Search Algorithms for
Speech Recognition

Berlin Chen 2003

References

Books

1.

X. Huang, A. Acero, H. Hon, “Spoken Language Processing”, Chapters 12-13,
Prentice Hall, 2001

2. Chin-Hui Lee, Frank K. Soong and Kuldip K. Paliwal. Automatic Speech and
Speaker Recognition, Chapters 13, 16-18, Kluwer Academic Publishers, 1996

3. John R. Deller, JR. John G. Proakis, and John H. L. Hansen. Discrete-Time
Processing of Speech Signals, Chapters 11-12, IEEE Press, 2000

4. L.R. Rabiner and B.H. Juang. Fundamentals of speech recognition, Chapter 6,
Prentice Hall, 1993

5. Frederick Jelinek. Statistical Methods for Speech Recognition, Chapters 5-6, MIT
Press, 1999

6. N. Nilisson. Principles of Artificial Intelligence, 1982

Papers

1. Hermann Ney, “Progress in Dynamic Programming Search for LVCSR,”
Proceedings of the IEEE, August 2000

2. Patrick Kenny, et al, “A*-Admissible heuristics for rapid lexical access,” IEEE
Trans. on SAP, 1993

3. Stefan Ortmanns and Hermann Ney, “A Word Graph Algorithm for Large
Vocabulary Continuous Speech Recognition,” Computer Speech and Language
(1997) 11,43-72

4. Jean-Luc Gauvain and Lori Lamel, “Large-Vocabulary Continuous Speech

Recognition: Advances and Applications,” Proceedings of the IEEE, August 2000

Introduction

 Template-based: without statistical modeling/training

— Directly compare/align the testing and reference waveforms on
their features vector sequences (with different length, respectively)
to derive the overall distortion between them

— Dynamic Time Warping (DTW): warp speech templates in the
time dimension to alleviate the distortion

 Model-based: HMM are using for recognition systems

— Concatenate the subword models according to the pronunciation
of the words in a lexicon

— The states in the HMM can be expanded to form the state-search
space (HMM state transition network) in the search

— Apply appropriate search strategies

Template-based Speech Recognition

 Dynamic Time Warping (DTW) is simple to implement and
fairly effective for small-vocabulary Isolated word speech

recognition
— Use dynamic programming (DP) to temporally align patterns to
account for differences in speaking rates across speakers as well
as across repetitions of the word by the same speakers

e Drawback
— Do not have a principled way to derive an averaged template for
each pattern from a large training samples
— A multiplicity of reference templates is required to characterize the
variation among different utterances

Template-based Speech Recognition

« Example

Optimal alignment
* between X and Y
,(M,)
r;
, . 0,(M,
’ o,) ;!
B 5
5,(2) 5,(2) 6,(2)
5}3 (1) 512 (1) 5’1 (1

min
Dmin(ik’jk):l.] Dmin[(ikiij(ik—lljk—l)]
k=10 J k-1
min
=. . Dmin (ik—l’ jk—l)+ d[(ik’jk X(ik—le—l)]
Lecin i

Dyl Yoz i)|= Dol s)+ i N s o)

Model-based Speech Recognition

e A search process to uncover the word sequence
W =ww,..w, that has the maximum posterior probability
Pw|x)
W =arg mx P(W |X)
g o PO
—arg max P(W)P(x W)

/

Language Model Probability Acoustic Model Probability

W=w,w,,.w, ..,w

where w, eV :{v, v,.....v |

— Unigram:

N-gram P(ww,.w,) = P(w,)P(w,)..P(w,), P(w,)= C(W% C(w,)

Language Modeling — Bigram:

P(ww,.w,)=~ P(WI)P(W2|W])'"P(wk|Wk—1)’ P(W/"WJ—I): C(W,]W%(W”)

- Trigram:

P(W1W2 Wi) ~ P(WI)P(W2|W1)P(W3 |W1W2) . P(Wk |Wk—2Wk—1)’ P(Wk |Wk—]Wk—2) = C(w,_zw,_lw%(

w_w,,)

Model-based Speech Recognition

* Therefore, the model-based continuous speech

recognition is both a pattern recognition and search
problems

— The acoustic and language models are built upon a statistical
pattern recognition framework

— In speech recognition, making a search decision is also referred
as a decoding process (or a search process)

 Find a sequence of words whose corresponding acoustic and
language models best match the input signal

« The search space (complexity) is highly imposed by the
language models

 The model-based continuous speech recognition is
usually with the Viterbi (plus beam, or Viterbi beam)
search or A* stack decoders

— The relative merits of both search algorithms were quite
controversial in the 1980s

Input Speech Feature e Ty Output Speech Input
M —» FronH:ndl Vectors and Sentence
Signal Processing Search Algorithm
Acoustic
Analysis
Acoustic : Language S
Speech Model Acoustic Language (€ Mogel Text Xy,
Corpora Training Models Construetion Corpora
Global Search:
maximize
Py)= Prisg g [y vy
Lexical . over w.Wy
Knowledge-base Grammar
Recognized
Word Sequence
Trainin Feature
9 ANALYSIS TRAINING
Data Sequence| pRrOGRAM
g
Ground Truth
TRAINING(STATISTICAL Je—m0 . — . —
RECOGNITION
Input Feature i
P ANALYSIS RECOGNITION | Recognized
Data Sequence SEARCH Secquence

Model-based Speech

Simplified Block Diagrams

Recognition

Prfx . Xp | Wy W)

Priw,..wy)

Phoneme Inventory

Pronunciation Lexicon

Basic Search Algorithms

What Is “Search”?

What Is “Search”: Moving around, examining things, and
making decisions about whether the sought object has yet
been found

— Classical problems in Al:
traveling salesman’s problem, 8-queens, etc.

The directions of the search process

— Forward search (reasoning): from initial state to goal state(s)
— Backward search (reasoning): from goal state(s) to goal state
— Bidirectional search

o Seems particular appealing if the number of nodes at each
step grows exponential with the depth that need to be explored

10

What Is “Search”?

« Two sategories of search algorithms
— Uninformed Search (Blind Search)
» Depth-First Search
e Breadth-First Search

Have no sense of where the goal node lies ahead!

— Informed Search (Heuristic Search)
o A* search (Best-First Search)

The search is guided by some domain knowledge (or heuristic
Information)! (e.g. the predicted distance/cost from the current
node to the goal node)

— Some heuristic can reduce search effort without sacrificing
optimality

11

Depth-First Search

The deepest nodes are expanded first
and nodes of equal depth are ordered
arbitrary

Pick up an arbitrary alternative at

each node visited iB}
Stick with this partial path and walks D
forward from the partial path, other TR
alternatives at the same level are sl
ignored completely

i G E A

When reach a dead-end, go back to
last decision point ad proceed with

. Figure 12.4 The node-expanding procedure of the depth-first search for the path search prob-
an Oth er alte ' atlve lem in Figure 12.1. When it fails to find the goal city in node C, it backtracks to the parent and

continues the search until it finds the goal city. The gray nodes are those that are explored. The
dotted nodes are not visited during the search [42].

* Depth-first search could be dangerous because it might
search an impossible path that is actually an infinite dead-
end 12

Breadth-First Search

Examine all the nodes on one level before considering
any of the nodes on the next level (depth)

Breadth-first search is guaranteed to find a solution if one

exists

— But it might not find a short-distance path, it's guaranteed
to find one with few nodes visited

(minimum-length path)

Could be inefficient

e

2

eee—

3

e

4

| r—

e G: iF B} iD} G A
{F

Figure 12.5 The node-expanding procedure of a breadth-first search for the path search prob-
lem in Figure 12.1. It searches through each level until the goal is identified. The gray nodes
are those that are explored. The dotted nodes are not visited during the search [42].

13

A* search

e History of A* Search in Al

— The most studied version of the best-first strategies (Hert, Nilsson,1968)

— Developed for additive cost measures (The cost of a path = sum of the
costs of its arcs)

* Properties

— Can sequentially generate multiple recognition candidates
— Need a good heuristic function

e Heuristic

— A technique (domain knowledge) that improves the efficiency of a search
process

— |Inaccurate heuristic function results in a less efficient search
— The heuristic function helps the search to satisfy admissible condition
o Admissibility

— The property that a search algorithm guarantees to find an optimal solution,
if there is one

14

A* search

A Simple Example
— Problem: Find a path with highest score form root node “A” to
some leaf node (one of “L1","L2","L3","L4")

f(n)= g(n)+ h(n), evaluation function of node »
g(n):cost from root node to node 7, decoded partial path score

1" (n): exact score from node » to a specific leaf node
h(n): estimated score from node » to goal state, heuristic function

Admissibil ity : 2(n)> h"(n))

SN

(B @
N R
& & © [
Lo N

15

A* search

A Simple Example:

Evaluation function of node n:

S (n)=g(n)+h(n) %’\

®%’ N R

L4

[\

L1 L2 L3

List or Stack(sorted)

Stack Top |Stack Elements

A(15) | A(15)

C(15) | C(15), B(13), D(7)

G(14) | G(14), B(13), F(9), D(7)

B(13) | B(13), L3(12), F(9), D(7)

@ L3(12), E(11), F(9), D(7)

Proving the Admissibility of A* Algorithm:

Suppose when algorithm terminates, “G “ is a complete path

on the top of the stack and “p” is a partial path which presents

somewhere on the stack.
There exists a complete path “P” passing through “p”, which
is not equal to “G” and is optimal.

Proof:

1.“P” is acomplete which passes through “p”,
2.Because “G” is on the top of the stack
3. Therefore, it makes contrariety !!

(P)<=f(p)
1(G)>=f(p)>=f(P)

Node

OTMmMOO >

L1

L3
L4

g(n) h(n) f(n)

U‘ISOO@::‘\I\INQQ-PO

15 15
9 13
12 15
5 7
4 11
2 9
3 14
0 9
0 8
0 12
0 5

16

A* search: Exercises

Please find a path from the initial stat « to one of the four goal
states (A1, A2, /3, 4) with the shortest path cost. Each arc is
associated with a number representing its corresponding cost to be
taken, while each node is associated with a number standing for the
expected cost (the heuristic score/function) to one of the four goal

17

A* search: Exercises

Problems

— What is the first goal state found by the depth-first search, which
always selects a node’s left-most child node for path expansion?
Is it an optimal solution? What is the total search cost?

— What is the first goal state found by the bread-first search, which
always expends all child nodes at the same level from left to
right? Is it an optimal solution? What is the total search cost?

— What is the first goal state found by the A* search using the path
cost and heuristic function for path expansion? Is it an optimal
solution? What is the total search cost?

— What is the search path cost if the A* search was used to
sequentially visit the four goal states?

18

Beam Search

Widely used search technique for speech recognition
systems
— It's a breadth-first search and progresses along with the depth

— Unlike traditional breadth-first search, beam search only expands
nodes that are likely to succeed at each level

» Keep up to m-best nodes at each level (stage)

* Only these nodes are kept in the beam, the rest are ignored
(pruned)

Figure 12.9 Beam search for the city-travel problem. The nodes with gray color are the ones
kept in the beam. The transparent nodes were explored but pruned because of higher cost. The
dotted nodes indicate all the savings because of pruning [42].

19

Beam Search

Used to prune unlikely paths in recognition task
Need some criteria (hypotheses) to prune paths

lin deng shi ian

* % \
O G G2
lin }jd eng J&h uei 154

s B
&g === state 4 ,..-"

o

i [Jempt - shiten S v AT
GG j—’ m 0—0— 0~/ o 7]

li deng h uei
O Q= 11
wang deng shi ian

s AP

T~
o]

1 &

wang deng h uei

k2 E B
O Q- Q= 1l

)) im
List-lexicon time

20

Fast-Match Search

 Two Stage Processing

— First stage: use a simplified grammar network (or acoustic
models) to generate N likely words

— Second stage: use a precise grammar network to reorder these

N words
Simplified Precise
Grammar Network Grammar Network
Speech Feature | Find N Most Likely Words A List of N Most Reorder Words in the List The Most Likely
Vector — > . - > One
Likely Words

The fast-match algorithm paradigm

Review:
Search Within a Given HMM

Calculating the Probability of an
Observation Sequence on an HMM Model

* Direct Evaluation: without using recursion (DP,
dynamic programming) and memory

P0)= = Pls2)P{0ls.) /@\
= Z([ﬂ'] a . a,.aTIT][bS](bz(oz]) {<——:,\
= s 7.5 (0),b,(0).. T]wa(oT) MR

Initial state probability | State observation probability

— Huge Computation Requirements: O(NT) stateT State transition probability

« Exponential computational complexity %
Complexity :(ZT-])NT MUL ~2TN', N"-1 ADD ﬂ_ﬂsz

« A more efficient algorithms can tﬁ ?E | time

be used to evaluate
— Forward/Backward Procedure/Algorithm

23

Calculating the Probability of an
Observation Sequence on an HMM Model

Forward Procedure

— Base on the HMM assumptions, the calculation of P (s,]s,-,. 2)
andP (o,|s,, 2) involvesonly S.-;, S, and 0,,soitis
possible to compute the likelihood P<0\/1) with recursion on ¢

— Forward variable : «,(i)= P(Olog...ot,st = i‘ﬂ)
* The probability that the HMM is in state i at time t having generating
partial observation 0,0,...0,

24

Calculating the Probability of an
Observation Sequence on an HMM Model

 Forward Procedure (Cont.)
— Algorithm

2. Induction aH](j):[_

3.Termination P(O|1)= Sa, (i)

=

— Complexity: O(N4T)

MUL : N(N +1)(T -1) + N ~ N°T
ADD : (N -1)N(T -1) ~ N°T

— Based on the lattice (trellis) structure

 Computed in a time-synchronous fashion from left-to-right, where
each cell for time t is completely computed before proceeding to
time t+1

« All state sequences, regardless how long previously, merge to N
nodes (states) at each time instance t o5

Calculating the Probability of an Observation
Sequence on an HMM Model

« Backward Procedure
— Backward variable : £(1)=P(0.,1,0.5;-----, o{|S=1, A)

— Algorithm
1. Initialization 3. (i)=1,1<i<N

2. Induction S,(i)= £a,b,(0,,,)8.,(j), 1<t<T-11<j<N
3. Termination P(O|4)= %ﬂ'jbj (0,)8,(j)

— Complexity: O(N2T)
Complexity MUL:2N?(T-1) ~ N*T; ADD (N -1)N(T-1) ~ N°T

Pl0,q,=14)

=P(0,q, =i,A)] P(A)

P(Olg, =1, 2) Pg, =i, 2)I P(2) ~ Plo}2)= 2 P(o. qt—l\l) a,(0)p, (i)

P(O‘q 1/1) (q z‘/i)

P(0,,0,.,-0,q, =1,2)P(g, =i|2) [+ observation independence]
0,110, 2 o‘q 1/1) (01 0y5.. o‘q 1/1) (qtzi‘/”t)

P(o 110,10 qu l'/i)P(o1 0y,.,0,,q, = z‘/l)

(0)8,()

~

Q

26

Choosing an Optimal State Sequence
S=(S4,S5, , S) on an HMM Model

 Viterbi Algorithm

— The Viterbi algorithm can be regarded as the dynamic
programming algorithm applied to the HMM or as a modified
forward algorithm

 Instead of summing up probabilities from different paths
coming to the same destination state, the Viterbi algorithm
picks and remembers the best path

» Find a single optimal state sequence S=(s,,S,,...... , S7)

— The Viterbi algorithm also can be illustrated in a trellis framework
similar to the one for the forward algorithm

27

Choosing an Optimal State Sequence
S=(S4,S5, , St) on an HMM Model

« Viterbi Algorithm (Cont.)
— Algorithm

Find a best state sequence S=(s,,s,.,.., s,) for a given observation O = (o,,0

1. Definea new variable

2 27°

2]

5(1): ??_IP[SI’SZ’“’SII’St =1,0,,0,,..,0

t ! t
S1,82,-55¢

= the best score along a single path at time ¢, which accounts
for the first ¢ observation and ends in state ;
2.Byinduction .6 ()= lmax s (i)a, |b.(o,.,)

I<i<N

v..,(j)=argmaxs,(i)a,For backtracing

I<i<N

3. We can backtrace from s, = arg max, (i)

I<i<N

— Complexity: O(N4T)

.,OT)?

28

Choosing an Optimal State Sequence
S=(S4,S5, , S) on an HMM Model

« Viterbi Algorithm (Cont.)

— In practice, we calculate the logarithmic value of a given

state sequence instead of its real value
max

S =1,0,, /1]

1. Defined, (i) = logP[s,,sZ,..,St_ 0,,..,0

20 Y

8,858,

= the best log scorealonga single path at timet, which accountsfor thefirst
t observation and endsin state i

_ _ N | max .
Byinduction.. s (/)= L i< N(é‘t (z)+logal.j)} +logb}.(om)
N max . _
wt(])—arglgiSN&;_,(Z)Jrlogal.j For backtracing
\ max .
We can backtracefromq, = arg . . N5T (1)

29

Search in the HMM Networks

Digit/Syllable Recognition

 One-stage Search
— Unknown number of digits/syllables

— Search over a 3-dim grid /

Optimal path
0-,07,0-, o—;o Correct
—g@ | 0.0~ o-of>0 32561
, — —|[o>0>0> S Zo Recognized
D 050505 | | ooolhl— 9 325561
og; oZ: gL oz; 3261
=(0)— °p .2
(o] (o) 01

— At each frame iteration, the maximum value achieved from the end

states of all models in previous frame will be propagated and used
to compete for the values of the start states of all models

— May result with substitutions, deletions and insertions

31

Digit/Syllable Recognition

Level-Building
— Known number of digits/syllables
— Higher computation complexity, no deletions and insertions

— Number of levels: number of digits in an utterance

— Transitions from the last states of the
previous models (previous level) to g5
the first states of specific models
(current level)

Isolated Word Recognition

 Word boundaries are known (after endpoint detection)

e Two search structures
— Lexicon-List (Linear Lexicon)

« Each word is individually represented as a huge composite
HMM by concatenating corresponding subword-level
(phone/Initial-Final/syllable) HMMs

* No sharing of computation between words when performing
search

 The search becomes a simple pattern recognition problem,
and the word with the highest forward or Viterbi probability is
chosen as the recognition word

— Tree Structure (Tree Lexicon)

« Arrange the subword-level (phone/Initial-Final/syllable)
representations of the words in vocabulary into a tree structure

e Each arc stands for an HMM or subword-level modeling
« Sharing of computation between word as much as possible

33

Isolated Word Recognition

 Two search structures (Cont.)
H % i

lin deng shiian

o—0—0—1u

ﬁ 1 i
in deng huei

o—0—0—1

* +

:j,- - = A
| j empt shiian
1 .
I deng huei

o—0—0— 1
3 % ¥
wang deng shiia

o—0—0—1
k] % %
wang deng huei

o—0—0—1

Linear lexicon 18 arcs

Aok

Tree lexicon 13 arcs

Isolated Word Recognition

» More about the Tree Lexicon

— The idea of using a tree represented was already suggested in
1970s in the CASPERS system and the LAFS system

— When using such a lexical tree in a language model (bigram or
trigram) and dynamic programming, there are technical details that
have to taken into account and require a careful structuring of the
search space (especially for continuous speech recognition to be
discussed later)

« Delayed application of language model until reaching tree leaf
nodes

* A copy of the lexical tree for each alive language model history
In dynamic programming for continuous speech recognition

35

Continuous Speech Recognition (CSR)

 CSR is rather complicated, since the search algorithm
has to consider the possibility of each word starting at
arbitrary time frame

e Linear Lexicon Without Language Modeling

o
©
HMM of " -
Wl
®]
@
HMM of o
W, W,
O
O
0 1 2 3 t
Figure 12.10 A simple example of continuous speech recognition task with two words w, and Phme
w, A uniform unigram language model is assumed for these words. State S is the starting state Figure 12.11 HMM trellis for continuous speech recognition example in Figure 12.10. When
while state C is a collector state to save fl.llly expanded links between every word pair the final state of the word HMM is reached, a null arc (indicated by a dashed line) is linked

from it to the initial state of the following word.

36

Continuous Speech Recognition

e Linear Lexicon With Unigram Language Modeling

Figure 12.14 A unigram grammar network where the unigram probability is attached as the
transition probability from starting state S to the first state of each word HMM.

37

Continuous Speech Recognition

e Linear Lexicon With Bigram Language Modeling

P(W,|W,)
P(W, W)

o W, O

P(W, | W,)

backoff node

P(W, | W)

O W, @

P(W, W)

Figure 12.16 Reducing bigram expansion in a search by using the backoff node. In addition to
normal bigram expansion arcs for all observed bigrams, the last state of word w, is first con-
nected to a central backoff node with transition probability equal to backoff weight a(w,) .
The backoff node is then connected to the beginning of each word w, with its corresponding
unigram probability P(w,) [12].

C Wy ()

P(Wy, | W)

Figure 12.15 A bigram grammar network where the bigram probability P(w; |w,) is at-
tached as the transition probability from word w, to w; [19].

38

Continuous Speech Recognition

e Linear Lexicon With Trigram Language Modeling

language model recombination % Wiea W)

(keep only n-2 gram history — ()
distinct when recombining)

P(W,|W,, W)

P(W, | W,, W,)

P(W,|W,,W,)

Figure 12.17 A trigram grammar network where the trigram probability P(w, [w,,w,) is at-
tached to transition from grammar state word w,,w, to the next word w; . Illustrated here is a
two-word vocabulary, so there are four grammar states in the trigram network [19].

39

Further Studies on
Implementation Techniques
for Speech Recognition

Isolated Word Recognition
Search Strategy: Beam search

Tree Structure for Pronunciation Lexicon

Initialization for Dynamic Programming

shi ian

Two-Level Dynamic Programming
— Within HMM d eng
— Between HMMs (Arc extension)

h uei

shi ian
T

d eng h uei

shi ia

d eng

h uei

41

Isolated Word Recognition
Search Strategy: A* Search

* Applied to Mandarin Isolated Word Recognition

— Forward Trellis Search (Heuristic Scoring)
« A forward time-synchronous Viterbi-like trellis search
for generating the heuristic score
« Using a simplified grammar network of different degree
grammar type : (Over-generated Grammar)
— No grammar
— Syllable-pair grammar
— No grammar with string length constraint grammar
« Syllable-pair with string length constraint grammar
— Backward A* Tree Search
» A backward time-asynchronous Viterbi-like A* tree search for
finding the “exact” word

* A backward syllabic tree without overgenerating the lexical
vocabulary

42

Isolated Word Recognition
Search Strategy: A* Search

— Grammar Networks for Heuristic Scoring

,,,,,,,,,,,,,,,,,,,,,

L f{{{H » T ’::H »
D r,,, syllable i) ! ‘ ! B syIIabIel B | !
U—,L’{{—:Q_st”ab'ej o e OO
syllable k 212 / 275/335 syllable k 212/ 275/335
No grammar Syllable-pair grammar
B ///Od)\\::j:;c)—o
Ol O, -~ -7 L Ot
No grammar)2{?:::0‘}\:;{”’:7
with string length @ ST ARG,
constraint gramm ar L O (D <A CO—(0
Cn()ﬁ//ii/\/\i\\\ /////:<\\£\\
TR O e T ©)
89/146/202 137/222/280 136/223/300
) //Z/o— I\:***:;H
. CmO -~ R
Syllable-pair Sileelo N O —
with string length O O/: \\//O TS
constraint grammar \1;}7‘*3—\0_04\1}7——?\—
Hi\\:\\ A
T O— g @)
89/146/202 137/222/280 136/223/300

Four types of simplified grammar networks used in the tree search.

Isolated Word Recognition
Search Strategy: A* Search

— Backward Search Tree @ Steps in A* Search :

» At each iteration of the algorithm-

S A sorted list (or stack) of partial paths,
each with a evaluation function

D\Ow\e” » The partial path with the highest evaluation
m sh| ian function -
S~ Expanded
—For each one -phone(or one syllable or
] empt : i
one arc) extensions permitted by the
lexicon, the evaluation functions of the
/ extended paths are calculated
deng h uei S—And the extended partial paths are

I
] inserted into the stack at the appropriate
position (sorted according to "
wan evaluation function ")
: » The algorithm terminates -

Z—=When a complete path (or word)
appears on the top of the stack

44

Keyword Spotting

« The Common Aspect of Most Word Spotting
Applications

— It is only necessary to extract partial information from the input
speech utterance

— Many automated speech recognition problems can be loosely
described by this requirement
» Speech message browsing
« Command spotting
» Telecommunications services (applications)

f [13
Hesitation, " N![mlkt K to.."
Repetition, wann?wiat;”a O..
Out-of-vocabulary words (OOV '
y words (OOV) BNy YL LA

o

Keyword Spotting

 General Framework of Keyword Spotting
— Viterbi Decoding (Continuous Speech Recognition)
— Utterance Verification (a two-stage approach)

Kyeyword Models Thresholds
:) l Decoded
:>Sp_>ee‘3h viterbi | FiL FIL Kw FIL Kw | Utterance L,
Decoder Verification |keywords
Nr Models Language Model Anti Models

A simple, unconstrained finite state A continuous stream of
network contains N keywords and keywords and fillers.
M fillers. Associated with each
keyword and filler are word

transition penalties. 46

Keyword Spotting

e Single-keyword Spotting

keyword

l Left filler

S| TS D

\ 4

l Right filler

v

Do

v

DeltaF2(S,,, t 1)® @
®
DeltaF2(1t-1) @4 DeltaF2(1,9

DeltaF(S.,,T-1) A{ DeltaF(S.,,T-1),
Deltaw(S,,, T-1) }
Right-FiIIer/

DeItaW(SW,t-1)+ O
LK
X
t/’ DeltaW(1,t)

Keyword

® Deltaw(s,,T-1)

DeItaFl(SFl,t-l):.: R
DeltaF1(1,t-1) ¢ DeltaF1(1,t) ert-Filler

Prob.=1.0 0 t1 | it

v

T-1

47

Keyword Spotting

Case Study: A* search for Mandarin Keyword Spotting
e Search Framework

— Forward Heuristic Scoring

Silence
Model

General
Acoustic
Model

Syllable 1

Syllable n

\ ot/

0@

Silence
Model

General
Acoustic
Model

Syllable 1

Syllable n

ft)=a-sike) +b-syke) +Q—a—b)- fil)

MAX
0= L)+t +10)]

0<

Left Filler Model Syllable Lattice Right Filler Model

The structure of the compact syllable lattice

and the filler models in the first pass
48

Keyword Spotting

Case Study: A* search for Mandarin Keyword Spotting

o Search Framework
— Backward Time-Asynchronous A* Search

_ Em)=""" [a ()4 i ()]

Silence Silence PYKRE g cpet PR k

Model Model

d (n,,0)= MAX g, (n, 1.1, =)+ £, (2,)]

General General Pk t<t,<T'" fertrn RA"2
Acoustic Acoustic

Model Model
Syllable 1 Syllable 1

Syllable n Syllable n

Left Filler Model Lexical Network Right Filler Model

The search framework of key-phrase spotting

49

Data Structure for the Lexicon Tree

Tree /(?\

e Trie Structure

struct DEF_LEXICON_TREE

{

short Model ID;
short WD NO;

int *WD_ID;

int L eaf;

struct Tree *Child;
struct Tree *Brother;
struct Tree *Father;

D

< e
/

Trie

50

Data Structure for the Lexicon Tree

Trie Structure

Do_Build_Word_Tree(int Word_Pos,int MODEL_LEN,int *Model_ID)
{
struct Tree *ptrl,*ptr2,*ptrTmp,*TreeNew;
int i=0,find=-1;
ptrl=Root;
while(i<MODEL_LEN)
{
ptrTmp=ptrl; ptrl=ptrl->Child;
if(ptrl==(struct Tree *) NULL)
{
TreeNew=(struct Tree *) malloc(sizeof (struct Tree));
ptrTmp->Child=ptrl=TreeNew;
ptrl->Brother=(struct Tree *) NULL; ptrl->Child=(struct Tree *) NULL;
ptrl->Father=ptrTmp; ptrl->Model_ID=Model_ID[i];
if(i==MODEL_LEN-1)
{
ptrl->WD_NO=1;
ptr1->WD ID=(int *) malloc((1)*sizeof(int));

}
else ptrl->WD_NO=0;
}
else {..oooiiiiiiils };
HIWhile Loop
}/Do_Build_Tree

51

Initialization for Two-level DP
for the Lexicon Tree

 Initialization: put all the 0-th states of the arcs (HMMSs)
connecting to the root node into the active state list

ActiveTreeStateNo=0;

ptrTree=Root->Child;

while(ptrTree!=(struct Tree *) NULL)

{
LEX _STATE[PT1][ActiveTreeStateNo].TPTR=ptrTree;
LEX STATE[PT1][ActiveTreeStateNo].HMM_state=0;
LEX STATE[PT1][ActiveTreeStateNo].Score=(float) 0.0;
ptrTree=ptrTree->Brother,
ATreeState++;

struct DEF_LEX STATE

{
struct Tree *TPTR;
short HMM _state;
float Score;

};

52

Dynamic Programming: Within HMM

NewActiveTreeStateNo=0;
for(state_no=0;state_no<ActiveTreeStateNo;state _no++)
{
cur_ HMM=LEX STATE[PT1][state_no].TPTR->Model_ID; cur_state=LEX_ STATE[PT1][state_no].HMM _state;
if(cur_state!=0)
{
FindNewState=-1;//Global Variable
next_state_no=Find_NewTreeState POS(Frame_Num,state no,cur_state,0);
%% LEX_STATE[PTZ])EQL_F\, el T iF%f[afTree-Node:LEX_STATE[PTl]
if(FindNewState==1)
{
Cur_Score=LEX_ STATE[PT1][state_no].Score+B_O[Frame_Num][cur_HMM][cur_state]
+Model[cur_ HMM].Trans[cur_state][cur_state];

if(Cur_Score>LEX_STATE[PT2][next_state_no].Score) LEX STATE[PT2][next_state no].Score=Cur_Score;

}

} /lif cur_state =0

if(cur_state<Model[cur_HMM].State-2)

{
FindNewState=-1;
next_state_no=Find_NewTreeState POS(Frame_Num,state no,cur_state+1,1);
if(FindNewState==1)
{
Cur_Score=LEX_STATE[PT1][state_no].Score+B_O[Frame_Num][cur_HMM)][cur_state+1]

+Model[cur_ HMM].Trans[cur_state][cur_state+1];
if(Cur_Score>LEX_STATE[PTZ2][next_state_no].Score)LEX STATE[PT2][next_state no].Score=Cur_Score;

}

MIif cur_state<Model[cur_HMM].State-2

HIfor ActiveTreeStateNo

53

Dynamic Programming: Within HMM

int Find_NewTreeState_POS(int Frame_Num,int Index,int cur_state, int type)
{
int i,cur_ HMM,;
float trans;
if((ActiveNode _Iter=
NewActiveTreeNodeMAP.find(Bipairx((int)LEX_STATE[PT1][Index].TPTR,cur_state)))!= NewActiveTreeNodeMAP.end())

{
FindNewState=1;

return ActiveNode _Iter->second;
}

else

{
cur HMM=LEX_ STATE[PT1][Index].TPTR->Model_ID;
if(type==0)
trans=Model[cur_HMM)].Trans[cur_state][cur_state];
else
trans=Model[cur_HMM].Trans[cur_state-1][cur_state];
LEX_STATE[PT2][NewActiveTreeStateNo]. TPTR=LEX_STATE[PT1][Index].TPTR;
LEX_ STATE[PT2][NewActiveTreeStateNo].HMM _state=cur_state;
LEX_STATE[PT2][NewActiveTreeStateNo].Score=LEX_STATE[PT1][Index].Score
+B_O[Frame_Num][cur_HMM)][cur_state]+trans;
NewActiveTreeNodeMAP|[Bipairx((int)LEX_STATE[PT2][NewActiveTreeStateNo].TPTR
,LEX_STATE[PTZ2][NewActiveTreeStateNo].HMM _state)|=NewActiveTreeStateNo;
return NewActiveTreeStateNo++;

54

Dynamic Programming: Within HMM

e Pruning the HMM states with lower scores

Acoustic_ MAX=(float) Min_Delta;
for(state_no=0;state_no<NewTreeStateNo;state_no++)
if(LEX_STATE[PT2][state_no].Score>Acoustic_MAX)
Acoustic MAX=LEX_ STATE[PTZ2][state _no].Score;

ActiveTreeStateNo=0;
for(state_no=0;state_no<NewTreeStateNo;state _no++)

{ -------------------
if(LEX_STATE[PTZ2][state_no]. Score>Acoust|c MAX- Threshold)

L T
LEX STATE[PTl][ActlveTreeStateNo] LEX _STATE[PT2][state_no];

ActiveTreeStateNo++;

55

Dynamic Programming: Between HMMs

e Arc Extension in the Lexicon Tree

State POS=ActiveTreeStateNo;

for(state_no=0;state_no<State_POS;state_no++)
{
cur HMM=LEX STATE[PT1][state_no].TPTR->Model_ID;
cur_state=LEX_ STATE[PT1][state_no].HMM _ state;
if(cur_state==Model[cur_HMM)].State-2)
{
ptrTree=LEX_STATE[PT1][state_no]. TPTR->Child;
while(ptrTree!=(struct Tree *) NULL)
{
LEX STATE[PT1][ActiveTreeStateNo]. TPTR=ptrTree;
LEX STATE[PT1][ActiveTreeStateNo].HMM _state=0;
LEX _STATE[PT1][ActiveTreeStateNo].Score=LEX_ STATE[PT1][state_no].Score
+Model[cur_HMM].Trans[cur_state][cur_state+1];
ActiveTreeStateNo++;
ptrTree=ptrTree->Brother;
Hiwnhile
}

HIfor state_no

56

