Part-of-Speech Tagging

Berlin Chen 2004

References:

1. Speech and Language Processing, chapter 8
2. Foundations of Statistical Natural Language Processing, chapter 10

Review

- Tagging (part-of-speech tagging)
- The process of assigning (labeling) a part-of-speech or other lexical class marker to each word in a sentence (or a corpus)
- Decide whether each word is a noun, verb, adjective, or whatever

The/AT representative/NN put/VBD chairs/NNS on/IN the/AT table/NN Or

The/AT representative/JJ put/NN chairs/VBZ on/IN the/AT table/NN

- An intermediate layer of representation of syntactic structure
- When compared with syntactic parsing
- Above 96\% accuracy for most successful approaches

Tagging can be viewed as a kind of syntactic disambiguation

Introduction

- Parts-of-speech
- Known as POS, word classes, lexical tags, morphology classes
- Tag sets
- Penn Treebank : 45 word classes used (Francis, 1979)
- Penn Treebank is a parsed corpus
- Brown corpus: 87 word classes used (Marcus et al., 1993)
-

The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.

The Penn Treebank POS Tag Set

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	$+, \%, \&$
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3 sg pres	eats
LS	List item marker	1,2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing, or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	\#	Pound sign	\#
PDT	Predeterminer	all, both	*	Left quote	("or ")
POS	Possessive ending	's		Right quote	('or ")
PP	Personal pronoun	I, you, he	(Left parenthesis	$([, C,\{,<)$
PP\$	Possessive pronoun	your, one's)	Right parenthesis	(],$),\},>)$
RB	Adverb	quickly, never		Comma	
RBR	Adverb, comparative	faster		Sentence-final punc	(. ! ?)
RBS	Adverb, superlative	fastest		Mid-sentence punc	(: ; ...--)
RP	Particle	$u p, o f f$			

Disambiguation

- Resolve the ambiguities and chose the proper tag for the context
- Most English words are unambiguous (have only one tag) but many of the most common words are ambiguous
- E.g.: "can" can be a (an auxiliary) verb or a noun
- E.g.: statistics of Brown corpus

Unambiguous (1 tag)	$\mathbf{3 5 , 3 4 0}$	
Ambiguous (2-7 tags)	$\mathbf{4 , 1 0 0}$	
2 tags	3,760	
3 tags	264	
4 tags	61	
5 tags	12	
6 tags	2	
7 tags	1	("still")

- 11.5\% word types are ambiguous
- But 40\% tokens are ambiguous
(However, the probabilities of tags associated a word are not equal \rightarrow many ambiguous tokens are easy to disambiguate)

Process of POS Tagging

Use two information sources:

- Syntagmatic information (looking at information about tag sequences)
- Lexical information (predicting a tag based on the word concerned)

POS Tagging Algorithms

Fall into One of Two Classes

- Rule-based Tagger
- Involve a large database of hand-written disambiguation rules
- E.g. a rule specifies that an ambiguous word is a noun rather than a verb if it follows a determiner
- ENGTWOL: a simple rule-based tagger based on the constraint grammar architecture
- Stochastic/Probabilistic Tagger

$$
\begin{aligned}
& \text { "a new play" } \\
& P(\mathrm{NN} \mid \mathrm{JJ}) \approx 0.45 \\
& P(\mathrm{VBP} \mid \mathrm{JJ}) \approx 0.0005
\end{aligned}
$$

- Use a training corpus to compute the probability of a given word having a given context
- E.g.: the HMM tagger chooses the best tag for a given word (maximize the product of word likelihood and tag sequence probability)

POS Tagging Algorithms

- Transformation-based/Brill Tagger
- A hybrid approach
- Like rule-based approach, determine the tag of an ambiguous word based on rules
- Like stochastic approach, the rules are automatically induced from previous tagged training corpus with the machine learning technique
- Supervised learning

Rule-based POS Tagging

- Two-stage architecture
- First stage: Use a dictionary to assign each word a list of potential parts-of-speech
- Second stage: Use large lists of hand-written disambiguation rules to winnow down this list to a single part-of-speech for each word

Pavlov	had shown that salivation ...	An example for
Pavlov	PAVLOV N NOM SG PROPER	The ENGTOWL tagger
had	HAVE V PAST VFIN SVO (preterit)	

Rule-based POS Tagging

- Simple lexical entries in the ENGTWOL lexicon

Word	POS	Additional POS features
smaller	ADJ	COMPARATIVE
entire	ADJ	ABSOLUTE ATTRIBUTIVE
fast	ADV	SUPERLATIVE
that	DET	CENTRAL DEMONSTRATIVE SG
all	DET	PREDETERMINER SG/PL QUANTIFIER
dog's	N	GENITIVE SG
furniture	N	NOMINATIVE SG NOINDEFDETERMINER
one-third	NUM	SG
she	PRON	PERSONAL FEMININE NOMINATIVE SG3
show	V	IMPERATIVE VFIN
show	V	PRESENT -SG3 VFIN
show	N	NOMINATIVE SG
shown	PCP2	SVOO SVO SV
occurred	PCP2:;	SV
occurred	V	PAST VFIN SV

Rule-based POS Tagging

```
ADVERBIAL-THAT RULE
Given input: 'that"
if
    (+1 A/ADV/QUANT); / * if next word is adj, adverb, or quantifier * /
    (+2 SENT-LIM); / * and following which is a sentence boundary, */
    (NOT -1 SVOC/A); / * and the previous word is not a verb like * /
    / * 'consider' which allows adjs as object complements * /
then eliminate non-ADV tags
else eliminate ADV tag
```


Example:

one
It isn't that odd! ADV

I consider that odd.
Compliment
NUM

HMM-based Tagging

- Also called Maximum Likelihood Tagging
- Pick the most-likely tag for a word
- For a given sentence or words sequence, an HMM tagger chooses the tag sequence that maximizes the following probability

For a word at position i :
$\operatorname{tag}_{i}=\underset{j}{\arg \max } P\left(\operatorname{word}_{i} \mid \operatorname{tag}_{j}\right) \cdot P\left(\operatorname{tag}_{j} \mid\right.$ previous $\left.n-1 \operatorname{tags}\right)$
word/lexical likelihood tag sequence probability
N-gram HMM tagger

HMM-based Tagging

For a word w_{i} at position i, follow Bayes' theorem :

$$
\begin{aligned}
t_{i} & =\underset{j}{\arg \max } P\left(t_{j} \mid w_{i}, t_{i-1}, t_{i-2}, \ldots, t_{1}\right) \\
& =\underset{j}{\arg \max } \frac{P\left(w_{i}, t_{j} \mid t_{i-1}, t_{i-2}, \ldots, t_{1}\right)}{P\left(w_{i} \mid t_{i-1}, t_{i-2}, \ldots, t_{1}\right)} \\
& =\underset{j}{\arg \max } P\left(w_{i}, t_{j} \mid t_{i-1}, t_{i-2}, \ldots, t_{1}\right) \\
& =\underset{j}{\arg \max } P\left(w_{i} \mid t_{j}, t_{i-1}, t_{i-2}, \ldots, t_{1}\right) P\left(t_{j} \mid t_{i-1}, t_{i-2}, \ldots, t_{1}\right) \\
& \approx \underset{j}{\arg \max } P\left(w_{i} \mid t_{j}\right) P\left(t_{j} \mid t_{i-1}, t_{i-2}, \ldots, t_{i-n+1}\right)
\end{aligned}
$$

HMM-based Tagging

- Assumptions made here
- Words are independent of each other
- A word's identity only depends on its tag
- "Limited Horizon" and "Time Invariant" ("Stationary")
- Limited Horizon: a word's tag only depends on the previous tag (limited horizon) and the dependency does not change over time (time invariance)
- Time Invariant: time invariance means the tag dependency won't change as tag sequence appears different positions of a sentence

Do not model long-distance relationships well !

- e.g., Wh-extraction,...

HMM-based Tagging

- Apply bigram-HMM tagger to choose the best tag for a given word
- Choose the tag t_{i} for word w_{i} that is most probable given the previous tag t_{i-1} and current word w_{i}

$$
t_{i}=\underset{j}{\arg \max } P\left(t_{j} \mid t_{i-1}, w_{i}\right)
$$

- Through some simplifying Markov assumptions

$$
\begin{aligned}
& t_{i}=\underset{j}{\operatorname{argmax}} P\left(t_{j} \mid t_{i-1}\right) P\left(w_{i} \mid t_{j}\right) \\
& \text { tag sequence probability } \quad \text { word/lexical likelihood }
\end{aligned}
$$

HMM-based Tagging

- Apply bigram-HMM tagger to choose the best tag for a given word

$$
\begin{aligned}
t_{i} & =\underset{j}{\arg \max } P\left(t_{j} \mid t_{i-1}, w_{i}\right) \\
& =\underset{j}{\arg \max } \frac{P\left(t_{j}, w_{i} \mid t_{i-1}\right)}{P\left(w_{i} \mid t_{i-1}\right)} \text { The same for all tags } \\
& =\underset{j}{\arg \max } P\left(t_{j}, w_{i} \mid t_{i-1}\right) \\
& =\underset{j}{\arg \max } P\left(w_{i} \mid t_{i-1}, t_{j}\right) P\left(t_{j} \mid t_{i-1}\right) \quad \begin{array}{l}
\text { The probability of a word } \\
\text { only depends on its tag }
\end{array} \\
& =\underset{j}{\arg \max } P\left(w_{i} \mid t_{j}\right) P\left(t_{j} \mid t_{i-1}\right)=\underset{j}{\arg \max } P\left(t_{j} \mid t_{i-1}\right) P\left(w_{i} \mid t_{j}\right)
\end{aligned}
$$

HMM-based Tagging

- Example: Choose the best tag for a given word

Secretariat/NNP is /VBZ expected/VBN to/TO race/VB tomorrow/NN

HMM-based Tagging

- Apply bigram-HMM tagger to choose the best sequence of tags for a given sentence

$$
\begin{aligned}
\hat{T} & =\arg \max _{T}^{\arg } P(T \mid W) \\
& =\operatorname{cr} \begin{array}{l}
\text { Assumptions: } \\
\text { - words are independe } \\
\text { of each other } \\
\text { - a word's identity onl } \\
\text { depends on its tag }
\end{array} \\
& =\arg \max _{T}^{\arg \max } \frac{P(T) P(W \mid T)}{T} P(T) P(W \mid T) \\
& =\underset{t_{1}, t_{2}, \ldots, t_{n}}{\arg \max _{n} P\left(t_{1}, t_{2}, \ldots, t_{n}\right) P\left(w_{1}, w_{1}, \ldots, w_{n} \mid t_{1}, t_{2}, \ldots, t_{n}\right)} \\
& =\underset{t_{1}, t_{2}, \ldots, t_{n}}{\arg \max } \prod_{i=1}^{n}\left[P\left(t_{i} \mid t_{1}, t_{2}, \ldots, t_{i-1}\right) P\left(w_{i} \mid t_{1}, t_{2}, \ldots, t_{n}\right)\right] \\
& =\underset{t_{1}, t_{2}, \ldots, t_{n}}{\arg \max } \prod_{i=1}^{n}\left[P\left(t_{i} \mid t_{i-m+1}, t_{i-m+2}, \ldots, t_{i-1}\right) P\left(w_{i} \mid t_{i}\right)\right]
\end{aligned}
$$

HMM-based Tagging

- The Viterbi algorithm for the bigram-HMM tagger
- States: distinct tags
- Observations: input word generated by each state

HMM-based Tagging

- The Viterbi algorithm for the bigram-HMM tagger

1. Initialization $\delta_{1}(j)=\pi_{k} P\left(w_{1} \mid t_{j}\right), 1 \leq j \leq J$
2. Induction $\delta_{i}(j)=\left[\max _{k} \delta_{i-1}(k) P\left(t_{j} \mid t_{k}\right)\right] P\left(w_{i} \mid t_{j}\right), \quad 2 \leq i \leq n, 1 \leq j \leq J$

$$
\psi_{i}(j)=\underset{1 \leq k \leq J}{\operatorname{argmax}}\left[\delta_{i-1}(k) P\left(t_{j} \mid t_{k}\right)\right]
$$

3.Termination $X_{n}=\underset{1 \leq j \leq J}{\operatorname{argmax}} \delta_{n}(j)$

$$
\begin{aligned}
& \text { for } \mathrm{i}:=n-1 \text { to } 1 \text { step }-1 \text { do } \\
& \quad X_{i}=\psi_{i}\left(X_{i+1}\right) \\
& \text { end }
\end{aligned}
$$

HMM-based Tagging

- Apply trigram-HMM tagger to choose the best sequence of tags for a given sentence
- When trigram model is used

$$
\hat{T}=\underset{t_{1}, t_{2}, \ldots, t_{n}}{\arg \max }\left[P\left(t_{1}\right) P\left(t_{2} \mid t_{1}\right) \prod_{i=3}^{n} P\left(t_{i} \mid t_{i-2}, t_{i-1}\right)\right]\left[\prod_{i=1}^{n} P\left(w_{i} \mid t_{i}\right)\right]
$$

- Maximum likelihood estimation based on the relative frequencies observed in the pre-tagged training corpus (labeled data)

$$
\left.\begin{array}{l}
P_{M L}\left(t_{i} \mid t_{i-2}, t_{i-1}\right)=\frac{c\left(t_{i-2} t_{i-1} t_{i}\right)}{\sum_{j} c\left(t_{i-2} t_{i-1} t_{j}\right)}
\end{array} \begin{array}{rl}
\text { Smoothing or linear interpolation } \\
\text { are needed! }
\end{array}\right] \begin{aligned}
P_{\text {smoothed }}\left(t_{i} \mid t_{i-2}, t_{i-1}\right)= & \alpha \cdot P_{M L}\left(t_{i} \mid t_{i-2}, t_{i-1}\right)+\beta \cdot P_{M L}\left(t_{i} \mid t_{i-1}\right) \\
& +(1-\alpha-\beta) \cdot P_{M L}\left(t_{i} \mid t_{i-1}\right)
\end{aligned}
$$

HMM-based Tagging

- Apply trigram-HMM tagger to choose the best sequence of tags for a given sentence

HMM-based Tagging

	Second tag						
First tag	AT	BEZ	IN	NN	VB	PERIOD	
AT	0	0	0	48636	0	19	
BEZ	1973	0	426	187	0	38	
IN	43322	0	1325	17314	0	185	
NN	1067	3720	42470	11773	614	21392	
VB	6072	42	4758	1476	129	1522	
PERIOD	8016	75	4656	1329	954	0	

$$
P\left(t_{i} \mid t_{i-1}\right)=\frac{c\left(t_{i-1} t_{i}\right)}{\sum_{j} c\left(t_{i-1} t_{j}\right)}
$$

Table 10.3 Idealized counts of some tag transitions in the Brown Corpus. For example, NN occurs 48636 times after AT.

	AT	BEZ	IN	NN	VB	PERIOD	
bear	0	0	0	10	43	0	
is	0	10065	0	0	0	0	$P\left(w_{i} \mid t_{i}\right)=\frac{c\left(w_{i}, t_{i}\right)}{\sum_{j} c\left(w_{j}, t_{i}\right)}$
move	0	0	0	36	133	0	
on	0	0	5484	0	0	0	
president	0	0	0	382	0	0	
progress	0	0	0	108	4	0	
the	69016	0	0	0	0	0	
-	0	0	0	0	0	48809	

Table 10.4 Idealized counts for the tags that some words occur with in the Brown Corpus. For example, 36 occurrences of move are with the tag NN.

HMM-based Tagging

- Probability re-estimation based on unlabeled data
- EM (Expectation-Maximization) algorithm is applied
- Start with a dictionary that lists which tags can be assigned to which words
» word likelihood function cab be estimated
» tag transition probabilities set to be equal
- EM algorithm learns (re-estimates) the word likelihood function for each tag and the tag transition probabilities
- However, a tagger trained on hand-tagged data worked better than one trained via EM
- Treat the model as a Markov Model in training but treat them as a Hidden Markov Model in tagging

Transformation-based Tagging

- Also called Brill tagging
- An instance of Transformation-Based Learning (TBL)
- Spirits
- Like the rule-based approach, TBL is based on rules that specify what tags should be assigned to what word
- Like the stochastic approach, rules are automatically induced from the data by the machine learning technique
- Note that TBL is a supervised learning technique
- It assumes a pre-tagged training corpus

Transformation-based Tagging

- How the TBL rules are learned
- Three major stages

1. Label every word with its most-likely tag using a set of tagging rules (use the broadest rules at first)
2. Examine every possible transformation (rewrite rule), and select the one that results in the most improved tagging (supervised! should compare to the pre-tagged corpus)
3. Re-tag the data according this rule

- The above three stages are repeated until some stopping criterion is reached
- Such as insufficient improvement over the previous pass
- An ordered list of transformations (rules) can be finally obtained

Transformation-based Tagging

- Example

1 $P(\mathrm{NN} \mid$ race $)=0.98$ \qquad So, race will be initially coded as NN
$P($ VB \mid race $)=0.02$
(label every word with its most-likely tag)

2
(a). is/VBZ expected/VBN to/To race/NN tomorrow/NN

Refer to the correct tag Information of each word, and find the tag of race in (a) is wrong
(b). the/DT race/NN for/IN outer/JJ space/NN

Learn/pick a most suitable transformation rule: (by examining every possible transformation)

Change NN to VB while the previous tag is TO

Rewrite rule: expected/VBN to/To race/NN \rightarrow expected/VBN to/To race/VB

Transformation-based Tagging

- Templates (abstracted transformations)
- The set of possible transformations may be infinite
- Should limit the set of transformations
- The design of a small set of templates (abstracted transformations) is needed
E.g., a strange rule like:
transform NN to VB if the previous word was "IBM" and
the word "the" occurs between 17 and 158 words before that

Transformation-based Tagging

- Possible templates (abstracted transformations)

- The preceding (following) word is tagged \mathbf{z}.

The word two before (after) is tagged \mathbf{z}.
One of the two preceding (following) words is tagged \mathbf{z}.
One of the three preceding (following) words is tagged \mathbf{z}.
The preceding word is tagged \mathbf{z} and the following word is tagged \mathbf{w}.
Brill's templates.
Each begins with
"Change tag a to tag
The preceding (following) word is tagged \mathbf{z} and the word
two before (after) is tagged \mathbf{w}.

Table 10.7 Triggering environments in Brill's transformation-based tagger. Examples: Line 5 refers to the triggering environment "Tag t^{j} occurs in one of the three previous positions"; Line 9 refers to the triggering environment "Tag t^{j} occurs two positions earlier and $\operatorname{tag} t^{k}$ occurs in the following position."

Transformation-based Tagging

- Learned transformations

Verb, 3sg, past tense Modal verbs (should, can,...)

	Change tags		Condition	Example
$\#$	From	To	Previous tag is TO	to/TO race/NN \rightarrow VB
1	NN	VB	One the previous 3 tags is MD	might/MD vanish/VBP \rightarrow VB
2	VBP	VB	One of the	
3	NN	VB	One of the previous 2 tags is MD	might/MD not reply/NN \rightarrow VB
4	VB	NN	One of the previous 2 tags is DT	
5	VBD	VBN	One of the previous 3 tags is VBZ	
	Verb, past participle			

Rules learned by Brill's original tagger

Table 10.7 Triggering environments in Brill's transformation-based tagger. Examples: Line 5 refers to the triggering environment "Tag t^{j} occurs in one of the three previous positions"; Line 9 refers to the triggering environment "Tag t^{j} occurs two positions earlier and $\operatorname{tag} t^{k}$ occurs in the following position."

Source tag	Target tag	Triggering environment	
NN	VB	previous tag is TO	Constraints for tags
VBP	VB	one of the previous three tags is MD	
JJR	RBR	next tag is JJ more valuable player	
VBP	VB	one of the previous two words is n 't	Constraints for words

Table 10.8 Examples of some transformations learned in transformation-based tagging.

Transformation-based Tagging

- Reference for tags used in the previous slide

```
Tag Part Of Speech
AT article
BEZ the word is
IN preposition
JJ adjective
JJR comparative adjective
MD modal
NN singular or mass noun
NNP singular proper noun
NNS plural noun
PERIOD .: ?!
PN personal pronoun
RB adverb
RBR . comparative adverb
TO the word to
VB verb, base form
VBD verb, past tense
VBG verb, present participle, gerund
VBN verb, past participle
VBP verb, non-3rd person singular present
VBZ verb, 3rd singular present
WDT wh-determiner (what, which)
```

Table 10.1 Some part-of-speech tags frequently used for tagging Englisł

Transformation-based Tagging

- Algorithm

function GET-BEST-INSTANCE(corpus, template) returns transform for from-tag \leftarrow from tag-1 to tag-n do for all combinations for to-tag \leftarrow from tag-1 to tag-n d0 of tags
for pos - from 1 to corpus-size do
 elseif (correct-tag(pos) $=$ from-tag \&\& current-tag(pos) $==$ from-tag $)$
mum-bad-transforms(current-tag(pos-1))+
end
Z

if (mum-good-transforms(best-Z)- num-bad-transforms(best-Z)
$>$ best-instance.Z) then
best-instance \leftarrow "Change tag from from-tag to to-tag if previous tag is best-Z"
$\begin{array}{ll}\text { return(best-instance) } & \begin{array}{l}\text { Check if it is better } \\ \text { than the best instance }\end{array} \\ \text { theved in wevituc }\end{array}$ achieved in previous iterations
procedure APPLY-TRANSFORM(transform, corpus)
for pos \leftarrow from 1 to corpus-size do
if $($ current-tag $($ pos $)=$ best-rule-from $)$
$\& \&($ current-tag $($ pos -1$)=$ best-rule-prev $))$
cuprent-tag(pos) $=$ best-rule-to

The GET_BEST_INSTANCE procedure in the example algorithm is "Change tag from X to Y if the previous tag is Z ".

Multiple Tags and Multi-part Words

- Multiple tags
- A word is ambiguous between multiple tags and it is impossible or very difficult to disambiguate, so multiple tags is allowed, e.g.
- adjective versus preterite versus past participle (JJ/VBD/VBN)
- adjective versus noun as prenominal modifier (JJ/NN)
- Multi-part words
- Certain words are split or some adjacent words are treated as a single word

Tagging of Unknown Words

- Unknown words are a major problem for taggers
- Different accuracy of taggers over different corpora is often determined by the proportion of unknown words
- How to guess the part of speech of unknown words?
- Simplest unknown-word algorithm
- Slightly more complex algorithm
- Most-powerful unknown-word algorithm

Tagging of Unknown Words

- Simplest unknown-word algorithm
- Pretend that each unknown word is ambiguous among all possible tags, with equal probability
- Lose/ignore lexical information for unknown words
- Must rely solely on the contextual POS-trigram (syntagmatic information) to suggest the proper tag

$$
\hat{T}=\arg \max \left[P\left(t_{1}\right) P\left(t_{2} \mid t_{1}\right) \prod_{i=1}^{n} P\left(t_{i} \mid t_{t-2}, t_{t-1}\right)\right]\left[\prod_{i=1}^{n} P\left(w_{i} \mid t_{i}\right)\right]
$$

- Slightly more complex algorithm
- Based on the idea that the probability distribution of tags over unknown words is very similar to the distribution of tags over words that occurred only once in a training set
- The likelihood for an unknown word is determined by the average of the distribution over all singleton in the training set (similar to Good-Turing?)

$$
\text { Nouns or Verbs } P\left(w_{i} \mid t_{i}\right) ?
$$

Tagging of Unknown Words

- Most-powerful unknown-word algorithm
- Hand-designed features
- The information about how the word is spelled (inflectional and derivational features), e.g.:
- Words end with s (\rightarrow plural nouns)
- Words end with ed (\rightarrow past participles)
- The information of word capitalization (initial or non-initial) and hyphenation

$$
P\left(w_{i} \mid t_{i}\right)=p(\text { unknown }-\underset{\text { Assumption: independence between features }}{\left.\operatorname{word} \mid t_{i}\right)} \text {) } \underbrace{\text { captial } \mid t_{i}}) \cdot p\left(\text { endings } / \text { hyph } \mid t_{i}\right)
$$

- Features induced by machine learning
- E.g.: TBL algorithm uses templates to induce useful English inflectional and derivational features and hyphenation

Tagging of Unknown Words

Feature	Value	NNP	NN	NNS	VBG	VBZ
unknown word	yes	0.05	0.02	0.02	0.005	0.005
	no	0.95	0.98	0.98	0.995	0.995
capitalized	yes	0.95	0.10	0.10	0.005	0.005
	no	0.05	0.90	0.90	0.995	0.995
ending	-s	0.05	0.01	0.98	0.00	0.99
	-ing	0.01	0.01	0.00	1.00	0.00
	-tion	0.05	0.10	0.00	0.00	0.00
	other	0.89	0.88	0.02	0.00	0.01

Table 10.5 Table of probabilities for dealing with unknown words in tagging. For example, $P($ unknown word $=$ yes $\mid \mathrm{NNP})=0.05$ and $P($ ending $=-$ ing $\mid \mathrm{VBG})=$ 1.0.

Evaluation of Taggers

- Compare the tagged results with a human labeled Gold Standard test set in percentages of correction
- Most tagging algorithms have an accuracy of around 96~97\% for the sample tagsets like the Penn Treebank set
- Upper bound (ceiling) and lower bound (baseline)
- Ceiling: is achieved by seeing how well humans do on the task
- A 3~4\% margin of error
- Baseline: is achieved by using the unigram most-like tags for each word
- 90~91\% accuracy can be attained

Error Analysis

- Confusion matrix

	IN	JJ	NN	NNP	RB	VBD	VBN
IN	-	.2			.7		
JJ	.2	-	$\mathbf{3 . 3}$	2.1	1.7	.2	$\mathbf{2 . 7}$
NN		$\mathbf{8 . 7}$	-				.2
NNP	.2	$\mathbf{3 . 3}$	$\mathbf{4 . 1}$	-	.2		
RB	$\mathbf{2 . 2}$	2.0	.5		-		
VBD		.3	.5			-	$\mathbf{4 . 4}$
VBN		$\mathbf{2 . 8}$				$\mathbf{2 . 6}$	-

- Major problems facing current taggers
- NN (noun) versus NNP (proper noun) and JJ (adjective)
- RP (particle) versus RB (adverb) versus JJ
- VBD (past tense verb) versus VBN (past participle verb) versus JJ

Applications of POS Tagging

- Tell what words are likely to occur in a word's vicinity
- E.g. the vicinity of the possessive or person pronouns
- Tell the pronunciation of a word
- DIScount (noun) and disCOUNT (verb) ...
- Advanced ASR language models
- Word-class N-grams
- Partial parsing
- A simplest one: find the noun phrases (names) or other phrases in a sentence

Applications of POS Tagging

- Information retrieval
- Word stemming
- Help select out nouns or important words from a doc
- Phrase-level information

United, States, of, America \rightarrow "United States of America" secondary, education \rightarrow "secondary education"

- Phrase normalization

Book publishing, publishing of books

- Information extraction
- Semantic tags or categories

Applications of POS Tagging

- Question Answering
- Answer a user query that is formulated in the form of a question by return an appropriate noun phrase such as a location, a person, or a date
- E.g. "Who killed President Kennedy?"

In summary, the role of taggers appears to be a fast lightweight component that gives sufficient information for many applications

- But not always a desirable preprocessing stage for all applications
- Many probabilistic parsers are now good enough!

Class-based N-grams

- Use the lexical tag/category/class information to augment the N -gram models

$$
P\left(w_{n} \mid w_{n-N+1}^{n-1}\right)=P\left(w_{n} \mid c_{n}\right) P\left(c_{n} \mid c_{n-N+1}^{n-1}\right)
$$

prob. of a word given the tag
prob. of a tag given the previous N -1 tags

- Maximum likelihood estimation

$$
\begin{aligned}
& P\left(w_{i} \mid c_{j}\right)=\frac{C(w)}{C(c)} \\
& P\left(c_{j} \mid c_{k}\right)=\frac{C\left(c_{k} c_{j}\right)}{\sum_{l} C\left(c_{l} c_{j}\right)}
\end{aligned}
$$

Constraints: a word may only belong to one lexical category

行政院院長決定廢核四

