Part-of-Speech Tagging

Berlin Chen 2004

References:

- 1. Speech and Language Processing, chapter 8
- 2. Foundations of Statistical Natural Language Processing, chapter 10

Review

- Tagging (part-of-speech tagging)
 - The process of assigning (labeling) a part-of-speech or other lexical class marker to each word in a sentence (or a corpus)
 - Decide whether each word is a noun, verb, adjective, or whatever

The/AT representative/NN put/VBD chairs/NNS on/IN the/AT table/NN V Or

The/AT representative/JJ put/NN chairs/VBZ on/IN the/AT table/NN

- An intermediate layer of representation of syntactic structure
 - When compared with syntactic parsing
- Above 96% accuracy for most successful approaches

Tagging can be viewed as a kind of syntactic disambiguation

Introduction

- Parts-of-speech
 - Known as POS, word classes, lexical tags, morphology classes
- Tag sets
 - Penn Treebank : 45 word classes used (Francis, 1979)
 - Penn Treebank is a parsed corpus
 - Brown corpus: 87 word classes used (Marcus et al., 1993)

—

The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.

The Penn Treebank POS Tag Set

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%,&
CD	Cardinal number	one, two, three	TO	"'to'"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	c6	Left quote	(' or ")
POS	Possessive ending	's	"	Right quote	(' or ")
PP	Personal pronoun	I, you, he	(Left parenthesis	([, (, {, <)
PP\$	Possessive pronoun	your, one's)	Right parenthesis	(],), , >)
RB	Adverb	quickly, never	,	Comma	,
RBR	Adverb, comparative	faster		Sentence-final punc	(.!?)
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(:;)
RP	Particle	up, off			

Disambiguation

- Resolve the ambiguities and chose the proper tag for the context
- Most English words are unambiguous (have only one tag) but many of the most common words are ambiguous
 - E.g.: "can" can be a (an auxiliary) verb or a noun
 - E.g.: statistics of Brown corpus

Unambiguous (1 tag)	35,340] - 11.5% word types are
Ambiguous (2–7 tags)	4,100		ambiguous
2 tags	3,760		- But 40% tokens are ambiguous
3 tags	264		(However, the probabilities of
4 tags	61		tags associated a word are
5 tags	12		not equal \rightarrow many ambiguous
6 tags	2		tokens are easy to disambiguate)
7 tags	1	("still")	

Process of POS Tagging

Use two information sources:

- Syntagmatic information (looking at information about tag sequences)

- Lexical information (predicting a tag based on the word concerned)

POS Tagging Algorithms

Fall into One of Two Classes

- Rule-based Tagger
 - Involve a large database of hand-written disambiguation rules
 - E.g. a rule specifies that an ambiguous word is a noun rather than a verb if it follows a determiner
 - ENGTWOL: a simple rule-based tagger based on the constraint grammar architecture

"a new play" $P(NN|JJ) \approx 0.45$ $P(VBP|JJ) \approx 0.0005$

- Stochastic/Probabilistic Tagger
 - Use a training corpus to compute the probability of a given word having a given context
 - E.g.: the HMM tagger chooses the best tag for a given word

(maximize the product of word likelihood and tag sequence probability)

POS Tagging Algorithms

- Transformation-based/Brill Tagger
 - A hybrid approach
 - Like rule-based approach, determine the tag of an ambiguous word based on rules
 - Like stochastic approach, the rules are automatically induced from previous tagged training corpus with the machine learning technique
 - Supervised learning

Rule-based POS Tagging

- Two-stage architecture
 - First stage: Use a dictionary to assign each word a list of potential parts-of-speech
 - Second stage: Use large lists of hand-written disambiguation rules to winnow down this list to a single part-of-speech for each word

Pavlov	had shown that salivation	An example for
Pavlov	PAVLOV N NOM SG PROPER	The ENGTOWL tagger
had	HAVE V PAST VFIN SVO (preter	
	HAVE PCP2 SVO (past participle))
shown	SHOW PCP2 SVOO SVO SV	
that	ADV	
	PRON DEM SG	A set of 1,100 constraints
	DET CENTRAL DEM SG	can be applied to the input sentence
	CS (complementizer)	Semence
salivation	N NOM SG	

Rule-based POS Tagging

• Simple lexical entries in the ENGTWOL lexicon

Word	POS	Additional POS features
smaller	ADJ	COMPARATIVE
entire	ADJ	ABSOLUTE ATTRIBUTIVE
fast	ADV	SUPERLATIVE
that	DET	CENTRAL DEMONSTRATIVE SG
all	DET	PREDETERMINER SG/PL QUANTIFIER
dog's	Ν	GENITIVE SG
furniture	Ν	NOMINATIVE SG NOINDEFDETERMINER
one-third	NUM	SG
she	PRON	PERSONAL FEMININE NOMINATIVE SG3
show	V	IMPERATIVE VFIN
show	V	PRESENT -SG3 VFIN
show	Ν	NOMINATIVE SG
shown	PCP2	SVOO SVO SV
occurred	(PCP2)	SV
occurred	V	PAST VFIN SV

Rule-based POS Tagging

```
ADVERBIAL-THAT RULE
Given input: "that"
if
```

```
Example:

It isn't that odd!

ADV A

I consider that odd.

Compliment
```

- Also called Maximum Likelihood Tagging
 - Pick the most-likely tag for a word
- For a given sentence or words sequence , an HMM tagger chooses the tag sequence that maximizes the following probability

N-gram HMM tagger

For a word w_i at position *i*, follow Bayes' theorem : $t_{i} = \arg \max_{j} P(t_{j} | w_{i}, t_{i-1}, t_{i-2}, ..., t_{1})$ = $\arg \max_{j} \frac{P(w_{i}, t_{j} | t_{i-1}, t_{i-2}, ..., t_{1})}{P(w_{i} | t_{i-1}, t_{i-2}, ..., t_{1})}$ = arg max $P(w_i, t_j | t_{i-1}, t_{i-2}, ..., t_1)$ $= \arg \max P(w_i | t_j, t_{i-1}, t_{i-2}, ..., t_1) P(t_j | t_{i-1}, t_{i-2}, ..., t_1)$ $\approx \arg \max_{i} P(w_i | t_j) P(t_j | t_{i-1}, t_{i-2}, ..., t_{i-n+1})$

- Assumptions made here
 - Words are independent of each other
 - A word's identity only depends on its tag
 - "Limited Horizon" and "Time Invariant" ("Stationary")
 - Limited Horizon: a word's tag only depends on the previous tag (limited horizon) and the dependency does not change over time (time invariance)
 - Time Invariant: time invariance means the tag dependency won't change as tag sequence appears different positions of a sentence

Do not model long-distance relationships well !

- e.g., Wh-extraction,...

- Apply bigram-HMM tagger to choose the best tag for a given word
 - Choose the tag t_i for word w_i that is most probable given the previous tag t_{i-1} and current word w_i

$$t_i = \arg\max_j P(t_j | t_{i-1}, w_i)$$

- Through some simplifying Markov assumptions

$$t_{i} = \arg \max_{j} P(t_{j} | t_{i-1}) P(w_{i} | t_{j})$$

tag sequence probability word/lexical likelihood

Apply bigram-HMM tagger to choose the best tag for a given word

$$t_{i} = \arg \max_{j} P(t_{j} | t_{i-1}, w_{i})$$

$$= \arg \max_{j} \frac{P(t_{j}, w_{i} | t_{i-1})}{P(w_{i} | t_{i-1})}$$
The same for all tags
$$= \arg \max_{j} P(t_{j}, w_{i} | t_{i-1})$$
The probability of a word only depends on its tag
$$= \arg \max_{j} P(w_{i} | t_{i-1}, t_{j}) P(t_{j} | t_{i-1})$$
The probability of a word only depends on its tag
$$= \arg \max_{j} P(w_{i} | t_{j}) P(t_{j} | t_{i-1}) = \arg \max_{j} P(t_{j} | t_{i-1}) P(w_{i} | t_{j})$$

• Example: Choose the best tag for a given word

Secretariat/NNP is /VBZ expected/VBN to/TO race/VB tomorrow/NN

to/TO race/??? P(VB|TO) P(race|VB)=0.000010.021 0.00041 P(NN|TO) P(race|NN)=0.000007

Pretend that the previous word has already tagged

• Apply bigram-HMM tagger to choose the best sequence of tags for a given sentence

$$\hat{T} = \arg \max_{T} P(T|W)$$

$$= \arg \max_{T} \frac{P(T)P(W|T)}{P(W)}$$

$$= \arg \max_{T} P(T)P(W|T)$$

$$= \arg \max_{T} P(T)P(W|T)$$

$$= \arg \max_{T} P(T)P(W|T)$$

$$= \arg \max_{T} P(t_{1}, t_{2}, ..., t_{n})P(w_{1}, w_{1}, ..., w_{n}|t_{1}, t_{2}, ..., t_{n})$$

$$= \arg \max_{t_{1}, t_{2}, ..., t_{n}} \prod_{i=1}^{n} \left[P(t_{i}|t_{1}, t_{2}, ..., t_{i-1}) P(w_{i}|t_{1}, t_{2}, ..., t_{n}) \right]$$

$$= \arg \max_{t_{1}, t_{2}, ..., t_{n}} \prod_{i=1}^{n} \left[P(t_{i}|t_{1}, ..., t_{i-1}) P(w_{i}|t_{1}, t_{2}, ..., t_{n}) \right]$$

$$= \arg \max_{t_{1}, t_{2}, ..., t_{n}} \prod_{i=1}^{n} \left[P(t_{i}|t_{1}, ..., t_{i-1}) P(w_{i}|t_{1}, ..., t_{n}) \right]$$

$$= \arg \max_{t_{1}, t_{2}, ..., t_{n}} \prod_{i=1}^{n} \left[P(t_{i}|t_{1}, ..., t_{i-1}) P(w_{i}|t_{1}, ..., t_{n}) \right]$$

$$= \arg \max_{t_{1}, t_{2}, ..., t_{n}} \prod_{i=1}^{n} \left[P(t_{i}|t_{1}, ..., t_{i-1}) P(w_{i}|t_{1}, ..., t_{n}) \right]$$

$$= \arg \max_{t_{1}, t_{2}, ..., t_{n}} \prod_{i=1}^{n} \left[P(t_{i}|t_{1}, ..., t_{i-1}) P(w_{i}|t_{1}, ..., t_{n}) \right]$$

$$= \arg \max_{t_{1}, t_{2}, ..., t_{n}} \prod_{i=1}^{n} \left[P(t_{i}|t_{1}, ..., t_{i-1}) P(w_{i}|t_{1}) \right]$$

$$Tag M-gram assumption$$

$$= 18$$

- The Viterbi algorithm for the bigram-HMM tagger
 - States: distinct tags
 - Observations: input word generated by each state

• The Viterbi algorithm for the bigram-HMM tagger

1. Initialization
$$\delta_1(j) = \pi_k P(w_1|t_j), 1 \le j \le J$$

2. Induction $\delta_i(j) = \left[\max_k \delta_{i-1}(k)P(t_j|t_k)\right]P(w_i|t_j), 2 \le i \le n, 1 \le j \le J$
 $\psi_i(j) = \operatorname*{argmax}_{1\le k\le J} \left[\delta_{i-1}(k)P(t_j|t_k)\right]$
3. Termination $X_n = \operatorname*{argmax}_{1\le j\le J} \delta_n(j)$
for $i := n$ -1 to 1 step -1 do
 $X_i = \psi_i(X_{i+1})$
end

- Apply trigram-HMM tagger to choose the best sequence of tags for a given sentence
 - When trigram model is used

$$\hat{T} = \arg \max_{t_{1}, t_{2}, ..., t_{n}} \left[P(t_{1})P(t_{2}|t_{1}) \prod_{i=3}^{n} P(t_{i}|t_{i-2}, t_{i-1}) \right] \left[\prod_{i=1}^{n} P(w_{i}|t_{i}) \right]$$

 Maximum likelihood estimation based on the relative frequencies observed in the pre-tagged training corpus (labeled data)

$$P_{ML}\left(t_{i}|t_{i-2},t_{i-1}\right) = \frac{c\left(t_{i-2}t_{i-1}t_{i}\right)}{\sum_{j}c\left(t_{i-2}t_{i-1}t_{j}\right)}$$
$$P_{ML}\left(w_{i}|t_{i}\right) = \frac{c\left(w_{i},t_{i}\right)}{\sum_{j}c\left(w_{j},t_{i}\right)}$$

Smoothing or linear interpolation are needed !

$$P_{smoothed}(t_{i}|t_{i-2},t_{i-1}) = \alpha \cdot P_{ML}(t_{i}|t_{i-2},t_{i-1}) + \beta \cdot P_{ML}(t_{i}|t_{i-1}) + (1 - \alpha - \beta) \cdot P_{ML}(t_{i}|t_{i-1})$$

• Apply trigram-HMM tagger to choose the best sequence of tags for a given sentence

	Second tag						
First tag	AT	BEZ	IN	NN	VB	PERIOD	
AT	0	0	0	48636	0	. 19	
BEZ	1973	0	426	187	0	38	
IN	43322	0	1325	17314	0	185	
NN	1067	3720	42470	11773	614	21392	
VB	6072	42	4758	1476	129	1522	
PERIOD	8016	75	4656	1329	954	C	

Table 10.3 Idealized counts of some tag transitions in the Brown Corpus. For example, NN occurs 48636 times after AT.

St Galitzi	AT	BEZ	IN	NN	VB	PERIOD
bear	0	0	0	10	43	0
is	0	10065	0	0	0	0
move	0	0	0	36	133	0
on	0	0	5484	0	0	0
president	0	0	0	382	0	. 0
progress	0	0	0	108	4	0
the	69016	0	0	0	0	0
• _ 219525.	0	0	0	0	0	48809

Table 10.4 Idealized counts for the tags that some words occur with in the Brown Corpus. For example, 36 occurrences of move are with the tag NN.

 $P(w_i|t_i) = \frac{c(w_i, t_i)}{\sum c(w_j, t_i)}$

 $P(t_{i}|t_{i-1}) = \frac{c(t_{i-1}t_{i})}{\sum_{i} c(t_{i-1}t_{i})}$

23

- Probability re-estimation based on unlabeled data
 - EM (Expectation-Maximization) algorithm is applied
 - Start with a dictionary that lists which tags can be assigned to which words
 - » word likelihood function cab be estimated
 - » tag transition probabilities set to be equal
 - EM algorithm learns (re-estimates) the word likelihood function for each tag and the tag transition probabilities
 - However, a tagger trained on hand-tagged data worked better than one trained via EM
 - Treat the model as a Markov Model in training but treat them as a Hidden Markov Model in tagging

- Also called Brill tagging
 - An instance of Transformation-Based Learning (TBL)
- Spirits
 - Like the rule-based approach, TBL is based on rules that specify what tags should be assigned to what word
 - Like the stochastic approach, rules are automatically induced from the data by the machine learning technique
- Note that TBL is a supervised learning technique
 - It assumes a pre-tagged training corpus

- How the TBL rules are learned
 - Three major stages
 - 1. Label every word with its most-likely tag using a set of tagging rules (use the broadest rules at first)
 - 2. Examine every possible transformation (rewrite rule), and select the one that results in the most improved tagging (supervised! should compare to the pre-tagged corpus)
 - 3. Re-tag the data according this rule
 - The above three stages are repeated until some stopping criterion is reached
 - Such as insufficient improvement over the previous pass
 - An ordered list of transformations (rules) can be finally obtained

• Example

Learn/pick a most suitable transformation rule: (by examining every possible transformation)

Change NN to VB while the previous tag is TO

Rewrite rule: expected/VBN to/To race/NN → expected/VBN to/To race/VB

- Templates (abstracted transformations)
 - The set of possible transformations may be infinite
 - Should limit the set of transformations
 - The design of a small set of templates (abstracted transformations) is needed

E.g., a strange rule like: transform NN to VB if the previous word was "IBM" and the word "the" occurs between 17 and 158 words before that

Possible templates (abstracted transformations)

The preceding (following) word is tagged z.
The word two before (after) is tagged z.
One of the two preceding (following) words is tagged z.
One of the three preceding (following) words is tagged z.
The preceding word is tagged z and the following word is tagged w.
The preceding (following) word is tagged z and the word two before (after) is tagged w.

Brill's templates. Each begins with "Change tag a to tag b when"

Table 10.7 Triggering environments in Brill's transformation-based tagger. Examples: Line 5 refers to the triggering environment "Tag t^j occurs in one of the three previous positions"; Line 9 refers to the triggering environment "Tag t^j occurs two positions earlier and tag t^k occurs in the following position."

• Learned transformations

Verb, 3s	g,	past t	ense	/	Modal verbs (should, can,)	
		Chan	ge tags	/		
	#	From	То	Condition	Example	Rules learned by
	1	NN	VB	Previous tag is TO	to/TO race/NN \rightarrow VB	Brill's original tagger
\ \	2	VBP	VB	One of the previous 3 tags is MD	might/MD vanish/VBP \rightarrow VB	Di in 3 on igniar ragger
	3	NN	VB	One of the previous 2 tags is \widetilde{MD}	might/MD not reply/NN \rightarrow VB	
	4	VB	NN	One of the previous 2 tags is DT		
	5	VBD	(VBN)	One of the previous 3 tags is VBZ	Verb 244 Dresent	
		<u> </u>		Verb, past participle	Verb, 3sg, Present	

Table 10.7 Triggering environments in Brill's transformation-based tagger. Examples: Line 5 refers to the triggering environment "Tag t^j occurs in one of the three previous positions"; Line 9 refers to the triggering environment "Tag t^j occurs two positions earlier and tag t^k occurs in the following position."

Source tag	Target tag	Triggering environment		
NN	VB	previous tag is TO)	Constraints for tags
VBP	VB	one of the previous three tags is MD	}	
JJR	RBR	next tag is JJ more valuable player	J	O an a fara in ta fara an an la
VBP	VB	one of the previous two words is $n't$	}	Constraints for words

Table 10.8 Examples of some transformations learned in transformation-basedtagging.

• Reference for tags used in the previous slide

Tag	Part Of Speech	
AT	article	
BEZ	the word <i>is</i>	
IN	preposition	
JJ	adjective	
JJR	comparative adjective	
MD	modal	
NN	singular or mass noun	
NNP	singular proper noun	
NNS	plural noun	
PERIOD	.:?!	
PN	personal pronoun	
RB	adverb	
RBR	comparative adverb	
TO	the word <i>to</i>	
VB	verb, base form	
VBD	verb, past tense	
VBG	verb, present participle, gerund	- 012
VBN	verb, past participle	1 1 1 1 1 1
VBP	verb, non-3rd person singular present	
VBZ	verb, 3rd singular present	
WDT	wh- determiner (what, which)	

Table 10.1 Some part-of-speech tags frequently used for tagging English

Т

• Algorithm

APPLY-TRANSFORM(best-transform, corpus) ENQUEUE(best-transform-rule, transforms-queue) end return(transforms-queue)	num-bad-transforms(current-tag(pos-1))++ end Z best-Z (mum-good-transforms(t) - mum-bad-transforms(t)) if(num-good-transforms(best-Z) - num-bad-transforms(best-Z) > best-instance.Z) then best-instance (Change tag from from-tag to to-tag if previous tag is best-Z)
function GET-BEST-TRANSFORM(corpus, templates) returns transform	return(best-instance) Check if it is better than the best instance

if (score > best-transform.score) then best-transform \leftarrow (instance, score) return(best-transform)

&& (current-tag(pos-1)==best-rule-prev)) current-tag(pos) = best-rule-to

The **GET_BEST_INSTANCE** procedure in the example algorithm is "Change tag from X to Y if the previous tag is Z".

Т

Multiple Tags and Multi-part Words

- Multiple tags
 - A word is ambiguous between multiple tags and it is impossible or very difficult to disambiguate, so multiple tags is allowed, e.g.
 - adjective versus preterite versus past participle (JJ/VBD/VBN)
 - adjective versus noun as prenominal modifier (JJ/NN)
- Multi-part words
 - Certain words are split or some adjacent words are treated as a single word

would/MD n't/RB	Children/NNS 's/POS	treated as separate words
in terms of (in/II31 t	erms/1132 of/1133)	treated as a single word

- Unknown words are a major problem for taggers
 - Different accuracy of taggers over different corpora is often determined by the proportion of unknown words
- How to guess the part of speech of unknown words?
 - Simplest unknown-word algorithm
 - Slightly more complex algorithm
 - Most-powerful unknown-word algorithm

- Simplest unknown-word algorithm
 - Pretend that each unknown word is ambiguous among all possible tags, with equal probability
 - Lose/ignore lexical information for unknown words
 - Must rely solely on the contextual POS-trigram (syntagmatic information) to suggest the proper tag

$$\hat{T} = \arg\max_{t_1, t_2, \dots, t_n} \left[P(t_1) P(t_2 | t_1) \prod_{i=3}^n P(t_i | t_{i-2}, t_{i-1}) \right] \left[\prod_{i=1}^n P(w_i | t_i) \right]$$

- Slightly more complex algorithm
 - Based on the idea that the probability distribution of tags over unknown words is very similar to the distribution of tags over words that occurred only once in a training set
 - The likelihood for an unknown word is determined by the average of the distribution over all singleton in the training set (similar to Good-Turing?)

Nouns or Verbs $P(w_i|t_i)$?

- Most-powerful unknown-word algorithm
 - Hand-designed features
 - The information about how the word is spelled (inflectional and derivational features), e.g.:
 - Words end with s (\rightarrow plural nouns)
 - Words end with ed (\rightarrow past participles)
 - The information of word capitalization (initial or non-initial) and hyphenation

 $P(w_i|t_i) = p(\text{unknown} - \text{word}|t_i) \cdot p(\text{captial}|t_i) \cdot p(\text{endings/hyph}|t_i)$

Assumption: independence between features

- Features induced by machine learning
 - E.g.: TBL algorithm uses templates to induce useful English inflectional and derivational features and hyphenation

The first N letters of the word The last N letters of the word

Feature	Value	NNP	NN	NNS	VBG	VBZ
unknown word	yes	0.05	0.02	0.02	0.005	0.005
	no	0.95	0.98	0.98	0.995	0.995
capitalized	yes	0.95	0.10	0.10	0.005	0.005
	no	0.05	0.90	0.90	0.995	0.995
ending	-S	0.05	0.01	0.98	0.00	0.99
	-ing	0.01	0.01	0.00	1.00	0.00
	-tion	0.05	0.10	0.00	0.00	0.00
	other	0.89	0.88	0.02	0.00	0.01

Table 10.5 Table of probabilities for dealing with unknown words in tagging. For example, P(unknown word = yes|NNP) = 0.05 and P(ending = -ing|VBG) = 1.0.

Evaluation of Taggers

- Compare the tagged results with a human labeled Gold
 Standard test set in percentages of correction
 - Most tagging algorithms have an accuracy of around 96~97% for the sample tagsets like the Penn Treebank set
 - Upper bound (ceiling) and lower bound (baseline)
 - Ceiling: is achieved by seeing how well humans do on the task
 - A 3~4% margin of error
 - Baseline: is achieved by using the unigram most-like tags for each word
 - 90~91% accuracy can be attained

Error Analysis

Confusion matrix

11120	IN	JJ	NN	NNP	RB	VBD	VBN
IN	-	.2		0.00	.7		
JJ	.2	Section 1	3.3	2.1	1.7	.2	2.7
NN	n kiris k	8.7	- 10		Let III	471. 314	.2
NNP	.2	3.3	4.1	-	.2	ing Rom-	
RB	2.2	2.0	.5	i Internet	ment is	and the second	
VBD	ang dat El di	.3	.5	inuT-bo	Others	12-mark	4.4
VBN	a de la competencia de	2.8	- the second of	and a firm of	oo the	2.6	-

- Major problems facing current taggers
 - NN (noun) versus NNP (proper noun) and JJ (adjective)
 - RP (particle) versus RB (adverb) versus JJ
 - VBD (past tense verb) versus VBN (past participle verb) versus JJ

Applications of POS Tagging

- Tell what words are likely to occur in a word's vicinity
 - E.g. the vicinity of the possessive or person pronouns
- Tell the pronunciation of a word
 - DIScount (noun) and disCOUNT (verb) ...
- Advanced ASR language models
 - Word-class N-grams
- Partial parsing
 - A simplest one: find the noun phrases (names) or other phrases in a sentence

Applications of POS Tagging

- Information retrieval
 - Word stemming
 - Help select out nouns or important words from a doc
 - Phrase-level information
 - United, States, of, America \rightarrow "United States of America" secondary, education \rightarrow "secondary education"
 - Phrase normalization Book publishing, publishing of books
- Information extraction
 - Semantic tags or categories

Applications of POS Tagging

- Question Answering
 - Answer a user query that is formulated in the form of a question by return an appropriate noun phrase such as a location, a person, or a date
 - E.g. "Who killed President Kennedy?"

In summary, the role of taggers appears to be a fast lightweight component that gives sufficient information for many applications

- But not always a desirable preprocessing stage for all applications
- Many probabilistic parsers are now good enough !

Class-based N-grams

• Use the lexical tag/category/class information to augment the *N*-gram models

$$P\left(w_{n} \middle| w_{n-N+1}^{n-1}\right) = P\left(w_{n} \middle| c_{n}\right) P\left(c_{n} \middle| c_{n-N+1}^{n-1}\right)$$
prob. of a word given the tag
prob. of a tag given the previous
N-1 tags

- Maximum likelihood estimation

$$P\left(w_{i} | c_{j}\right) = \frac{C\left(w\right)}{C\left(c\right)}$$
$$P\left(c_{j} | c_{k}\right) = \frac{C\left(c_{k} c_{j}\right)}{\sum_{l} C\left(c_{l} c_{j}\right)}$$

Constraints: a word may only belong to one lexical category

