
Search Algorithms for
Speech Recognition

Berlin Chen 2003

2

References
• Books

1. X. Huang, A. Acero, H. Hon, “Spoken Language Processing”, Chapters 12-13,
Prentice Hall, 2001

2. Chin-Hui Lee, Frank K. Soong and Kuldip K. Paliwal. Automatic Speech and
Speaker Recognition, Chapters 13, 16-18, Kluwer Academic Publishers, 1996

3. John R. Deller, JR. John G. Proakis, and John H. L. Hansen. Discrete-Time
Processing of Speech Signals, Chapters 11-12, IEEE Press, 2000

4. L.R. Rabiner and B.H. Juang. Fundamentals of speech recognition, Chapter 6,
Prentice Hall, 1993

5. Frederick Jelinek. Statistical Methods for Speech Recognition, Chapters 5-6, MIT
Press, 1999

6. N. Nilisson. Principles of Artificial Intelligence, 1982

• Papers
1. Hermann Ney, “Progress in Dynamic Programming Search for LVCSR,”

Proceedings of the IEEE, August 2000
2. Patrick Kenny, et al, “A*-Admissible heuristics for rapid lexical access,” IEEE

Trans. on SAP, 1993
3. Stefan Ortmanns and Hermann Ney, “A Word Graph Algorithm for Large

Vocabulary Continuous Speech Recognition,” Computer Speech and Language
(1997) 11,43-72

4. Jean-Luc Gauvain and Lori Lamel, “Large-Vocabulary Continuous Speech
Recognition: Advances and Applications,” Proceedings of the IEEE, August 2000

3

Introduction

• Template-based: without statistical modeling/training
– Directly compare/align the testing and reference waveforms on

their features vector sequences (with different length, respectively)
to derive the overall distortion between them

– Dynamic Time Warping (DTW): warp speech templates in the
time dimension to alleviate the distortion

• Model-based: HMM are using for recognition systems
– Concatenate the subword models according to the pronunciation

of the words in a lexicon
– The states in the HMM can be expanded to form the state-search

space (HMM state transition network) in the search
– Apply appropriate search strategies

4

Template-based Speech Recognition

• Dynamic Time Warping (DTW) is simple to implement and
fairly effective for small-vocabulary Isolated word speech
recognition
– Use dynamic programming (DP) to temporally align patterns to

account for differences in speaking rates across speakers as well
as across repetitions of the word by the same speakers

• Drawback
– Do not have a principled way to derive an averaged template for

each pattern from a large training samples
– A multiplicity of reference templates is required to characterize the

variation among different utterances

5

Template-based Speech Recognition

• Example

()1
1r

o
r
()2

1r
o
r

()1r Mo
1

r

()1
2r

o
r

()2
2r

o
r

()2r Mo
2

r

()1
3r

o
r

()3r Mo
3

r

()2o
3r

r

r1

r2

r3

()1io
r ()2io

r ()Noi

r() ()()[]

() ()()[]

()()[] () ()()[]1111min11min

1111min
11

11min
11

min

 ,,,

 ,
,

min

,,
,

min
,

−−−−−−

−−−−
−−

−−
−−

+=

+=

=

kkkkkkkkkk

kkkkkk
kk

kkkk
kk

kk

,ji,jidjiDjijiD

,ji,jidjiD
ji

jijiD
ji

jiD

6

Model-based Speech Recognition

• A search process to uncover the word sequence
that has the maximum posterior probability m21 w,...,wwˆ =W

()XWP

()
() ()

()
() ()WXW

X
WXW

XWW

W

W

W

PP
P

PP

Pˆ

max arg

max arg

max arg

=

=

=

Language Model Probability Acoustic Model Probability

Unigram:

Bigram:

Trigram:
() () () () () ()

()1j

j1j
1jj1kk121k21 wC

wwCwwP,wwP...wwPwPw..wwP
−

−
−− =≈

() () () () () ()
()∑

=≈
i i

j
jk21k21 wC

wCwP,wP...wPwPw..wwP

() () () () () () ()
()1j2j

j1j2j
2k1kk1k2kk213121k21 wwC

wwwCwwwP,wwwP...wwwPwwPwPw..wwP
−−

−−
−−−− =≈

N-gram
Language Modeling

{ }N21i

mi21

,.....,v,vv:Vw
w,...,w,..w,w

 where ∈
=W

7

Model-based Speech Recognition

• Therefore, the model-based continuous speech
recognition is both a pattern recognition and search
problems
– The acoustic and language models are built upon a statistical

pattern recognition framework
– In speech recognition, making a search decision is also referred

as a decoding process (or a search process)
• Find a sequence of words whose corresponding acoustic and

language models best match the input signal
• The search space (complexity) is highly imposed by the

language models

• The model-based continuous speech recognition is
usually with the Viterbi (plus beam, or Viterbi beam)
search or A* stack decoders
– The relative merits of both search algorithms were quite

controversial in the 1980s

8

Model-based Speech Recognition

• Simplified Block Diagrams

• Statistical Modeling Paradigm

Basic Search Algorithms

10

What Is “Search”?

• What Is “Search”: Moving around, examining things, and
making decisions about whether the sought object has yet
been found
– Classical problems in AI:

traveling salesman’s problem, 8-queens, etc.

• The directions of the search process
– Forward search (reasoning): from initial state to goal state(s)
– Backward search (reasoning): from goal state(s) to goal state
– Bidirectional search

• Seems particular appealing if the number of nodes at each
step grows exponential with the depth that need to be explored

11

What Is “Search”?

• Two sategories of search algorithms
– Uninformed Search (Blind Search)

• Depth-First Search
• Breadth-First Search

Have no sense of where the goal node lies ahead!

– Informed Search (Heuristic Search)
• A* search (Best-First Search)

The search is guided by some domain knowledge (or heuristic
information)! (e.g. the predicted distance/cost from the current
node to the goal node)

– Some heuristic can reduce search effort without sacrificing
optimality

12

Depth-First Search

• The deepest nodes are expanded first
and nodes of equal depth are ordered
arbitrary

• Pick up an arbitrary alternative at
each node visited

• Stick with this partial path and walks
forward from the partial path, other
alternatives at the same level are
ignored completely

• When reach a dead-end, go back to
last decision point ad proceed with
another alternative

• Depth-first search could be dangerous because it might
search an impossible path that is actually an infinite dead-
end

13

Breadth-First Search

• Examine all the nodes on one level before considering
any of the nodes on the next level (depth)

• Breadth-first search is guaranteed to find a solution if one
exists
– But it might not find a short-distance path, it’s guaranteed

to find one with few nodes visited
(minimum-length path)

• Could be inefficient

14

A* search

• History of A* Search in AI
– The most studied version of the best-first strategies (Hert, Nilsson,1968)
– Developed for additive cost measures (The cost of a path = sum of the

costs of its arcs)

• Properties
– Can sequentially generate multiple recognition candidates
– Need a good heuristic function

• Heuristic
– A technique (domain knowledge) that improves the efficiency of a search

process
– Inaccurate heuristic function results in a less efficient search
– The heuristic function helps the search to satisfy admissible condition

• Admissibility
– The property that a search algorithm guarantees to find an optimal solution,

if there is one

15

A* search

• A Simple Example
– Problem: Find a path with highest score form root node “A” to

some leaf node (one of “L1”,”L2”,”L3”,”L4”)

() () ()
()
()
()

() ()nhnh
nnh

nnh
nng

nnhngnf

*

*

 :ity Admissibil
function heuristicstate, goal to node from score estimated :

node leaf specific a to node from scoreexact :
scorepath partial decoded , node tonoderoot fromcost :

 node offunction evaluation ,

≥

+=

A

B C D

E F G L4

L1 L2 L3

4 3 2

3

2

4

1

8

1

3

16

A* search

A

B C D

E F G L4

L1 L2 L3

4 3 2

3

2

4

1

8

1

3

List or Stack(sorted)
Stack Top Stack Elements

A(15) A(15)
C(15) C(15), B(13), D(7)
G(14) G(14), B(13), F(9), D(7)
B(13) B(13), L3(12), F(9), D(7)

L3(12) L3(12), E(11), F(9), D(7)

Node g(n) h(n) f(n)
A 0 15 15
B 4 9 13
C 3 12 15
D 2 5 7
E 7 4 11
F 7 2 9
G 11 3 14
L1 9 0 9
L2 8 0 8
L3 12 0 12
L4 5 0 5

() () ()

: node offunction Evaluation
nhngnf

n
+=

Proving the Admissibility of A* Algorithm:

Suppose when algorithm terminates, “G “ is a complete path
on the top of the stack and “p” is a partial path which presents
somewhere on the stack.
There exists a complete path “P” passing through “p”, which
is not equal to “G” and is optimal.

Proof:
1. “P” is a complete which passes through “p”, f(P)<=f(p)
2.Because “G” is on the top of the stack , f(G)>=f(p)>=f(P)
3. Therefore, it makes contrariety !!

• A Simple Example:

17

A* search: Exercises

• Please find a path from the initial stat α to one of the four goal
states (β1, β2, β3, β4) with the shortest path cost. Each arc is
associated with a number representing its corresponding cost to be
taken, while each node is associated with a number standing for the
expected cost (the heuristic score/function) to one of the four goal
states

18

A* search: Exercises

• Problems
– What is the first goal state found by the depth-first search, which

always selects a node’s left-most child node for path expansion?
Is it an optimal solution? What is the total search cost?

– What is the first goal state found by the bread-first search, which
always expends all child nodes at the same level from left to
right? Is it an optimal solution? What is the total search cost?

– What is the first goal state found by the A* search using the path
cost and heuristic function for path expansion? Is it an optimal
solution? What is the total search cost?

– What is the search path cost if the A* search was used to
sequentially visit the four goal states?

19

Beam Search

• Widely used search technique for speech recognition
systems
– It’s a breadth-first search and progresses along with the depth
– Unlike traditional breadth-first search, beam search only expands

nodes that are likely to succeed at each level
• Keep up to m-best nodes at each level (stage)
• Only these nodes are kept in the beam, the rest are ignored

(pruned)

20

Beam Search

• Used to prune unlikely paths in recognition task
• Need some criteria (hypotheses) to prune paths

李登輝

林志賢

王發輝

time

pruningstate

l in d eng h uei

l i j empt shi ian

l i d eng h uei

wang d eng shi ian

wang d eng h uei

林 登 輝

List-lexicon

李 志 賢

李 登 輝

王 登 賢

王 登 輝

l in d eng shi ian
林 登 賢

21

Fast-Match Search

• Two Stage Processing
– First stage: use a simplified grammar network (or acoustic

models) to generate N likely words
– Second stage: use a precise grammar network to reorder these

N words

Simplified
 Grammar Network

Find N Most Likely Words

 (Fast-Match Procedure)

Speech Feature
Vector

Precise
 Grammar Network

Reorder Words in the List

 (Reorder Procedure)

A List of N Most

 Likely Words

The Most Likely
 One

The fast-match algorithm paradigm

Review:
Search Within a Given HMM

23

Calculating the Probability of an
Observation Sequence on an HMM Model

• Direct Evaluation: without using recursion (DP,
dynamic programming) and memory

– Huge Computation Requirements: O(NT)
• Exponential computational complexity

•

• A more efficient algorithms can
be used to evaluate
– Forward/Backward Procedure/Algorithm

time

state

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

nv

v
v
v

.

.

.
3

2

1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

nv

v
v
v

.

.

.
3

2

1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

nv

v
v
v

.

.

.
3

2

1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

nv

v
v
v

.

.

.
3

2

1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

nv

v
v
v

.

.

.
3

2

1

1sπ
2sπ

3sπ

),,(BAΠ=Λ

Initial state probability

State transition probability

State observation probability

() () ()
[] () () ()[]()

() () ()Tsss2sss,..,s,ss 1ss

all Ts2s1ssssssss

all

TT1T221
T21

11

T21T1T32211

ba.....bab

b.....bba.....aa

,PPP

ooo

ooo

sOsO

s

s

−

−

∑

∑

∑

=

=

=

π

π

λλλ

() ADD : 1-, NTN2 MUL N1T-2 TTT ≈Complexity

24

Calculating the Probability of an
Observation Sequence on an HMM Model

• Forward Procedure
– Base on the HMM assumptions, the calculation of

and involves only , and , so it is
possible to compute the likelihood with recursion on

– Forward variable :
• The probability that the HMM is in state i at time t having generating

partial observation o1o2…ot

()λ,ssP 1tt −

()λ,soP tt 1ts − ts
to

t()λOP

() ()λis,o...ooPi tt21t ==α

25

Calculating the Probability of an
Observation Sequence on an HMM Model

• Forward Procedure (Cont.)
– Algorithm

– Complexity: O(N2T)

– Based on the lattice (trellis) structure
• Computed in a time-synchronous fashion from left-to-right, where

each cell for time t is completely computed before proceeding to
time t+1

• All state sequences, regardless how long previously, merge to N
nodes (states) at each time instance t

() ()
() ()[] ()

() ()∑

∑

=

+=+

=

≤≤≤≤=

≤≤=

N

1i T

1tj

N

1i ijt1t

1ii1

iαλOP

Nj1,1T-t1, obaiαjα

Ni1, obπiα

ion 3.Terminat

 Induction 2.

tion Initializa 1.

TN1)-1)N(T-(N: ADD
 TN N+1)-1)(T+N(N : MUL

2

2

≈

≈

time

state

1π

2π

3π

()12 ob

()23 ob

()11 ob

()13 ob

()22 ob

()21 ob

3,3a

3,2a
2,2a

1,1a
2,1a

26

Calculating the Probability of an Observation
Sequence on an HMM Model

• Backward Procedure
– Backward variable : βt(i)=P(ot+1,ot+2,…..,oT|st=i , λ)
– Algorithm

– Complexity: O(N2T)

()
() () ()

() () ()

TN1)-1)N(T-(N ADD ; TN 1)-(T2N : MUL Complexity

n Terminatio 3.

Nj1,1-Tt1 Induction 2.

Ni1 tion Initializa 1.

222

T

≈≈

=

≤≤≤≤=

≤≤=

∑

∑

=

= ++

N

1j 11jj

N

1j 1t1tjijt

job|P

,jobai

,1i

βπ

ββ

β

λO

() () () ()∑=∑ ==∴
==

N

i
tt

N

i
t iiiqOPOP

11
, βαλλ

()
() ()
() () ()
() ()
() () []
() () ()
() ()
() ()ii

iqoooPiqoooP

iqPiqoooPiqoooP

iqPiqoooP

iqPiqOP

PiqPiqOP
PiqOP

iqOP

tt

tttTtt

ttttTtt

ttTt

tt

tt

t

t

βα
λλ

λλλ

λλ

λλ

λλλ
λλ

λ

=

===

====

===

===

=⋅==

==

=

++

++

+

,,..,,,,..,,

,,..,,,,..,,

ceindependenn observatio ,,..,,

,

/,,
/,,

,

2121

2121

21 Q

27

Choosing an Optimal State Sequence
S=(s1,s2,……, sT) on an HMM Model

• Viterbi Algorithm
– The Viterbi algorithm can be regarded as the dynamic

programming algorithm applied to the HMM or as a modified
forward algorithm

• Instead of summing up probabilities from different paths
coming to the same destination state, the Viterbi algorithm
picks and remembers the best path

• Find a single optimal state sequence S=(s1,s2,……, sT)

– The Viterbi algorithm also can be illustrated in a trellis framework
similar to the one for the forward algorithm

28

Choosing an Optimal State Sequence
S=(s1,s2,……, sT) on an HMM Model

• Viterbi Algorithm (Cont.)
– Algorithm

– Complexity: O(N2T)

() ()

() []

() ()[] ()
() ()

() iδmaxargs

aimaxargj

obaimaxj
 it

t

o,..,o,o,is,s,..,,ssPmaxi

?o,..,o,oOs,..,,ss S=

TNi1

*
T

ijtNi11t

1tjijtNi11t

t21t1t21s,..,,sst

T21T21

1t21

≤≤

≤≤+

+≤≤+

−

=

=

=∴

==

=

−

 from backtracecan We3.

gbacktracinFor

 induction By 2.
statein ends andn observatio first for the

accounts which , at timepath single a along scorebest the=

 variablenew a Define 1.

 n observatiogiven afor sequence statebest a Find

δψ

δδ

λδ

29

Choosing an Optimal State Sequence
S=(s1,s2,……, sT) on an HMM Model

• Viterbi Algorithm (Cont.)
– In practice, we calculate the logarithmic value of a given

state sequence instead of its real value

() []

() ()() ()

() ()

() q from backtracecan We

gbacktracinFor

induction By

statein ends andn observatio
first for the accounts which t,at timepath single a along score logbest the=

 Define 1.

*
T i

Ni1
max

arg

alogi
Ni1

max
argj

oblogalogi
Ni1

max
j

 it

o,..,o,o,is,s,..,,ssPlog
s,..,s,s

max
i

T

ij1tt

1tjijt1t

t21t1t21
1t21

t

δ

δψ

δδ

λδ

≤≤
=

+
≤≤

=

+⎥
⎦

⎤
⎢
⎣

⎡
+

≤≤
=∴

==

−

++

−
−

Search in the HMM Networks

31

Digit/Syllable Recognition

• One-stage Search
– Unknown number of digits/syllables
– Search over a 3-dim grid

– At each frame iteration, the maximum value achieved from the end
states of all models in previous frame will be propagated and used
to compete for the values of the start states of all models

– May result with substitutions, deletions and insertions

0
1
9

0

1

9

t
0 1

2
9

Correct
32561

Recognized
325561
3261

32

Digit/Syllable Recognition
• Level-Building

– Known number of digits/syllables
– Higher computation complexity, no deletions and insertions

– Number of levels: number of digits in an utterance
– Transitions from the last states of the

previous models (previous level) to
the first states of specific models
(current level)

0

1
.
9

0

1
.
9

0

1
.
9

0

1
.
9

0
1
.
9

State

0
1
.
9

0
1
.
9

0
1
.
9

t

33

Isolated Word Recognition
• Word boundaries are known (after endpoint detection)
• Two search structures

– Lexicon-List (Linear Lexicon)
• Each word is individually represented as a huge composite

HMM by concatenating corresponding subword-level
(phone/Initial-Final/syllable) HMMs

• No sharing of computation between words when performing
search

• The search becomes a simple pattern recognition problem,
and the word with the highest forward or Viterbi probability is
chosen as the recognition word

– Tree Structure (Tree Lexicon)
• Arrange the subword-level (phone/Initial-Final/syllable)

representations of the words in vocabulary into a tree structure
• Each arc stands for an HMM or subword-level modeling
• Sharing of computation between word as much as possible

34

Isolated Word Recognition

• Two search structures (Cont.)

18 arcs

l in d eng h uei

l i j empt shi ian

l i d eng h uei

wang d eng shi ian

wang d eng h uei

林 登 輝

Linear lexicon

李 志 賢

l in d eng shi ian
林 登 賢

李 登 輝

王 登 賢

王 登 輝

l in

d eng

shi ian

l i

wang

h uei

d eng

d eng

shi ian

h uei

shi ian

h uei

Tree lexicon

j empt

13 arcs

35

Isolated Word Recognition

• More about the Tree Lexicon
– The idea of using a tree represented was already suggested in

1970s in the CASPERS system and the LAFS system

– When using such a lexical tree in a language model (bigram or
trigram) and dynamic programming, there are technical details that
have to taken into account and require a careful structuring of the
search space (especially for continuous speech recognition to be
discussed later)

• Delayed application of language model until reaching tree leaf
nodes

• A copy of the lexical tree for each alive language model history
in dynamic programming for continuous speech recognition

36

Continuous Speech Recognition (CSR)

• CSR is rather complicated, since the search algorithm
has to consider the possibility of each word starting at
arbitrary time frame

• Linear Lexicon Without Language Modeling

37

Continuous Speech Recognition

• Linear Lexicon With Unigram Language Modeling

38

Continuous Speech Recognition

• Linear Lexicon With Bigram Language Modeling

39

Continuous Speech Recognition

• Linear Lexicon With Trigram Language Modeling

history=w1

history=w1

history=w2

history=w2

language model recombination
(keep only n-2 gram history
distinct when recombining)

Further Studies on
Implementation Techniques

for Speech Recognition

41

Isolated Word Recognition
Search Strategy: Beam search

• Tree Structure for Pronunciation Lexicon

• Initialization for Dynamic Programming

• Two-Level Dynamic Programming
– Within HMM
– Between HMMs (Arc extension)

l in

d eng

shi ian

l i

wang

h uei

d eng

d eng

shi ian

h uei

shi ian

h uei

j empt

42

Isolated Word Recognition
Search Strategy: A* Search

• Applied to Mandarin Isolated Word Recognition
– Forward Trellis Search (Heuristic Scoring)

• A forward time-synchronous Viterbi-like trellis search
for generating the heuristic score

• Using a simplified grammar network of different degree
grammar type : (Over-generated Grammar)

– No grammar
– Syllable-pair grammar
– No grammar with string length constraint grammar

• Syllable-pair with string length constraint grammar
– Backward A* Tree Search

• A backward time-asynchronous Viterbi-like A* tree search for
finding the “exact” word

• A backward syllabic tree without overgenerating the lexical
vocabulary

43

Isolated Word Recognition
Search Strategy: A* Search

– Grammar Networks for Heuristic Scoring

syllable i

syllable j

syllable k

No gram m ar

syllable i

syllable j

syllable k

Syllable-pair gramm ar

212 / 275/335 212 / 275/335

N o g ra m m a r
w ith s t r in g le n g th
c o n s t ra in t g ra m m a r

8 9 /1 4 6 /2 0 2 1 3 7 /2 2 2 /2 8 0 1 3 6 /2 2 3 /3 0 0

8 9 /1 4 6 /2 0 2 1 3 7 /2 2 2 /2 8 0 1 3 6 /2 2 3 /3 0 0

S y lla b le -p a ir
w ith s t r in g le n g th
c o n s t ra in t g ra m m a r

Four types of simplified grammar networks used in the tree search.

44

Isolated Word Recognition
Search Strategy: A* Search

– Backward Search Tree

shi ian

h uei

d eng

j empt

d engl i

l in

li

wang

l in

l in

wang

Steps in A* Search :
At each iteration of the algorithm-

A sorted list (or stack) of partial paths,
each with a evaluation function

The partial path with the highest evaluation
function -

Expanded
For each one -phone(or one syllable or
one arc) extensions permitted by the
lexicon, the evaluation functions of the
extended paths are calculated
And the extended partial paths are
inserted into the stack at the appropriate
position (sorted according to "
evaluation function ")

The algorithm terminates -
When a complete path (or word)
appears on the top of the stack

45

Keyword Spotting

• The Common Aspect of Most Word Spotting
Applications

– It is only necessary to extract partial information from the input
speech utterance

– Many automated speech recognition problems can be loosely
described by this requirement

• Speech message browsing
• Command spotting
• Telecommunications services (applications)

Hesitation,
Repetition,
Out-of-vocabulary words (OOV)

“Mm,...,”
“I wanna talk ..talk to..”

“What?”
幫我找台..台灣銀行的ㄟ電話

46

Keyword Spotting

KW1

KW2

KWN

FIL1

FIL2

FILM

Ck1

Ck2

CkN

CF1

CF2

CFM

Pk

PF

Viterbi
Decoder

Utterance
Verification

… FIL FIL KW FIL KW …

Filler Models Language Model

Kyeyword Models Thresholds

Speech

Anti Models

Decoded

Keywords

• General Framework of Keyword Spotting
– Viterbi Decoding (Continuous Speech Recognition)
– Utterance Verification (a two-stage approach)

A continuous stream of
keywords and fillers.

A simple, unconstrained finite state
network contains N keywords and
M fillers. Associated with each
keyword and filler are word
transition penalties.

47

Keyword Spotting

• Single-keyword Spotting

Left filler Right fillerkeyword

DeltaW(SW,T-1)

DeltaF(SF2,T-1)

T-1

Max{ DeltaF(SF2,T-1),
DeltaW(SW,T-1) }DeltaF2(SF2,t-1)

DeltaF2(1,t-1)

Deltaw(SW,t-1)

DeltaF1(SF1,t-1)

DeltaF1(1,t-1)

DeltaF2(1,t)

DeltaF1(1,t)

DeltaW(1,t)

Right-Filler

Keyword

Left-Filler
Prob.=1.0

Prob.=1.0 tt-1

s1 s1 sWis1 s1 sF1 s1 s1 sF2

0

48

Keyword Spotting

Case Study: A* search for Mandarin Keyword Spotting
• Search Framework

– Forward Heuristic Scoring

The structure of the compact syllable lattice
and the filler models in the first pass

ㄨㄛ

ㄧㄣ

ㄧㄣ

ㄨㄢ

ㄊㄞ ㄑㄧ

ㄏㄨㄚ

ㄈㄣ

ㄕㄤ

ㄏㄞ

ㄧㄝ

ㄙㄨㄥ

ㄕㄢ

ㄧ

ㄓㄠㄒ一ㄤ

ㄅㄤ

ㄏㄤ

Left Filler Model Syllable Lattice Right Filler Model

ㄨㄛ

Silence
Model

General
Acoustic
Model

Syllable n

Syllable 1

Silence
Model

General
Acoustic
Model

Syllable n

Syllable 1

())()1()()(tfilbatsylbtsilatf ⋅−−+⋅+⋅=

()[]),1,(
0

),(11
1

* ttnhtf
tt

MAX
tnh kLk ++

<≤
=

49

Keyword Spotting

Case Study: A* search for Mandarin Keyword Spotting
• Search Framework

– Backward Time-Asynchronous A* Search

The search framework of key-phrase spotting

Left Filler Model Lexical Network Right Filler Model

行

灣

台 旗

花 分
上

海 商

松 山

銀
一

找

想

我

幫

我

銀

Silence
Model

General
Acoustic
Model

Syllable n

Syllable 1

Silence
Model

General
Acoustic
Model

Syllable n

Syllable 1

()[])1,(,
0

)(* −+
<<

= tnhtnd
Tt

MAX
nE kkpkp

()[])(1,,),(22
2

tfttng
Ttt

MAX
tnd Rkpkp +−

<<
=

50

Data Structure for the Lexicon Tree

• Trie Structure

struct DEF_LEXICON_TREE
{

short Model_ID;
short WD_NO;
int *WD_ID;
int Leaf;
struct Tree *Child;
struct Tree *Brother;
struct Tree *Father;

};

A

D C B

EFGH

IJK

Tree

A

BC

GH

D

K J

EF

I

Trie

51

Data Structure for the Lexicon Tree

• Trie Structure Do_Build_Word_Tree(int Word_Pos,int MODEL_LEN,int *Model_ID)
{

struct Tree *ptr1,*ptr2,*ptrTmp,*TreeNew;
int i=0,find=-1;
ptr1=Root;
while(i<MODEL_LEN)
{

ptrTmp=ptr1; ptr1=ptr1->Child;
if(ptr1==(struct Tree *) NULL)
{
TreeNew=(struct Tree *) malloc(sizeof (struct Tree));
ptrTmp->Child=ptr1=TreeNew;
ptr1->Brother=(struct Tree *) NULL; ptr1->Child=(struct Tree *) NULL;
ptr1->Father=ptrTmp; ptr1->Model_ID=Model_ID[i];
if(i==MODEL_LEN-1)
{

ptr1->WD_NO=1;
ptr1->WD_ID=(int *) malloc((1)*sizeof(int));

}
else ptr1->WD_NO=0;

}
else { ………………….} ;

}//While Loop
}//Do_Build_Tree

52

Initialization for Two-level DP
for the Lexicon Tree

• Initialization: put all the 0-th states of the arcs (HMMs)
connecting to the root node into the active state list

//-------------Initialization for DP------------
ActiveTreeStateNo=0;
ptrTree=Root->Child;
while(ptrTree!=(struct Tree *) NULL)
{

LEX_STATE[PT1][ActiveTreeStateNo].TPTR=ptrTree;
LEX_STATE[PT1][ActiveTreeStateNo].HMM_state=0;
LEX_STATE[PT1][ActiveTreeStateNo].Score=(float) 0.0;
ptrTree=ptrTree->Brother;
ATreeState++;

}
//--

struct DEF_LEX_STATE
{

struct Tree *TPTR;
short HMM_state;
float Score;

};

53

Dynamic Programming: Within HMM

NewActiveTreeStateNo=0;
for(state_no=0;state_no<ActiveTreeStateNo;state_no++)
{

cur_HMM=LEX_STATE[PT1][state_no].TPTR->Model_ID; cur_state=LEX_STATE[PT1][state_no].HMM_state;
if(cur_state!=0)

{
FindNewState=-1;//Global Variable
next_state_no=Find_NewTreeState_POS(Frame_Num,state_no,cur_state,0);
//看看LEX_STATE[PT2]是否存已在這個Tree-Node:LEX_STATE[PT1]

if(FindNewState==1)
{

Cur_Score=LEX_STATE[PT1][state_no].Score+B_O[Frame_Num][cur_HMM][cur_state]
+Model[cur_HMM].Trans[cur_state][cur_state];

if(Cur_Score>LEX_STATE[PT2][next_state_no].Score) LEX_STATE[PT2][next_state_no].Score=Cur_Score;
}

} //if cur_state !=0
if(cur_state<Model[cur_HMM].State-2)
{

FindNewState=-1;
next_state_no=Find_NewTreeState_POS(Frame_Num,state_no,cur_state+1,1);
if(FindNewState==1)
{
Cur_Score=LEX_STATE[PT1][state_no].Score+B_O[Frame_Num][cur_HMM][cur_state+1]

+Model[cur_HMM].Trans[cur_state][cur_state+1];
if(Cur_Score>LEX_STATE[PT2][next_state_no].Score)LEX_STATE[PT2][next_state_no].Score=Cur_Score;

}
}//if cur_state<Model[cur_HMM].State-2

}//for ActiveTreeStateNo

54

Dynamic Programming: Within HMM

int Find_NewTreeState_POS(int Frame_Num,int Index,int cur_state, int type)
{

int i,cur_HMM;
float trans;
if((ActiveNode_Iter=

NewActiveTreeNodeMAP.find(Bipairx((int)LEX_STATE[PT1][Index].TPTR,cur_state)))!= NewActiveTreeNodeMAP.end())
{

FindNewState=1;
return ActiveNode_Iter->second;

}
else

{
cur_HMM=LEX_STATE[PT1][Index].TPTR->Model_ID;
if(type==0)

trans=Model[cur_HMM].Trans[cur_state][cur_state];
else

trans=Model[cur_HMM].Trans[cur_state-1][cur_state];
LEX_STATE[PT2][NewActiveTreeStateNo].TPTR=LEX_STATE[PT1][Index].TPTR;
LEX_STATE[PT2][NewActiveTreeStateNo].HMM_state=cur_state;
LEX_STATE[PT2][NewActiveTreeStateNo].Score=LEX_STATE[PT1][Index].Score

+B_O[Frame_Num][cur_HMM][cur_state]+trans;
NewActiveTreeNodeMAP[Bipairx((int)LEX_STATE[PT2][NewActiveTreeStateNo].TPTR

,LEX_STATE[PT2][NewActiveTreeStateNo].HMM_state)]=NewActiveTreeStateNo;
return NewActiveTreeStateNo++;

}
}

55

Dynamic Programming: Within HMM

• Pruning the HMM states with lower scores

Acoustic_MAX=(float) Min_Delta;
for(state_no=0;state_no<NewTreeStateNo;state_no++)

if(LEX_STATE[PT2][state_no].Score>Acoustic_MAX)
Acoustic_MAX=LEX_STATE[PT2][state_no].Score;

ActiveTreeStateNo=0;
for(state_no=0;state_no<NewTreeStateNo;state_no++)
{

if((LEX_STATE[PT2][state_no].Score>Acoustic_MAX-Threshold)
{

LEX_STATE[PT1][ActiveTreeStateNo]=LEX_STATE[PT2][state_no];
ActiveTreeStateNo++;

}
}

56

Dynamic Programming: Between HMMs
• Arc Extension in the Lexicon Tree

State_POS=ActiveTreeStateNo;

for(state_no=0;state_no<State_POS;state_no++)
{

cur_HMM=LEX_STATE[PT1][state_no].TPTR->Model_ID;
cur_state=LEX_STATE[PT1][state_no].HMM_state;
if(cur_state==Model[cur_HMM].State-2)

{
ptrTree=LEX_STATE[PT1][state_no].TPTR->Child;
while(ptrTree!=(struct Tree *) NULL)
{

LEX_STATE[PT1][ActiveTreeStateNo].TPTR=ptrTree;
LEX_STATE[PT1][ActiveTreeStateNo].HMM_state=0;
LEX_STATE[PT1][ActiveTreeStateNo].Score=LEX_STATE[PT1][state_no].Score

+Model[cur_HMM].Trans[cur_state][cur_state+1];
ActiveTreeStateNo++;
ptrTree=ptrTree->Brother;

}//while
}

}//for state_no

