A survey on Web Information Retrieval Technologies

Lan Huang Present: Yao-Min Huang Date:03/02/2004 \ 03/23/2004

Reference :

Ruslan Hristov : Authoritative Sources in a Hyperlinked Environment Junghoo Cho : Finding Replicated Web Collections

Outline

- Introduction
- Web Information Retrieval
- General-purpose Search Engines
- Hierarchical Directories and Automatic Categorization
- Measuring the Web
- Conclusion

Introduction

- First
 - Compare Web retrieval and classical information retrieval and show where the challenges are
- Second
 - Review the representative search engine and their architectural features
 - Describe the Codir system which is designed to solve the online update problem
- Third
 - Discuss the algorithms , architecture and performance of the automatic classification system
- Fourth
 - Analysis the query log

Web Information Retrieval

- The uniqueness of Web IR
 - Bulk
 - Dynamic Internet
 - Variety of Language
 - Duplication
 - High Linkage
 - Ill-formed queries
 - Wild Variance in Users
 - Specific Behavior
- Big challenge to Web IR
 - Heterogeneity of the Web
 - ill-formed queries

General-purpose Search Engines

- The Goal
- Current Status of Search Engines
- Architecture of A Search Engine
 - Architecture
 - Data Structure
- Engineering Issues (for building a robust search engine)
 - Crawling the Web
 - Caching Query Results
 - Incremental Updates to Inverted Index
- Algorithmic Issues (for providing a high-quality IR service)
 - Ranking
 - PageRanking
 - HITS Algorithm
 - Others (Anchor Text, Headings etc.)
 - Duplicate Elimination

The Goal

- Classical IR vs. Web IR
 - Classical IR
 - Evaluate by three lines
 - recall $\$ precision $\$ precision at the top 10 result pages
 - Web IR
 - Relevant is not enough
 - Goal is to return
 - High-relevance
 - High-quality (valuable)

Current Status of Search Engines

- Google
 - Innovative ranking algorithm (more than others)
- AltaVista
 - The largest data collection
- Northern Light
 - Better serving on academic and business topic
- Infoseek
 - Powerful Sub-serach
- FastSearch
 - Second largest data collection

Architecture of A Search Engine Architecture

Architecture of A Search Engine Architecture

- The web crawler
 - URLserver
 - Storesserver
- The indexer
 - Read & Uncompress docs from Respository
 - Anchor
 - URLresolver
 - Doc Index
 - Barrels
 - Links
 - Sorter
 - DumpLexicon
- The query server
 - Use the lexicon with the inverted index and the PageRanks to answer queries

Architecture of A Search Engine Data Structure(1/4)

- Repository
 - Contains the full HTML text
 - Compressed using zlib (RFC1950)
 - Prefixed by docID, length, and URL
- Document Index
 - Each entry contain
 - The current doc status (crawled ?)
 - A pointer into the repository (if crawled)
 - A document checksum (using binary search to find the docID)
 - Various statistics
- Lexicon
 - Keep in memory on a 256M
 - Current contains 14 million words

Architecture of A Search Engine Data Structure(2/4)

- Hit Lists
 - Encoding by a hand optimized compact

Hit: 2 bytes

plain:	cap:1	imp:3	position: 12	
fancy:	cap:1	imp = 7	type: 4	position: 8
anchor:	cap:1	imp = 7	type: 4	hash:4 pos: 4

- Two type (plain hit and fancy hit [imp=111])
- For anchor hit
 - 4 bits for a hash of the docld (limit for phrase searching)
 - 4 bits for position in anchor

Architecture of A Search Engine Data Structure(3/4)

- Forward Index
 - Each barrel holds a range of wordID
 - Each wordID is stored as a relative difference from the minimum wordID

 docid
 wordid: 24
 nhits: 8
 hit hit hit hit hit

 wordid: 24
 nhits: 8
 hit hit hit hit hit

 null wordid

 docid
 wordid: 24
 nhits: 8
 hit hit hit hit hit

 wordid: 24
 nhits: 8
 hit hit hit hit
 hit

 wordid: 24
 nhits: 8
 hit hit hit hit
 hit

 wordid: 24
 nhits: 8
 hit hit hit
 hit

 wordid: 24
 nhits: 8
 hit hit hit
 hit

 wordid: 24
 nhits: 8
 hit hit
 hit

Forward Barrels: total 43 GB

Architecture of A Search Engine Data Structure(4/4)

- Inverted Index
 - Importance issue : what order of the doclist
 - Sorted by docID (quick merging the doclists)
 - Sorted by a ranking of the occurrence of the word in each doc
 - Google chose a compromise (keep two sets)
 - One set for hit lists which include title or anchor hits (considered High ranking , first check if there are not enough matches, check another)
 - Another set for all hit lists

Engineering Issues Crawling the Web (1/2)

- Google crawler
 - Maintain its own DNS cache
 - Asynchronous I/O to manage events
 - 4 crawler
 - Both URLserver & crawler are implement in Python
 - Each crawler keeps 300 connections open at once
 - >100 pages / s , roughly 600K/s
- Cho etc.99 (spread the workload)
 - Allocation that URL's in 500 Queues
 - Allocation based on the Hash of the server name
 - Read one URL from each queue at a time

Engineering Issues Crawling the Web (2/2)

Engineering Issues Caching Query Results

- Cache proxies
- Markatos99
 - locality in the queries submitted (20%~30%)
 - Two-stage LRU (LRU-2S) cache replacement
 - Account both recency(LRU) and frequency (LRU-2S)
 - Experiment show that medium-size (a few hundred Mbytes large) caches can result in hit rate

Engineering Issues

Incremental Updates to Inverted Index (1/5)

- Callan94 (INQUERY system)
 - Using the Mneme (Moss90) persistent object store to manage its inverted file index
 - When exceed, additional large object are allocated (copy & free old) and chained together in a linked list
 - Lists are allocated using a range of fixed size objects (range from 16 to 8192 bytes by power of 2)
 - Superior perfomance in terms of both time and space, with only a small impact on query processing

Engineering Issues Incremental Updates to Inverted Index (2/5)

- Garcia-Molina94
 - Propose a new data structure that manage small inverted list in buckets and dynamically select large inverted lists to be managed separately.
- Cutting and Pederson 90
 - Optimizations for dynamic update with a Btree

Engineering Issues Incremental Updates to Inverted Index (3/5)

- The above solutions
 - keep a second copy (with update operation)
 - Can't update & search simultaneously
- Codir (Author's system L.Huang 98)

Engineering Issues Incremental Updates to Inverted Index (4/5)

• Codir (Author's system L.Huang 98)

Figure 3: Data Structure Used in Codir

Engineering Issues

Incremental Updates to Inverted Index (5/5)

- Codir (Author's system L.Huang 98)
 - At any point in time , only a subset of the inverted index is memory resident
 - Query request
 - Search the inverted list cache
 - If miss, the corresponding inverted list is loaded
 - Combine the list with Append Table
 - Before return , scan the Delete Table & mark the deleted docID (maximum CTS as CWTS[current working timestamp])
 - Locking mechanism for inverted list (multi-thread)
 - Append

 Delete Table are reflected into the permanent storage periodically

Algorithmic Issues Ranking- PageRanking

Notation

- A has pages T1... Tn (citations)
- d range from 0~1 (google set 0.85)
- C(A) : number of links going out of page A
 - $PR(A) = (1 d) + d(PR(T1)/C(T1) + \dots + PR(Tn)/C(Tn))$
- The probability that the random surfer visits a page is its PageLink (the d factor)
- High PageRank
 - Many pages pointing to it
 - Or there are some pages that point to it and have a high PageLink

Algorithmic Issues Ranking- HITS Algorithm(1/19)

- Given a query , HITS will find
 - Authorities
 - good sources of content
 - Large in-degree
 - Hub
 - good sources of links
 - Pull together authorities on a given topic (Like Yahoo)

Figure 4: A densely linked set of hubs and authorities

Algorithmic Issues Ranking- HITS Algorithm(2/19)

- Considering the Web structure
 - page = node
 - link = directed edge
- Links latent human judgment
- Focused Subgraph
 - Subset of all Web pages
 - Non-trivial algorithms
 high cost
 - By ensuring it is rich in relevant pages
 - Set of pages (S_{σ}) with special properties
 - $-S_{\sigma}$ is relatively small
 - $-S_{\sigma}$ is rich in relevant pages
 - $-S_{\sigma}$ contains many of the strongest authorities

Algorithmic Issues Ranking- HITS Algorithm(3/19)

- Algorithm Overview
 - Input: σ a query string
 - Σ a text-based search engine
 - t size of the root set
 - d max number of "in" links
 - Top t pages (highest-ranked pages) from the text-based search engine form the root set (R_{σ})
 - Output: S_{σ} focused subset

$$(\sigma = "java", \Sigma = AltaVista, t = 3, d = 3)$$

$$(\sigma = \text{``java''}, \Sigma = \text{AltaVista}, t = 3, d = 3)$$

Algorithmic Issues Ranking- HITS Algorithm(6/19)

$$(\sigma = \text{``java''}, \Sigma = \text{AltaVista}, t = 3, d = 3)$$

Algorithmic Issues Ranking- HITS Algorithm(7/19)

• An Iterative Algorithm [authority] weights vector $x_0 = (1, 1, 1, ..., 1)$ [hub] weights vector $y_0 = (1, 1, 1, ..., 1)$ for i = 1, 2, ..., k $x_i = update_authorityw(y_{i-1})$ $y_i = update_hubw(x_i)$ normalize(x_i, y_i)

return (x_k, y_k)

Algorithmic Issues Ranking- HITS Algorithm(8/19)

 $y_0 = (1, 1, 1, ..., 1)$

for
$$i = 1, 2, ..., k$$

 $x_i = update_auth(y_{i-1})$

 $y_i = update_hub(x_i)$

normalize(x_i, y_i)

Algorithmic Issues Ranking- HITS Algorithm(9/19)

 $y_0 = (1, 1, 1, ..., 1)$

for i = 1, 2, ..., k

 $x_i = update_auth(y_{i-1})$

 $y_i = update_hub(x_i)$

normalize(x_i, y_i)

return (x_k, y_k)

authority weight – x

Algorithmic Issues Ranking- HITS Algorithm(10/19)

 $y_i = update_hub(x_i)$

normalize(x_i, y_i)

Algorithmic Issues Ranking- HITS Algorithm(11/19)

normalize(x_i, y_i)

Algorithmic Issues Ranking- HITS Algorithm(12/19)

$$\mathbf{x}_0 = (1, 1, 1, ..., 1)$$

 $y_0 = (1, 1, 1, ..., 1)$

for i = 1, 2, ..., k

 $x_i = update_auth(y_{i-1})$

 $y_i = update_hub(x_i)$

normalize(x_i, y_i)

Algorithmic Issues Ranking- HITS Algorithm(13/19)

 $y_0 = (1, 1, 1, ..., 1)$

for i = 1, 2, ..., k

 $x_i = update_auth(y_{i-1})$

 $y_i = update_hub(x_i)$

normalize(x_i, y_i)

return (x_k , y_k)

Algorithmic Issues Ranking- HITS Algorithm(14/19)

 $y_0 = (1, 1, 1, ..., 1)$

for i = 1, 2, ..., k

 $x_i = update_auth(y_{i-1})$

 $y_i = update_hub(x_i)$

normalize(x_i, y_i)

Algorithmic Issues Ranking- HITS Algorithm(15/19)

$$\mathbf{x}_0 = (1, 1, 1, ..., 1)$$

 $y_0 = (1, 1, 1, ..., 1)$

for i = 1, 2, ..., k

 $x_i = update_auth(y_{i-1})$

 $y_i = update_hub(x_i)$

normalize(x_i, y_i)

return (x_k, y_k)

normalize(x_i) 0+1+3+2+0 = 6

Algorithmic Issues Ranking- HITS Algorithm(16/19)

$$\mathbf{x}_0 = (1, 1, 1, ..., 1)$$

 $y_0 = (1, 1, 1, ..., 1)$

for i = 1, 2, ..., k

 $x_i = update_auth(y_{i-1})$

 $y_i = update_hub(x_i)$

normalize (x_i, y_i)

return (x_k, y_k)

normalize(y_i) 6+3+0+0+5 = 14

Algorithmic Issues Ranking- HITS Algorithm(17/19)

 $\mathbf{x}_0 = (1, 1, 1, ..., 1)$

 $y_0 = (1, 1, 1, ..., 1)$

for i = 1, 2, ..., k

 $x_i = update_auth(y_{i-1})$

 $y_i = update_hub(x_i)$

normalize(x_i, y_i)

return (x_k, y_k)

normalize(y_i) 6+3+0+0+5 = 14

Algorithmic Issues Ranking- HITS Algorithm(18/19)

$$y_0 = (1, 1, 1, ..., 1)$$

for
$$i = 1, 2, ..., k$$

 $x_i = update_auth(y_{i-1})$

 $y_i = update_hub(x_i)$

normalize(x_i, y_i)

return (x_k, y_k)

Algorithmic Issues Ranking- HITS Algorithm(19/19)

- HITS didn't work well
 - Mutually Reinforcing Relationship Between Hosts
 - Automatically Generated Links
 - Non-Relevant Node
- Bharat 98
 - Topic drift approach
 - K edges \rightarrow 1/k authority weight
 - L edges → 1/l hub weight

$$A[n] := \sum_{(n',n) \in N} H[n'] \times auth_wt(n',n)$$

$$H[n] := \sum_{(n',n) \in N} A[n'] \times hub_wt(n',n)$$

Algorithmic Issues Ranking- Others

- Anchor text advantage
 - Provide more accurate descriptions of web pages
 - Deal with docs that can't be indexed (ex: image)
- Cutler97
 - Assign different weight to heading as well as anchor text (help WebIR)

Algorithmic Issues Duplicate Elimination(1/13)

- Quote <Junghoo Cho 99>
 - Approximately 30% of pages are (near) duplicates!

Algorithmic Issues Duplicate Elimination(2/13)

- Challenges
 - Defining the notation of a replicated collection precisely
 - Slight differences between copies
 - Efficient algorithm to identify such collection and exploiting this knowledge of replication
 - Hundreds of millions of pages
 - Subgraph isomorphism: NP

Algorithmic Issues Duplicate Elimination(3/13)

- Page content similarity
 - Fingerprint-based(32bit) approach (chunking)
 - Shingles [Broders et al., 1997]
 - Sentence [Brin et al., 1995]
 - Word [Shivakumar et al., 1995]
 - Interesting issues
 - Threshold value T
 - Transitive similary

Algorithmic Issues Duplicate Elimination(4/13)

- Identical Collection
 - Collection: induced subgraph
 - one-to-one mapping
 - Identical pages
 - Identical link structure

Algorithmic Issues Duplicate Elimination(5/13)

- Similar Collection
 - one-to-one mapping
 - similar pages
 - similar link structure
 - Size (equi-sized collection must identify)

Algorithmic Issues Duplicate Elimination(6/13)

• Size vs. Cardinality

Algorithmic Issues Duplicate Elimination(7/13)

Growth strategy

Algorithmic Issues Duplicate Elimination(8/13)

• Essential property (Merge condition)

Ls: # of pages linked *from*

Ld: # of pages linked to

 $|\mathbf{R}\mathbf{a}| = \mathbf{L}\mathbf{s} = \mathbf{L}\mathbf{d} = |\mathbf{R}\mathbf{b}|$

Algorithmic Issues Duplicate Elimination(9/13)

- Algorithm
 - Based on the property we identified
 - Input: set of pages collected from web
 - Output: set of similar collections
 - Complexity: O(n log n)

Algorithmic Issues Duplicate Elimination(10/13)

• Step 1: Similar page identification (iceberg query DSGM98)

25 million pages

- Fingerprint computation: 44 hours
- Replicated page computation: 10 hours

Algorithmic Issues Duplicate Elimination(11/13)

• Step 2: link structure check

Ra = |R1|, Ls = Count(R1.Rid), Ld = Count(R2.Rid), Rb = |R2|

Algorithmic Issues Duplicate Elimination(12/13)

• Step 3:

 $S=\{\,\}$

For every (|Ra|, Ls, Ld, |Rb|) in step 2

If (|Ra| = Ls = Ld = |Rb|)

 $S = S U \{\langle Ra, Rb \rangle\}$

Union-Find(S) // find connected component

• Step 2-3: 10 hours

Algorithmic Issues Duplicate Elimination(13/13)

- Applications
 - Web crawling & archiving
 - Save network bandwidth
 - Save disk storage

Hierarchical Directories and Automatic Categorization

- Current Status of Hierarchical Directories
- Automatic Categorization 1-Taper
- Automatic Categorization 2-OpenGrid and ODP

Current Status of Hierarchical Directories

name	Librarians' Index	Infomine	Britannica Web's Best	Yahoo!	Galaxy
Size,type	About 5,000. Com-	About 16,000.	About 150,000. Hand-picked, an-	About 1 mil-	About
	piled by public li-	Compiled	notated, and ranked by Britannica	lion. Scarce	300,000. Gen-
	brarians in informa-	by academic	editors.	descriptions	erally good
	tion supply business.	librarians.		and annota-	annotations.
	Highest quality sites			tions. Biggest	
	only. Great annota-			and most	
	tions.			famous direc-	
				tory around.	
				Many sub-	
				Yahoo's by	
				region, coun-	
				try, topic.	
Phrase	No.	Yes. Use " "	Yes. More than word searched as	Yes. Use " "	No.
searching			phrase.		
Boolean	AND implied be-	AND implied	Accepts AND, OR, NOT	No.	OR implied
logic	tween words. Also	between word-			between
	accepts OR and NOT	s. Also ac-			words. Also
		cepts OR.			accepts AND,
					OR, NOT
Sub-	No.	No.	In results, specify SORT by sub-	Yes. In result-	No.
Searching			ject in result.	s, select search	
				within catego-	
				ry or all of Ya-	
				hoo.	

Table 2: Most Popular Directories(Nov,1999)

Automatic Categorization 1-Taper(1/16)

- Taper
 - A taxonomy-and-path-enhanced-retrieval system
 - Given
 - Hypertext document corpus
 - A "small" set of classified documents
 - Goal
 - Construct a classifier
 - Apply to new documents
- Context-sensitive features
 - A function (signature) of both the document and the topic path (context)

Automatic Categorization 1-Taper(2/16)

Class-doc Relation

Automatic Categorization 1-Taper(3/16)

Automatic Categorization 1-Taper(4/16)

- Statistics Collection
 - A term is a 32-bit ID, which could represent a word, a phrase, words from a linked docs, etc.
- Feature Selection
 - Find the best feature to discriminate the document from another
 - Find the optimal subset of terms out of large lexicon terms appears impractical
 - The Taper, it first orders the terms by decreasing ability to separate the class

Automatic Categorization 1-Taper(5/16)

- Fisher's discrimination $score(t) = \frac{\text{Interclass distance}}{\text{Intraclass distance}} = \frac{\sum c_1, c_2(\mu(c_1, t) - \mu(c_2, t))^2}{\sum c \frac{1}{|c|} \sum d_{ec} (f(t, d, c) - \mu(c, t))^2}$ $- c_1 c_1 c_2 \quad \text{: children of internal node } c_0$
 - $f(t,\!d,\!c)$: the number of times term t occurs in doc d in the training set of class c , with doc length normalized to 1

$$- \mu(c,t) = \frac{1}{|c|} \sum_{d \in c} f(d,c,t)$$

- Good discriminating power: large interclass distance, small intraclass distance
- Pick the top F terms

Automatic Categorization 1-Taper(6/16)

Figure 7: A sketch of the TAPER hierarchical feature selection and classification engine

Automatic Categorization 1-Taper(7/16)

- Evaluation
 - Suppose c₀ has children c₁,..., c_l given a class model (Bernoulli model, each face of the coin corresponding to some term t), the classifier at estimate the parameters for each child.

 C_0

When a new doc is input, the classifier
evaluate the class models and Bayes' law

Automatic Categorization 1-Taper(8/16)

- Evaluation
 - Native Bayes' law
 - Estimates the conditional probability of the class given the document

$$P(c \mid d, \theta) = \frac{P(d \mid c, \theta) P(c \mid \theta)}{P(d \mid \theta)} \propto P(d \mid c, \theta) P(c \mid \theta)$$

- θ parameters of the model
- P(d) normalization factor ($\Sigma_c P(c|d)=1$)
- Assumption: the terms in a document are conditionally independent given the class

Automatic Categorization 1-Taper(9/16)

- Native Bayes Models (Binary Model)
 - Each parameter indicates the probability that a document in class c will mention term t at least once (classification can pose as a shortest path problem on taxonomy)

$$\Pr(d \mid c) = \prod_{t \in d} \phi_{c,t} \prod_{t \in W, t \notin d} (1 - \phi_{c,t}) = \prod_{t \in d} \frac{\phi_{c,t}}{1 - \phi_{c,t}} \prod_{t \in W} (1 - \phi_{c,t})$$

- Native Bayes Models (Multinomial model, using it)
 - Each class is modeled with a |term| sided coin.
 - each parameter denotes probability of the face turning up on tossing the die.
 - term t occurs n(d; t) times in document d,
 - document length is a random variable denoted L,

$$\Pr(d \mid c) = \Pr(L = l_d \mid c) \Pr(d \mid l_d, c) = \Pr(L = l_d \mid c) \binom{l_d}{\{n(d, t)\}} \prod_{t \in d} \theta_t^{n(d, t)}$$

Automatic Categorization 1-Taper(10/16)

- Evaluation
 - For classification we choose the class c that maximizes the following a priori class probability based on the Bernoulli model

 $\Pr[d \in c \mid c_0, F] = \frac{(\text{prob of d in c}) * (\text{prob of t in class c})^{\text{times t occurred in d}}}{\text{Sum of numerator for all classes c} = \{c_1, \dots, c_1\}$

$$= \frac{\pi(c) \prod_{t \in d \cap F} \theta(c,t)^{n(d,t)}}{\sum_{c'} \pi(c') \prod_{t \in d \cap F} \theta(c',t)^{n(d,t)}}$$

- F: top F features
- $-\pi(c)$: the prior prob. of class c
- $-\theta(c,t)$: prob. that "face" t turns up, estimated using f(f,d,c)
- n(d,t): num of times term t occurred in doc d

Automatic Categorization 1-Taper(11/16)

- Text-only classifiers have Lower accuracy on hyperlinked corpora
 - Heterogenous
 - Information in links not utilized

Automatic Categorization 1-Taper(12/16)

- Enhanced Categorization Using Hyperlinks
 - Links in hypertext contain high-quality clues
 - Simply adding terms from neighbor texts will make error rate even higher
 - Notation

$$\begin{split} &\Delta = \text{corpus} = \{\text{documents}\} = \{\delta_i \text{, } i = 1, 2, \dots n\} \\ &i \rightarrow j = \text{direct link} \\ &G(\Delta) = \text{graph of linked documents} \\ &A(G) = \text{adjacency matrix} = \{a_{i,j}\}, a_{i,j} = 1 \text{ if } i \rightarrow j \text{ link exists} \\ &\tau_i = \{\text{terms (text) of } di\} = \{\tau_{ij}, j = 1, 2, \dots |di|\} \\ &T = \{\tau_i \in D\} = \text{set of text-sets for the corpus} \\ &C = \{c_i \text{, set of possible class assignments for } \Delta \} \\ &Ni = \{\text{Ii, Oi}\} = \text{in-neighbors and out-neighbors of } \delta_i \end{split}$$

Automatic Categorization 1-Taper(13/16)

Radius-one specialization

- Bootstrap mechanism
 - 1. Classifying unclassified documents from neighborhood
 - of δ_i using term-only classifier
 - 2. Then, use this information to classify δ_i
 - Iterative 1&2 until constraint

• Feature engineering

- The core strategy in classification remains the same as before. (Ex : Parent/neighbor)
- Ex

If the classes for all documents neighboring δ_i were known, replacing each hyperlink in δ_i with class ID of the corresponding document

Automatic Categorization 1-Taper(14/16)

Radius-one specialization

– Choose C to maximize Pr (C|G,T)

 $\Pr[C \mid G, T] = \frac{\Pr[C, G, T]}{\Pr[G, T]} = \frac{\Pr[G, T \mid C] \Pr[C]}{\Pr[G, T]}$ $\Rightarrow \text{ choosing C to maximize } \Pr(G, T \mid C)^* \Pr(C)$ $\Pr(G, T \mid C)^* \Pr(C) = \Pr(N_i \mid C_i)^* \Pr(C_i)$ $\Pr(N_i \mid C_i) = \prod_{\delta_j \in I_i} \Pr(C_j \mid C_i, j \to i) \prod_{\delta_k \in O_i} \Pr(C_k \mid C_i, j \to i)$

Automatic Categorization 1-Taper(15/16)

• Pseudocode sketch

Given test node A

Construct a radius-r subgraph G around A

Assign initial classes to all docs in G using local text Iterate until consistent :

Recompute the class for each doc based on local text and class of neighbors
Automatic Categorization 1-Taper(16/16)

- An "IO-bridge" connects to many pages of similar topics
- "OI" tends to be noisy (many topics point to Netscape and Free Speech Online)
- "II" and "OO" lead to topic divergence

Automatic Categorization 2-OpenGrid and ODP(1/2)

- Manual categorization faces the scalability problem.
- ODP (Open Directory Project)
 - Allows thousands of volunteers who are familiar with some specific topics to classify subdirectories.
 - Centralized system
 - Rank homepages as cool pages and not-so-cool

Automatic Categorization 2-OpenGrid and ODP(2/2)

- OpenGrid system
 - Distributed system utilizing all potential web surfers' opinions and not restricted to number of registered volunteers as OOP.
 - Extension of HTML
 - Classifying field, named cat
 - A field indicating evaluation of the page

 Good computer news

- Search all such opinion rank & the voting link to decide the output
- Still a proposal , no system is running yet.

Measuring the Web(1/14)

- Typical Questions
 - Which search engine has the largest coverage?
 - How many pages are out there and how many are indexed?
- Approach
 - Measure search engine coverage and overlap through random queries
 - Allows a third party to measure relative sizes and overlaps of search engines
 - Take two search engines, E1 and E2, we can:
 - Compute their relative sizes
 - Compute the fraction of E1's database indexed by E2

Measuring the Web(2/14)

- Procedures for Implementation
 - Sampling: A procedure for picking pages uniformly at random from the index of a particular engine
 - Checking: A procedure for determining whether a particular page is indexed by a particular engine
 - Problem: you need privileged access to a search engine's database
 - Solution: construct good approximations that use only queries

Measuring the Web(3/14)

Overlap Estimate

the fraction of E1's database indexed by E2 is estimated by:

Fraction of URLs sample from E1 found in E2

Size Comparison

 for search engines E1 and E2, Size(E1)/Size(E2) is estimated by :

Fraction of URLs sample from E2 found in E1

Fraction of URLs sample from E1 found in E2

Measuring the Web(4/14)

- Implementation
 - Building the Lexicon
 - Query based sampling
 - Query based checking
 - Bias

Measuring the Web(5/14)

- Building the Lexicon
 - For this experiment, a crawl of 300,000 documents in the Yahoo! hierarchy was used to build a lexicon of about 400,000 words
 - Low frequency words were NOT included
- Query Based Sampling
 - A random URL is generated by using a random query and randomly selecting a URL from the resulting set
 - Random selection of URL is only chosen from the first 100 results
 - Experiments are performed with both disjunctive and conjunctive queries

Measuring the Web(6/14)

- Query based checking
 - To test whether a search engine has indexed a given URL, we construct a query to check
 - Ideally, this query uniquely identifies the URL
 - But, there maybe be multiple results
 - multiple aliases or mirror copies
 - Normalization all URLs are translated to lower case and all relative references and port numbers are removed
 - Actual Matching this can be done multiple ways: Full URL, high similarity, weak URL, non-zero set

Measuring the Web(7/14)

- Bias
 - Query Bias favors large content rich documents
 - Ranking bias introduced by search engines ranking pages. Only subsets are served up by the search while the remaining pages are not sampled.
 - Checking Bias the method of matching and policy towards dynamic and low content pages influence the probability of the samples

Measuring the Web(8/14)

- Bias
 - Experimental bias pages might be added and/or changed during the experiments, and search engines might under load or time-off queries
 - Malicious bias some engines might choose not to serve pages that other pages have

Measuring the Web(9/14)

 In November 1997, only 1.4% of all URLs indexed by the search engines

Figure 8: Normalized estimates for all intersections (expressed as a percentage of total joint coverage) where A-AltaVista, I-Infoseek, E-Excite, H-HotBot

Measuring the Web(10/14)

November 1997, AltaVista claims a coverage of 100 million pages and seems to have indexed roughly 50% of the web
Conclude : the static portion of the web is about 200 million pages

Figure 9: Absolute size estimates for November 1997.

Measuring the Web(11/14)

- Silverstein 98
 - Analysis of a very large AltaVista query log
 - Web users type in short queries, mostly look at the first 10 results only, and seldom modify the query.
 - Highly correlated items are constituents of phrases.

Measuring the Web(12/14)

- Fully 15% of all request were empty.
- 32% consisted of a request for a new result screen, while 68% consisted of a request for the first screen of a new query.

Total number of bytes	300,210,000,000
Total number of requests	993,208,159
Total number of non-empty requests	843,445,731
Total number of non-empty queries	575,244,993
Total number of unique, non-empty queries	$153,\!645,\!050$
Total number of sessions	285,474,117
Total number of exact-same-as-before requests	41,922,802

Table 3: Statistics summarizing the query log contents used in the experiments. Empty requests had no query terms. A request consists of either a new query or a new requested result screen. Exactsame-as-before requests had the same query and requested result page as the previous request. The total number of non-empty, unique queries gives the cardinality of the set consisting of all queries.

Measuring the Web(13/14)

 Table4&5 summarize the statistics concerning the terms and operators in single query

0 terms in query	20.6%	max terms in query	393
1 terms in query	25.8%	avg terms in query	2.35
2 terms in query	26.0%	stddev of terms in query	1.74
3 terms in query	15.0%	> 3 terms in query	12.6%

Table 4: Statistics concerning the number of terms per query Only distinct queries were used in the count; queries with many result screen requests were not up-weighted. The mean and standard deviation are calculated only over queries with at least one term.

0 operators in query	79.6%	max operators in query	958
1 operators in query	9.7%	avg operators in query	0.41
2 operators in query	6.0%	stddev of operators in query	1.11
3 operators in query	2.6%	> 3 operators in query	2.1%

Table 5: Statistics concerning the number of operators -+, -, and, or, not, and near - per query. Only distinct queries were used in the count; queries with many result screen requests were not up-weighted.

Measuring the Web(14/14)

• Average number of queries per session is 2.02 and the average screens per query is 1.39

query occurs 1 time	63.7%	max query frequency	$1,\!551,\!477$
query occurs 2 times	16.2%	avg query frequency	3.97
query occurs 3 times	6.5%	stddev of query freq	221.31
query occurs > 3 times	13.6%		

Table 6: Statistics concerning how often distinct queries are asked. Only distinct queries were used in the count; queries with many result screen requests were not up-weighted. Percents are of the 154 million unique queries.

1 query per session	77.6%	max queries per session	172325
2 query per session	13.5%	avg queries per session	2.02
3 query per session	4.4%	stddev of queries/session	123.40
> 3 queries per session	4.5%		

Table 7: Statistics concerning the characteristics of query modification in sessions

1 screens per query	85.2%	max screens per query	78496
2 screens per query	7.5%	2nd most screens	5108
3 screens per query	3.0%	stddev of screens/query	1.39
> 3 screens per query	4.3%	avg screens per query	3.74

Table 8: Statistics concerning the characteristics of result screen requests in sessions

Conclusion

- HITS algorithm and PageRanking algorithm are two most important algorithms in the search engines.
- Codir system
- Hierarchical directories
- Heuristic approach to measure the Web