Discriminative Feature Extraction and Dimension Reduction
 - PCA \& LDA

Berlin Chen, 2004

Introduction

- Goal: discover significant patterns or features from the input data
- Salient feature selection or dimensionality reduction

- Compute an input-output mapping based on some desirable properties

Introduction

- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)

Introduction

- Formulation for discriminative feature extraction
- Model-free (nonparametric)
- Without prior information: e.g., PCA
- With prior information: e.g., LDA
- Model-dependent (parametric)
- E.g., EM (Expectation-Maximization), MCE (Minimum Classification Error) Training

Principle Component Analysis (PCA)

- Known as Karhunen-Loẻve Transform $(1947,1963)$
- Or Hotelling Transform (1933)
- A standard technique commonly used for data reduction in statistical pattern recognition and signal processing
- A transform by which the data set can be represented by reduced number of effective features and still retain the most intrinsic information content
- A small set of features to be found to represent the data samples accurately
- Also called "Subspace Decomposition"

Principle Component Analysis

FIGURE 8.4 A cloud of data points is shown in two dimensions, and the density plots formed by projecting this cloud onto each of two axes, 1 and 2, are indicated. The projection onto axis 1 has maximum variance, and clearly shows the bimodal, or clustered character of the data.

Principle Component Analysis

- Suppose \boldsymbol{x} is an n-dimensional zero mean random vector, $E_{x}\{x\}=0$
- If \boldsymbol{x} is not zero mean, we can subtract the mean before processing the following analysis
- \boldsymbol{x} can be represented without error by the summation of n linearly independent vectors

$$
\begin{aligned}
& \qquad \begin{aligned}
\mathbf{x}=\sum_{i=i}^{n} y_{i}^{y_{i}} \boldsymbol{\varphi}_{i}=\boldsymbol{\Phi} \mathbf{y} & \text { where }
\end{aligned} \begin{array}{l}
\boldsymbol{y} \\
\begin{array}{c}
\text { The } i \text {-th component }
\end{array} \\
\text { in the feature (mapped) space }
\end{array} \\
& \left.\begin{array}{llll}
{\left[\begin{array}{lll}
y_{1} & \cdot & y_{i}
\end{array} \cdot\right.} & y_{n}
\end{array}\right]^{T} \\
& \left.\begin{array}{llll}
{\left[\begin{array}{lll}
\boldsymbol{\varphi}_{1} & \cdot & \boldsymbol{\varphi}_{i}
\end{array}\right.} & \boldsymbol{\varphi}_{n}
\end{array}\right]
\end{aligned}
$$

Principle Component Analysis

- Further assume the column (basis) vectors of the matrix Φ form an orthonormal set

$$
\varphi_{i}^{T} \varphi_{j}= \begin{cases}1 & \text { if } \quad i=j \\ 0 & \text { if } \quad i \neq j\end{cases}
$$

- Such that y_{i} is equal to the projection of \boldsymbol{x} on $\boldsymbol{\varphi}_{i}$

$$
\forall_{i} \quad y_{i}=\boldsymbol{x}^{T} \varphi_{i}=\varphi_{i}^{T} \boldsymbol{x}
$$

- y_{i} also has the following properties
- Its mean is zero, too

$$
E\left\{y_{i}\right\}=E\left\{\varphi_{i}^{T} \boldsymbol{x}\right\}=\varphi_{i}^{T} E\{\boldsymbol{x}\}=\varphi_{i}^{T} \boldsymbol{O} \stackrel{\text { where }}{=}\left\|\varphi_{i}\right\|=1
$$

- Its variance is

$$
\begin{aligned}
\sigma_{i}^{2} & =E\left\{y_{i}^{2}\right\}=E\left\{\varphi_{i}^{T} \boldsymbol{x} \boldsymbol{x}^{T} \varphi_{i}\right\}=\varphi_{i}^{T} E\left\{\boldsymbol{x x}^{T}\right\} \varphi_{i} \quad \boldsymbol{R}=E\left\{\boldsymbol{x} \boldsymbol{x}^{T}\right\}=\frac{1}{N} \sum_{i} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \\
& =\varphi_{i}^{T} \boldsymbol{R} \varphi_{i} \quad[\boldsymbol{R} \text { is the (auto-)correlation matrix of } \boldsymbol{x}]
\end{aligned}
$$

Principle Component Analysis

- Further assume the column (basis) vectors of the matrix Φ form an orthonormal set
- y_{i} also has the following properties
- Its mean is zero, too

$$
E\left\{y_{i}\right\}=E\left\{\varphi_{i}^{T} \boldsymbol{x}\right\}=\varphi_{i}^{T} E\{\boldsymbol{x}\}=\varphi_{i}^{T} \boldsymbol{0}=0
$$

- Its variance is

$$
\begin{aligned}
\sigma_{i}^{2} & =E\left\{y_{i}^{2}\right\}=E\left\{\varphi_{i}^{T} \boldsymbol{x} \boldsymbol{x}^{T} \varphi_{i}\right\}=\varphi_{i}^{T} E\left\{\boldsymbol{x x}^{T}\right\} \varphi_{i} \quad \boldsymbol{R}=E\left\{\boldsymbol{x} \boldsymbol{x}^{T}\right\}=\frac{1}{N} \sum_{i} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \\
& =\varphi_{i}^{T} \boldsymbol{R} \varphi_{i} \quad[\boldsymbol{R} \text { is the (auto-)correlation matrix of } \boldsymbol{x}]
\end{aligned}
$$

- The correlation between two projections y_{i} and y_{j} is

$$
\begin{aligned}
E\left\{y_{i} y_{j}\right\} & =E\left\{\left(\boldsymbol{\varphi}_{i}^{T} \boldsymbol{x}\right)\left(\boldsymbol{\varphi}_{j}^{T} \boldsymbol{x}\right)^{T}\right\}=E\left\{\boldsymbol{\varphi}_{i}^{T} \boldsymbol{x} \boldsymbol{x}^{T} \boldsymbol{\varphi}_{j}\right\} \\
& =\boldsymbol{\varphi}_{i}^{T} E\left\{\boldsymbol{x} \boldsymbol{x}^{T}\right\} \boldsymbol{\varphi}_{j}=\boldsymbol{\varphi}_{i}^{T} \boldsymbol{R} \boldsymbol{\varphi}_{j}
\end{aligned}
$$

Principle Component Analysis

- Minimum Mean-Squared Error Criterion

- We want to choose only m of $\boldsymbol{\varphi}_{i}{ }^{\prime} \mathrm{S}$ that we still can approximate \boldsymbol{x} well in mean-squared error criterion

$$
\begin{aligned}
& \boldsymbol{x}=\sum_{i=1}^{n} y_{i} \boldsymbol{\varphi}_{\boldsymbol{i}}=\sum_{i=1}^{m} y_{i} \boldsymbol{\varphi}_{\boldsymbol{i}}+\sum_{j=m+1}^{n} y_{j} \boldsymbol{\varphi}_{j} \\
& \hat{\boldsymbol{x}}(m)=\sum_{i=1}^{m} y_{i} \boldsymbol{\varphi}_{\boldsymbol{i}} \\
& \overline{\mathcal{E}}(m)=E\left\{\|\hat{\boldsymbol{x}}(m)-\boldsymbol{x}\|^{2}\right\}=E\left\{\left(\sum_{j=m+1}^{n} y_{j} \boldsymbol{\varphi}_{j}^{T}\right)\left(\sum_{k=m+1}^{n} y_{k} \boldsymbol{\varphi}_{k}\right)\right\} \\
& =E\left\{\sum_{j=m+1}^{n} \sum_{k=m+1}^{n} y_{j} y_{k} \boldsymbol{\varphi}_{j}^{T} \boldsymbol{\varphi}_{k}\right\} \\
& \begin{array}{l}
E\left\{y_{j}\right\}=0 \\
\sigma_{j}^{2}=E\left\{y_{j}^{2}\right\}-\left(E\left\{y_{j}\right\}\right)^{2} \quad=\sum_{j=m+1}^{n} E\left\{y_{j}^{2}\right\}
\end{array} \quad \because \boldsymbol{\varphi}_{j}^{T} \boldsymbol{\varphi}_{k}=\left\{\begin{array}{ll}
1 & \text { if } j=k \\
0 & \text { if } j \neq k
\end{array}\right\} \\
& =E\left\{y_{j}^{2}\right\} \quad=\sum_{j=m+1}^{n} \sigma_{j}^{2}=\sum_{j=m+1}^{n} \boldsymbol{\varphi}_{j}^{T} \boldsymbol{R} \boldsymbol{\varphi}_{j} \\
& \text { We should } \\
& \text { discard the } \\
& \text { bases where the } \\
& \text { projections have } \\
& \text { lower variances }
\end{aligned}
$$

Principle Component Analysis

- Minimum Mean-Squared Error Criterion
- If the orthonormal (basis) set $\varphi_{i}{ }^{\prime} \mathrm{s}$ is selected to be the eigenvectors of the correlation matrix \boldsymbol{R}, associated with eigenvalues λ_{i} 's
- They will have the property that:

$$
\boldsymbol{R} \boldsymbol{\varphi}_{j}=\lambda_{j} \boldsymbol{\varphi}_{j}
$$

\boldsymbol{R} is real and symmetric, therefore its eigenvectors form a orthonormal set

- Such that the mean-squared error mentioned above will be

$$
\begin{aligned}
\bar{\varepsilon}(m) & =\sum_{j=m+1}^{n} \sigma_{j}^{2} \\
& =\sum_{j=m+1}^{n} \boldsymbol{\varphi}_{j}^{T} \boldsymbol{R} \boldsymbol{\varphi}_{j}=\sum_{j=m+1}^{n} \boldsymbol{\varphi}_{j}^{T} \lambda_{j} \boldsymbol{\varphi}_{j}=\sum_{j=m+1}^{n} \lambda_{j}
\end{aligned}
$$

Principle Component Analysis

- Minimum Mean-Squared Error Criterion
- If the eigenvectors are retained associated with the m largest eigenvalues, the mean-squared error will be

$$
\bar{\varepsilon}_{\text {eigen }}(m)=\sum_{j=m+1}^{n} \lambda_{j} \quad\left(\text { where } \lambda_{1} \geq \ldots \geq \lambda_{m} \geq \ldots \geq \lambda_{n}\right)
$$

- Any two projections y_{i} and y_{j} will be mutually uncorrelated

$$
\begin{aligned}
E\left\{y_{i} y_{j}\right\} & =E\left\{\left(\boldsymbol{\varphi}_{i}^{T} \boldsymbol{x}\right)\left(\boldsymbol{\varphi}_{j}^{T} \boldsymbol{x}\right)^{T}\right\}=E\left\{\boldsymbol{\varphi}_{i}^{T} \boldsymbol{x} \boldsymbol{x}^{T} \boldsymbol{\varphi}_{j}\right\} \\
& =\boldsymbol{\varphi}_{i}^{T} E\left\{\boldsymbol{x} \boldsymbol{x}^{T}\right\} \boldsymbol{\varphi}_{j}=\boldsymbol{\varphi}_{i}^{T} \boldsymbol{R} \boldsymbol{\varphi}_{j}=\lambda_{\mathrm{j}} \boldsymbol{\varphi}_{i}^{T} \boldsymbol{\varphi}_{j}=0
\end{aligned}
$$

- Good news for most statistical modeling
- Gaussians and diagonal matrices

Principle Component Analysis

- An two-dimensional example of Principle Component Analysis

Principle Component Analysis

- Minimum Mean-Squared Error Criterion
- It can be proved that $\bar{\varepsilon}_{\text {eigen }}(m)$ is the optimal solution under the mean-squared error criterion

$$
\text { Define: } J=\sum_{j=m+1}^{\text {To be minimized }} \boldsymbol{\varphi}_{j}^{T} \boldsymbol{R} \boldsymbol{\varphi}_{j}-\sum_{j=m+1}^{n} \sum_{k=m+1}^{n} \mu_{j k}\left(\boldsymbol{\varphi}_{j}^{T} \boldsymbol{\varphi}_{k}-\delta_{j k}\right) \quad \frac{\partial \boldsymbol{\varphi}^{T} \boldsymbol{R} \varphi}{\partial \varphi}=2 \boldsymbol{R} \varphi
$$

Take derivation

$$
\begin{aligned}
& \Rightarrow \forall_{m+1 \leq \leq \leq n} \frac{\partial J}{\partial \boldsymbol{\varphi}_{j}}=2 \boldsymbol{R} \boldsymbol{\varphi}_{j}-2 \sum_{k=m+1}^{n} \mu_{j k} \boldsymbol{\varphi}_{k}=0\left(\text { where } \boldsymbol{\mu}_{j}^{T}=\left[\mu_{j m+1} \ldots, \mu_{j n}\right]\right) \\
& \Rightarrow \forall_{m+1 \leq j \leq n} \boldsymbol{R} \boldsymbol{\varphi}_{j}=\boldsymbol{\Phi}_{n-m} \boldsymbol{\mu}_{j}\left(\text { where } \boldsymbol{\Phi}_{n-m}=\left[\boldsymbol{\varphi}_{m+1} \ldots . \boldsymbol{\varphi}_{n}\right]\right) \\
& \Rightarrow \boldsymbol{R}\left[\boldsymbol{\varphi}_{m+1} \ldots \boldsymbol{\varphi}_{n}\right]=\boldsymbol{\Phi}_{n-m}\left[\boldsymbol{\mu}_{m+1} \ldots . \boldsymbol{\mu}_{n}\right] \\
& \Rightarrow \boldsymbol{R} \boldsymbol{\Phi}_{n-m}=\boldsymbol{\Phi}_{n-m} \boldsymbol{U}_{n-m}\left(\text { where } \boldsymbol{U}_{n-m}=\left[\boldsymbol{\mu}_{m+1} \ldots . \boldsymbol{\mu}_{n}\right]\right)
\end{aligned}
$$

Have a particular solution if \boldsymbol{U}_{n-m} is a diagonal matrix and its diagonal elements is the eigenvalues $\lambda_{m+1} \ldots \lambda_{n}$ of \boldsymbol{R} and $\boldsymbol{\varphi}_{m+1} \ldots \boldsymbol{\varphi}_{n}$ is their corresponding eigenvectors

Principle Component Analysis

- Given an input vector \boldsymbol{x} with dimensional m
- Try to construct a linear transform $\Phi^{\prime}\left(\Phi^{\prime}\right.$ is an $n x m$ matrix
 squared error criterion

minimize $E_{x}\left((\hat{x}-x)^{T}(\hat{x}-x)\right)$

Principle Component Analysis

- Data compression in communication

- PCA is an optimal transform for signal representation and dimensional reduction, but not necessary for classification tasks, such as speech recognition
- PCA needs no prior information (e.g. class distributions) of the sample patterns

Principle Component Analysis

- Example 1: principal components of some data points

Principle Component Analysis

- Example 2: feature transformation and selection

	TABLE 3.2						The correlation matrix for Iris data		
Correlation matrix	Feature 1				Feature 2				
Feature 3	Feature 4								
for old feature	Feature 1	1.0000	-0.1094	0.8718	0.8180				
dimensions	Feature 2	-0.1094	1.0000	-0.4205	-0.3565				
	Feature 3	0.8718	-0.4205	1.0000	0.9628				
	Feature 4	0.8180	-0.3565	0.9628	1.0000				

TABLE 3.3 The eigenvalues for
New feature dimensions Iris data

Feature	Eigenvalue
Feature 1	2.91082
Feature 2	0.92122
Feature 3	0.14735
Feature 4	0.02061

```
R}=(2.91082+0.92122)/(2.91082+0.92122+0.14735+0.02061
    =0.958>0.95

\section*{Principle Component Analysis}
- Example 3: Image Coding


\section*{Principle Component Analysis}
- Example 3: Image Coding (cont.)


FIGURE 8.9 (a) An image of parents used in the image coding experiment. (b) \(8 \times 8\) masks representing the synaptic weights learned by the GHA. (c) Reconstructed image of parents obtained using the dominant 8 principal components without quantization. (d) Reconstructed image of parents with 15 to 1 compression ratio using quantization.

\section*{Principle Component Analysis}

Eigenface and Eigenvoice
- Example 4: Eigenface in face recognition (1990)
- Consider an individual image to be a linear combination of a small number of face components or "eigenface" derived from a set of reference images
- Steps

- Convert each of the \(L\) reference images into a vector of floating point numbers representing light intensity in each pixel
- Calculate the coverance/correlation matrix between these reference vectors
- Apply Principal Component Analysis (PCA) find the eigenvectors of the matrix: the eigenfaces
- Besides, the vector obtained by averaging all images are called "eigenface 0". The other eigenface from "eigenface 1" onwards model the variations from this average face

\section*{Principle Component Analysis}

\section*{Eigenface and Eigenvoice}
- Example 4: Eigenface in face recognition (cont.)
- Steps
- Then the faces are then represented as eigenvoice 0 plus a linear combination of the remain \(K(K \leq L)\) eigenfaces
- The Eigenface approach persists the minimum mean-squared error criterion
- Incidentally, the eigenfaces are not themselves usually plausible faces, only directions of variations between faces
\[
\begin{aligned}
& \hat{\mathbf{x}}_{i}=\overline{\mathbf{x}}+w_{i, 1} \mathbf{e}(1)+w_{i, 2} \mathbf{e}(2)+\ldots .+w_{i, K} \mathbf{e}(K) \\
\Rightarrow & \mathbf{y}_{i}=\left[1, w_{i, 1}, w_{i, 2}, \ldots, w_{i, K}\right]
\end{aligned}
\]

Feature vector of a person i

\section*{Principle Component Analysis}

\section*{Eigenface and Eigenvoice}
- Example 5: Eigenvoice in speaker adaptation (PSTL, 2000)
- Steps
- Concatenating the regarded parameters for each speaker \(r\) to form a huge vector a \({ }^{(r)}\) (a supervectors)
- SD model mean parameters ( \(\mu\) )


\section*{Principle Component Analysis \\ Eigenface and Eigenvoice}
- Example 4: Eigenvoice in speaker adaptation (cont.)


Fig. 1. Block diagram for eigenvoice speaker adaptation

\section*{Principle Component Analysis}

\section*{Eigenface and Eigenvoice}
- Example 5: Eigenvoice in speaker adaptation (cont.)
- Dimension 1 (eigenvoice 1):
- Correlate with pitch or sex
- Dimension 2 (eigenvoice 2):
- Correlate with amplitude
- Dimension 3 (eigenvoice 3):
- Correlate with second-formant movement


Fig. 4. Dimension 3 versus F2(start)-F2(end) for "U," extreme \(M\) and \(F\) in each speaker set

\section*{Linear Discriminant Analysis (LDA)}
- Also called
- Fisher's Linear Discriminant Analysis, Fisher-Rao Linear Discriminant Analysis
- Fisher (1936): introduced it for two-class classification
- Rao (1965): extended it to handle multiple-class classification

\section*{Linear Discriminant Analysis}
- Given a set of sample vectors with labeled (class) information, try to find a linear transform \(\boldsymbol{W}\) such that the ratio of average between-class variation over average within-class variation is maximal


Within-class distributions are assumed here to be Gaussians With equal variance in the two-dimensional sample space

Fig. 10-1 An example of feature extraction for classification.

\section*{Linear Discriminant Analysis}
- Suppose there are \(N\) sample vectors \(\boldsymbol{x}_{i}\) with dimensionality \(n\), each of them is belongs to one of the \(J\) classes \(g\left(x_{i}\right)=j, \quad j \in\{1,2, \ldots, J\}, g(\cdot)\) is class index
- The sample mean is: \(\overline{\mathbf{x}}=\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}\)
- The class sample means are: \(\quad \overline{\boldsymbol{x}}_{j}=\frac{1}{N_{j}} \sum_{g\left(x_{i}\right)=j} \boldsymbol{x}_{i}\)
- The class sample covariances are: \(\quad \Sigma_{j}=\frac{1}{N_{j}} \sum_{g\left(x_{i}\right)=j}\left(x_{i}-\bar{x}_{j}\right)\left(x_{i}-\bar{x}_{j}\right)^{T}\)
- The average within-class variation before transform
\[
\boldsymbol{S}_{w}=\frac{1}{N} \sum_{j} N_{j} \Sigma_{j}
\]
- The average between-class variation before transform
\[
\boldsymbol{S}_{b}=\frac{1}{N} \sum_{j} N_{j}\left(\overline{\boldsymbol{x}}_{j}-\overline{\boldsymbol{x}}\right)\left(\overline{\boldsymbol{x}}_{j}-\overline{\boldsymbol{x}}\right)^{T}
\]

\section*{Linear Discriminant Analysis}
- If the transform \(\boldsymbol{W}=\left[\boldsymbol{w}_{1} \boldsymbol{w}_{2} \ldots \boldsymbol{w}_{m}\right]\) is applied
- The sample vectors will be \(\boldsymbol{y}_{i}=\boldsymbol{W}^{T} \boldsymbol{x}_{i}\)
- The sample mean will be \(\quad \overline{\boldsymbol{y}}=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{W}^{T} \boldsymbol{x}_{i}=\boldsymbol{W}^{T}\left(\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i}\right)=\boldsymbol{W}^{T} \overline{\boldsymbol{x}}\)
- The class sample means will be \(\overline{\boldsymbol{y}}_{j}=\frac{1}{N_{j}} \underset{g\left(\boldsymbol{x}_{i}\right)=j}{ } \boldsymbol{W}^{T} \boldsymbol{x}_{i}=\boldsymbol{W}^{T} \overline{\boldsymbol{x}}_{j}\)
- The average within-class variation will be
\[
\begin{aligned}
\widetilde{\boldsymbol{S}}_{w} & =\frac{1}{N} \sum_{j} N_{j}\left\{\frac{1}{N_{j}} \cdot \sum_{g\left(x_{i}\right)=j}\left(\boldsymbol{W}^{T} \boldsymbol{x}_{i}-\frac{1}{N_{j}} g \sum_{\left(x_{i}\right)=j}\left(\boldsymbol{W}^{T} \boldsymbol{x}_{i}\right)\right)\left(\boldsymbol{W}^{T} \boldsymbol{x}_{i}-\frac{1}{N_{j}} \underset{g\left(\boldsymbol{x}_{i}\right)=j}{ }\left(\boldsymbol{W}^{T} \boldsymbol{x}_{i}\right)\right)^{T}\right\} \\
& =\boldsymbol{W}^{T}\left\{\frac{1}{N} \sum_{j} N_{j} \boldsymbol{\Sigma}_{j}\right\} \boldsymbol{W} \\
& =\boldsymbol{W}^{T} \boldsymbol{S}_{w} \boldsymbol{W}
\end{aligned}
\]

\section*{Linear Discriminant Analysis}
- If the transform \(\boldsymbol{W}=\left[\boldsymbol{w}_{1} \boldsymbol{w}_{2} \ldots, \boldsymbol{w}_{m}\right]\) is applied
- Similarly, the average between-class variation will be
\[
\widetilde{\boldsymbol{S}}_{b}=\boldsymbol{W}^{T} \boldsymbol{S}_{b} \boldsymbol{W}
\]
- Try to find optimal \(\boldsymbol{W}\) such that the following criterion function is maximized
\[
J(\boldsymbol{W})=\frac{\left|\widetilde{\boldsymbol{S}}_{b}\right|}{\left|\widetilde{\boldsymbol{S}}_{w}\right|}=\frac{\left|\boldsymbol{W}^{T} \boldsymbol{S}_{b} \boldsymbol{W}\right|}{\left|\boldsymbol{W}^{T} \boldsymbol{S}_{w} \boldsymbol{W}\right|}
\]
- A close form solution: the column vectors of an optimal matrix \(\boldsymbol{W}\) are the generalized eigenvectors corresponding to the largest eigenvalues in
\[
\boldsymbol{S}_{b} \boldsymbol{w}_{i}=\lambda_{i} \boldsymbol{S}_{w} \boldsymbol{w}_{i}
\]
- That is, \(\quad \boldsymbol{w}_{i}{ }^{\prime} \mathrm{S}\) are the eigenvectors corresponding to the largest eigenvalues of \(\mathbf{S}_{w}^{-1} \mathbf{S}_{b}\)
\[
\boldsymbol{S}_{w}^{-1} \boldsymbol{S}_{b} \boldsymbol{w}_{i}=\lambda_{i} \boldsymbol{w}_{i}
\]

\section*{Linear Discriminant Analysis}
- Proof:
\(\because \hat{\mathbf{W}}=\underset{\hat{\mathbf{w}}}{\arg \max } J(\mathbf{W})=\underset{\hat{\mathbf{w}}}{\arg \max } \frac{\left|\widetilde{\mathbf{S}}_{b}\right|}{\left|\widetilde{\mathbf{S}}_{w}\right|}=\underset{\hat{\mathbf{w}}}{\arg \max } \frac{\left|\mathbf{W}^{T} \mathbf{S}_{b} \mathbf{W}\right|}{\left|\mathbf{W}^{T} \mathbf{S}_{w} \mathbf{W}\right|}\)
Or, for each column vector \(\mathbf{w}_{i}\) of \(\mathbf{W}\), we want to find that:
The qradtic form has optimal solution : \(\lambda_{i}=\frac{\mathbf{w}_{i}^{T} \mathbf{S}_{b} \mathbf{w}_{i}}{\mathbf{w}_{i}^{T} \mathbf{S}_{w} \mathbf{w}_{i}}\)
\(\Rightarrow \frac{\partial \lambda_{i}}{\partial \mathbf{w}_{i}}=\frac{2 \mathbf{S}_{b} \mathbf{w}_{i}\left(\mathbf{w}_{i}^{T} \mathbf{S}_{w} \mathbf{w}_{i}\right)-2 \mathbf{S}_{w} \mathbf{w}_{i}\left(\mathbf{w}_{i}^{T} \mathbf{S}_{b} \mathbf{w}_{i}\right)}{\left(\mathbf{w}_{i}^{T} \mathbf{S}_{w} \mathbf{w}_{i}\right)^{2}}=0\)
\(\left(\frac{\mathbf{F}}{\mathbf{G}}\right)^{\prime}=\frac{\mathbf{F}^{\prime} \mathbf{G}-\mathbf{G}^{\prime} \mathbf{F}}{\mathbf{G}^{2}}\)
\(\Rightarrow \frac{\mathbf{S}_{b} \mathbf{w}_{i}\left(\mathbf{w}_{i}^{T} \mathbf{S}_{w} \mathbf{w}_{i}\right)}{\left(\mathbf{w}_{i}^{T} \mathbf{S}_{w} \mathbf{w}_{i}\right)^{2}}-\frac{\mathbf{S}_{w} \mathbf{w}_{i}\left(\mathbf{w}_{i}^{T} \mathbf{S}_{b} \mathbf{w}_{i}\right)}{\left(\mathbf{w}_{i}^{T} \mathbf{S}_{w} \mathbf{w}_{i}\right)^{2}}=0\)
\(\frac{\mathbf{S}_{b} \mathbf{w}_{i}}{\mathbf{w}_{i}^{T} \mathbf{S}_{w} \mathbf{w}_{i}}-\frac{\mathbf{S}_{w} \mathbf{w}_{i}}{\mathbf{w}_{i}^{T} \mathbf{S}_{w} \mathbf{w}_{i}} \lambda_{i}=0 \quad\left(\because \lambda_{i}=\frac{\mathbf{w}_{i}^{T} \mathbf{S}_{b} \mathbf{w}_{i}}{\mathbf{w}_{i}^{T} \mathbf{S}_{w} \mathbf{w}_{i}}\right)\)
\(\Rightarrow \mathbf{S}_{b} \mathbf{w}_{i}-\lambda_{i} \mathbf{S}_{w} \mathbf{w}_{i}=0 \Rightarrow \mathbf{S}_{b} \mathbf{w}_{i}=\lambda_{i} \mathbf{S}_{w} \mathbf{w}_{i}\)
\(\Rightarrow \mathbf{S}_{w}^{-1} \mathbf{S}_{b} \mathbf{w}_{i}=\lambda_{i} \mathbf{w}_{i}\)

\section*{Linear Discriminant Analysis}

\section*{- Example1: Experiments on Speech Signal Processing}

Covariance Matrix of the 18-Mel-filter-bank vectors Covariance Matrix of the 18-cepstral vectors


Calculated using Year-99's 5471 files
\[
\boldsymbol{\Sigma}=\frac{1}{N} \sum_{\mathbf{x}_{i}}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{T}
\]


Calculated using Year-99's 5471 files
\[
\mathbf{z}^{\prime}=\frac{1}{N} \sum_{n=1}\left(\mathbf{y}_{i}-\bar{y}\right)\left(\mathbf{y}_{i}-\overline{\mathbf{y}}\right)^{r}
\]

After Cosine Transform

\section*{Experiments on Speech Signal Processing}
- Example1: Experiments on Speech Signal Processing (cont.)

Covariance Matrix of the 18-PCA-cepstral vectors Covariance Matrix of the 18-LDA-cepstral vectors


Calculated using Year-99's 5471 files
After PCA Transform


Calculated using Year-99's 5471 files
After LDA Transform
\begin{tabular}{|l|c|c|}
\hline \multirow{2}{*}{} & \multicolumn{2}{|c|}{ Character Error Rate } \\
\cline { 2 - 3 } & TC & WG \\
\hline MFCC & 26.32 & 22.71 \\
\hline LDA-1 & 23.12 & 20.17 \\
\hline LDA-2 & 23.11 & 20.11 \\
\hline
\end{tabular}

\section*{PCA vs. LDA}


Figure 4.9: Although the line joining the centroids defines the direction of greatest centroid spread, the projected data overlap because of the covariance (left panel). The discriminant direction minimizes this overlap for Gaussian data (right panel).

\section*{LDA vs. HDA}
- HDA: Heteroscedastic Discriminant Analysis


Fig. 1. Difference between LDA and HDA.

\section*{HW-2 Feature Transformation}
- Given two data sets (MaleData, FemaleData) in which each row is a sample with 18 features, please perform the following operations:
1. Merge these two data sets and find/plot the covariance matrix for the merged data set.
2. Apply PCA and LDA transformations to the merged data set, respectively. Also, find/plot the covariance
matrices for transformations, respectively. Describe the phenomena that you have observed.
3. Use the first two principal components of PCA as well as the first two eigenvectors of LDA to represent the merged data set. Selectively plot portions of samples from MaleData and FemaleData, respectively. Describe the phenomena that you have observed.

\section*{HW-2 Feature Transformation (cont.)}
\[
\begin{aligned}
& 6.427136 .637947 .066377 .888898 .286659 .131449 .158209 .023149 .064479 .544929 .644179 .397509 .54539 \quad 9.667439 .9610610 .3176710 .2754310 .35846
\end{aligned}
\]
\(\begin{array}{lllllllllllllllllll}6.41962 & 7.13809 & 7.66789 & 7.36502 & 8.29559 & 9.72309 & 9.25206 & 8.89061 & 9.25610 & 9.54469 & 9.61080 & 9.90144 & 9.84137 & 9.87632 & 10.17686 & 10.10185 & 10.39783 & 10.18437 \\ 6.86555 & 7.00569 & 7.17471 & 8.15614 & 8.71617 & 9.41085 & 9.44752 & 9.21923 & 9.35536 & 9.64052 & 9.41545 & 9.77079 & 9.81874 & 9.72490 & 10.12627 & 10.20459 & 10.65373 & 10.43855\end{array}\)
\(\begin{array}{llllllllllllllllllll}7.22548 & 6.75456 & 7.23428 & 7.96735 & 8.45112 & 9.24918 & 9.33575 & 9.05005 & 9.58763 & 9.98788 & 9.81818 & 9.76883 & 9.92221 & 9.84083 & 10.19516 & 10.26957 & 10.47222 & 10.41586 \\ 7.37737 & 6.37170 & 7.55167 & 7.51087 & 8.95966 & 9.18450 & 8.84421 & 8.89529 & 9.70726 & 10.11613 & 9.69935 & 9.85229 & 9.77159 & 9.98695 & 10.22368 & 10.27461 & 10.28110 & 10.23929\end{array}\)
\(7.326557 .138437 .904107 .893668 .753469 .1823910 .110259 .503579 .425009 .862749 .400069 .877869 .84769 \quad 10.17598 \quad 10.0278710 .44857 \quad 10.36439 \quad 10.15492\)
\(8.9515210 .1408211 .4740611 .9536111 .7054312 .4925911 .9290110 .7854310 .2676910 .5479710 .3653610 .82128 \quad 12.3166412 .5862211 .0809910 .52101 \quad 10.4968510 .62546\)
9.2853910 .4116812 .0771512 .6939712 .2625113 .0203212 .1622410 .8780810 .6015610 .5185110 .5119811 .8469013 .0936713 .1968211 .5603410 .3687910 .7364211 .23687
\(9.2528410 .399512 .2877513 .0958712 .3520013 .0436912 .2234811 .2823010 .5754110 .5850210 .4919611 .5710212 .6589912 .78191 \quad 11.5458210 .4777611 .1700912 .07101\)
\(9.4881410 .5769712 .1446213 .0583812 .2725212 .9209612 .0174611 .1097810 .71202 \quad 10.4517610 .2090111 .4922912 .5619112 .7492011 .5302410 .5013611 .4879212 .38682\)
\(9.24510 \quad 10.5340912 .1051412 .9956012 .2613112 .8294411 .9967111 .0957610 .6022310 .6206610 .6953211 .5272712 .5529912 .5864411 .4103010 .9813811 .5438312 .39193\)
\(9.3785610 .567912 .1550213 .0358212 .3534612 .7959111 .9947711 .2589010 .59781 \quad 10.4114210 .2975311 .6117912 .7690112 .8285411 .5348910 .2669311 .5937712 .46711\)
9.1057410 .3623012 .1091313 .0304712 .3054312 .7977711 .8245411 .110239 .9530310 .2572610 .2145711 .6501612 .7501312 .7991911 .4479010 .1522111 .3457012 .17819
9.2526610 .395912 .1076113 .0259012 .3414612 .7975111 .8743611 .2757010 .2622210 .0859010 .1626911 .5614512 .7979012 .9211711 .8541511 .0455311 .5003512 .0395
\(9.3794410 .226311 .9959412 .9779612 .2064012 .6895011 .6568810 .9784510 .1490910 .255510 .0772611 .5914712 .7567012 .87878 \quad 11.5899710 .5341111 .2349811 .82416\)
\(8.8611210 .1120211 .7643412 .8460312 .1790413 .0228112 .2274311 .0369710 .2854810 .1773810 .0294411 .6422412 .8114912 .83681 \quad 11.6623010 .2219711 .0623611 .69995\)
8.510649 .9784511 .3477411 .8543610 .7786211 .9692013 .5971613 .0174712 .5046611 .1255310 .2601710 .246609 .953910 .165399 .915049 .8616510 .0557210 .10852
8.752849 .9732211 .2510711 .5358010 .5697011 .9724013 .6467613 .0065912 .5907611 .1531410 .0128110 .2764210 .307199 .895919 .895359 .6901110 .1879910 .07413
\(8.698119 .9199011 .2099811 .3552110 .3771911 .8876613 .5711712 .6481712 .1170211 .5172410 .0495710 .00606 \quad 9.78021 \quad 10.0318010 .043679 .9654010 .0865819 .99362\)
0.680499 .926511 .2511011 .6120810 .7966012 .0783613 .5665612 .6861112 .6667112 .7013210 .5110110 .280099 .9455410 .0154410 .2459510 .0509010 .0416410 .39702
8.596959 .9561911 .2350312 .3466511 .8485512 .5683813 .7412912 .8710812 .2592912 .8695811 .5286411 .2017511 .3511911 .1565510 .2094110 .0356510 .4724111 .27322
9.2181310 .0783511 .2313312 .524012 .1806812 .654114 .0115313 .1504911 .753911 .6904111 .4491911 .9169112 .5905012 .0658410 .2815010 .1672210 .6304611 .66016
9.452429 .8517210 .9923112 .5746112 .3769412 .6760114 .0803513 .3150011 .6349911 .5784611 .2005611 .7252712 .5909012 .7340411 .2155110 .8948711 .0679111 .75153

\section*{HW-2 Feature Transformation (cont.)}
- Plot Covariance Matrix
\begin{tabular}{|llll|}
\hline CoVar=[ & & & \\
& 3.0 & 0.5 & \(0.4 ;\) \\
& 0.9 & 6.3 & \(0.2 ;\) \\
& 0.4 & 0.4 & \(4.2 ;\) \\
]; & & \\
colormap('default'); \\
surf(CoVar);
\end{tabular}
- Eigen Decomposition
\begin{tabular}{llll}
\hline \(\mathrm{BE}=[\) & & & \\
& 3.0 & 3.5 & \(1.4 ;\) \\
& 1.9 & 6.3 & \(2.2 ;\) \\
& 2.4 & 0.4 & \(4.2 ;\) \\
\(\mathrm{WI}=[\) & & & \\
& & & \\
& 4.0 & 4.1 & \(2.1 ;\) \\
& 2.9 & 8.7 & \(3.5 ;\) \\
& 4.4 & 3.2 & \(4.3 ;\)
\end{tabular}
```

%LDA
IWI=inv(WI);
A=IWI*BE;
%PCA
A=BE+WI; % why ??
[V,D]=eig(A);
[V,D]=eigs(A,3);
fid=fopen('Basis','w');
for i=1:3 % feature vector length
for j=1:3 % basis number
fprintf(fid,'%10.10f ',V(i,j));
end
fprintf(fid,'\n');
end
fclose(fid);

```
```

