;

}
}//if cur_state<Model[cur_HMM].State-2

}//for ActiveTreeStateNo
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Dynamic Programming: Within HMM

int Find_NewTreeState_POS(int Frame_Num,int Index,int cur_state, int type)
{

int i,cur_HMM;
float trans;
if((ActiveNode_Iter=

NewActiveTreeNodeMAP.find(Bipairx((int)LEX_STATE[PT1][Index].TPTR,cur_state)))!= NewActiveTreeNodeMAP.end())
{

FindNewState=1;
return ActiveNode_Iter->second;

}
else

{
cur_HMM=LEX_STATE[PT1][Index].TPTR->Model_ID;
if(type==0)

trans=Model[cur_HMM].Trans[cur_state][cur_state];
else

trans=Model[cur_HMM].Trans[cur_state-1][cur_state];        
LEX_STATE[PT2][NewActiveTreeStateNo].TPTR=LEX_STATE[PT1][Index].TPTR;
LEX_STATE[PT2][NewActiveTreeStateNo].HMM_state=cur_state;
LEX_STATE[PT2][NewActiveTreeStateNo].Score=LEX_STATE[PT1][Index].Score

+B_O[Frame_Num][cur_HMM][cur_state]+trans;
NewActiveTreeNodeMAP[Bipairx((int)LEX_STATE[PT2][NewActiveTreeStateNo].TPTR

,LEX_STATE[PT2][NewActiveTreeStateNo].HMM_state)]=NewActiveTreeStateNo; 
return NewActiveTreeStateNo++;

}
}
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Dynamic Programming: Within HMM

• Pruning the HMM states with lower scores  

Acoustic_MAX=(float) Min_Delta;
for(state_no=0;state_no<NewTreeStateNo;state_no++) 

if(LEX_STATE[PT2][state_no].Score>Acoustic_MAX)
Acoustic_MAX=LEX_STATE[PT2][state_no].Score;

ActiveTreeStateNo=0;
for(state_no=0;state_no<NewTreeStateNo;state_no++) 
{ 

if((LEX_STATE[PT2][state_no].Score>Acoustic_MAX-Threshold) 
{

LEX_STATE[PT1][ActiveTreeStateNo]=LEX_STATE[PT2][state_no];      
ActiveTreeStateNo++;

}
}
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Dynamic Programming: Between HMMs
• Arc Extension in the Lexicon Tree

State_POS=ActiveTreeStateNo;

for(state_no=0;state_no<State_POS;state_no++)
{

cur_HMM=LEX_STATE[PT1][state_no].TPTR->Model_ID;
cur_state=LEX_STATE[PT1][state_no].HMM_state;
if(cur_state==Model[cur_HMM].State-2)

{
ptrTree=LEX_STATE[PT1][state_no].TPTR->Child;
while(ptrTree!=(struct Tree *) NULL)
{

LEX_STATE[PT1][ActiveTreeStateNo].TPTR=ptrTree;
LEX_STATE[PT1][ActiveTreeStateNo].HMM_state=0;
LEX_STATE[PT1][ActiveTreeStateNo].Score=LEX_STATE[PT1][state_no].Score

+Model[cur_HMM].Trans[cur_state][cur_state+1];
ActiveTreeStateNo++;
ptrTree=ptrTree->Brother;

}//while
}

}//for state_no


