
Text Operations

Berlin Chen 2003
References:
1. Modern Information Retrieval, chapters 7, 5
2. Information Retrieval: Data Structures & Algorithms, chapters 7, 8
3. Managing Gigabytes, chapter 2

2

Index Term Selection and Text Operations

• Index Term Selection
– Noun words (or group of noun words) are more

representative of a doc content
– Preprocess the text of docs in collection in order to

select the meaningful/representative index terms

• Text Operations
– During the preprocessing phrase, a few useful text

operations can be performed
• Lexical analysis
• Eliminate of stop words
• Stemming
• Thesaurus construction/text clustering
• Text compressing

control the size of vocabulary
(reduce the size of distinct
index terms)
side effect ?

improve performance
but waste time

controversial for its benefits

3

Index Term Selection and Text Operations

• Logic view of a doc in text preprocessing

• Goals of Text Operations
– Improve the quality of answer set
– Reduce the space and search time

structure

accents,
spacing,
etc.

stopwords
Noun
groups stemming

Manual
indexingDocs

structure Full text Index terms

text +
structure text

4

Document Preprocessing

• Lexical analysis of the text
• Elimination of stopwords
• Stemming the remaining words
• Selecting of indexing terms
• Construction term categorization structures

– Thesauri
– Word/Doc Clustering

5

Lexical Analysis of the Text

• Lexical Analysis
– Convert a stream of characters (the text of document)

into stream words or tokens
– The major objectives is to identify the words in the

text

• Four particular cases should be considered with
care
– Digits
– Hyphens
– Punctuation marks
– The case of letters

6

Lexical Analysis of the Text

• Numbers/Digits
– Most numbers are usually not good index terms
– Without a surrounding context, they are inherently

vague
– The preliminary approach is to remove all words

containing sequences of digits unless specified
otherwise

– The advanced approach is to perform date and
number normalization to unify format

• Hyphens
– Breaking up hyphenated words seems to be useful
– But, some words include hyphens as an integrated

part

7

Lexical Analysis of the Text

• Punctuation marks
– Removed entirely in the process of lexical analysis
– But, some are an integrated part of the word

• The case of letters
– Not important for the identification of index terms
– Converted all the text to either to either lower or upper

cases
– But, parts of semantics will be lost due to case

conversion

The side effect of lexical analysis
User find it difficult to understand what the
indexing strategy is doing at doc retrieval time.

8

Elimination of Stopwords
• Stopwords

– Word which are too frequent among the docs in the
collection are not good discriminators

– A word occurring in 80% of the docs in the collection
is useless for purposes of retrieval

• E.g, articles, prepositions, conjunctions, …
– Filtering out stopwords achieves a compression of

40% size of the indexing structure
– The extreme approach: some verbs, adverbs, and

adjectives could be treated as stopwords
• The stopword list

If queries are:
state of the art, to be or not to be, ….

9

Stemming

• Stem
– The portion of a word which is left after the removal of

affixes (prefixes and suffixes)
– E.g., V(connect)={connected, connecting, connection,

connections, … }
• Stemming

– The substitution of the words with their respective
stems

– Methods
• Affix removal
• Table lookup
• Successor variety (determining the morpheme boundary)
• N-gram stemming based on letters’ bigram and

trigram information

10

Stemming: Affix Removal

• Use a suffix list for suffix stripping
– E.g., The Porter algorithm
– Apply a series of rules to the suffixes of words

• Convert plural forms into singular forms
– Words end in “sses”

– Words end in “ies” but not “eies” or “aies”

– Words end in “es” but not “aes”, “ees” or “oes”

– Word end in “s” but not “us” or “ss”
φ→s

stresses　 → stresssssses →

yies →

ees →

11

Stemming: Table Lookup

• Store a table of all index terms and their stems

– Problems
• Many terms found in databases would not be

represented
• Storage overhead for such a table

engineerengineer
engineerengineered
engineerengineering

StemTerm

12

Stemming: Successor Variety
• Based on work in structural linguistics

– Determine word and morpheme boundaries based on
distribution of phonemes in a large body of utterances

– The successor variety of substrings of a term will decrease as
more characters are add until a segment boundary is reached

• At this point, the successor will sharply increase

• Such information can be used to identify stems

L1READAB

B1READA

A, I, S3READ

D1REA

A, D2RE

E, I,O3R

BLANK1READABLE

1

Successor Variety

EREADABL

StemPrefix

13

Stemming: N-gram Stemmer

• Association measures are calculated between
pairs of terms based on shared unique diagrams
– diagram: or called the bigram, is a pair of consecutive

letters
– E.g.

– Using Dice’s coefficient
2C 2x6
A+B 7+8

statistics → st ta at ti is st ti ic cs
unique diagrams= at cs ic is st ta ti (7 unique ones)
statistical → st ta at ti is st ti ic ca al
unique diagrams= al at ca ic is st ta ti (8 unique ones)

6 diagrams
shared

S= = =0.80

Building a similarity matrix

w1

w2

wn

w1w2 wn

Term Clustering

14

Index Term Selection

• Full text representation of the text
– All words in the text are index terms

• Alternative: an abstract view of documents
– Not all words are used as index terms
– A set of index terms (keywords) are selected

• Manually by specialists
• Automatically by computer programs

• Automatic Term Selection
– Noun words: carry most of the semantics
– Compound words: combine two or three nouns in a

single component
– Word groups: a set of noun words having a

predefined distance in the text

15

Thesauri

• Definition of the thesaurus
– A treasury of words consisting of

• A precompiled list important words in a given
domain of knowledge

• A set of related words for each word in the list,
derived from a synonymity relationship

– More complex constituents (phrases) and structures
(hierarchies) can be used

• E.g., the Roget’s thesaurus

cowardly adjective (膽怯的)
Ignobly lacking in courage: cowardly turncoats
Syns: chicken (slang), chicken-hearted, craven,
dastardly, faint-hearted, gutless, lily-livered,
pusillanimous, unmanly, yellow (slang), yellow-bellied (slang)

16

Thesauri: Term Relationships

• Relative Terms (RT)
– Synonyms and near-synonyms

• Thesauri are most composed of them
– Co-occurring terms

• Relationships induced by patterns of within docs
• Broader Relative Terms (BT)

– Like hypernyms (上義詞)
– A word with a more general sense,

e.g., animal is a hypernym of cat
• Narrower Relative Terms (NT)

– Like hyponyms (下義詞)
– A word with more specialized meaning,

e.g., mare is a hyponym of horse

form a
hierarchical

structure

Depend on specific context

automatically
or

by specialists

17

Thesauri: Term Relationships

18

Thesauri: Purposes

• Provide a standard vocabulary (system for
references) for indexing and searching

• Assist users with locating terms for proper query
formulation

• Provide classified hierarchies that allow the
broadening and narrowing of the current query
request according to the needs of the user

Forskett, 1997

19

Thesauri: Use in IR

• Help with the query formulation process
– The initial query terms may be erroneous or improper
– Reformulate the query by further including related

terms to it
– Use a thesaurus for assisting the user with the

search for related terms

• Problems
– Local context (the retrieved doc collection) vs.

global context (the whole doc collection)
– Time consuming

20

Text Compression
• Goals

– Represent the text in fewer bits or bytes
– Compression is achieved by identifying and using

structures that exist in the text
– The original text can be reconstructed exactly

• text compression vs. data compression

• Features
– The costs reduced is the space requirements, I/O

overhead, and communication delays for digital
libraries, doc databases, and the Web information

– The prices paid is the time necessary to code and
decode the text
• How to randomly access the compressed text

21

Text Compression

• Considerations for IR systems
– The symbols to be compressed are words not

characters
• Words are atoms for most IR systems
• Also better compression achieved by taking words

as symbols
– Compressed text pattern matching

• Perform pattern matching in the compressed text
without decompressed it

– Also, compression for inverted files is preferable
• Efficient index compression schemes

22

Text Compression: Inverted Files

• An inverted file is typically composed of
– A vector containing all the distinct words (call

vocabulary) in the text collection
– For each vocabulary word, a list of all docs (identified

by doc number in ascending order) in which that
word occurs

1 6 12 16 18 25 29 36 40 45 54 58 66 70

That house has a garden. The garden has many flowers. The flowers are beautiful

beautiful

flowers

garden

house

....

70

45, 58

18, 29

6

....

Vocabulary Occurrences An inverted list
Each element in a list
points to a text position

An inverted file
Each element in a list
points to a doc number

23

Text Compression: Basic Concepts

• Two general approaches to text compression
– Statistical (symbolwise) methods
– Dictionary methods

• Statistical (symbolwise) methods
– Rely on generating good probability estimates for

each symbol in the text
– A symbol could be a character, a text words, or a

fixed number of characters
– Modeling: estimates the probability on each next

symbol, forms a collection of probability distributions
– Coding: converts symbols into binary digits
– Strategies: Huffman coding or Arithmetic coding

24

Text Compression: Basic Concepts

• Statistical methods (cont.)
– Hoffman coding

• Each symbols is pre-coded using a fixed number of
bits

• Compression is achieved by assigning a small
number of bits to symbols with higher probabilities

• Coder and decoder refer to the same model
– Arithmetic coding

• Compute the code incrementally one symbol at a
time

• Does not allow random access to the
compressed files

25

Text Compression: Basic Concepts

• Dictionary methods
– Substitute a sequence of symbols by a pointer to a

previous occurrence sequence
– The pointer representations are references to entries

in a dictionary composed of a list of symbols (phrases)
– Methods: Ziv-Lempel family

• Compression ratios for English text
– Character-based Huffman: 5 bits/character
– Word-based Huffman: over 2 bits/character (20%)
– Ziv-Lempel: lower 4 bits/character
– Arithmetic: over 2 bits/character

26

Statistical Methods
• Three Kinds of Compression Models

– Adaptive Modeling
• Start with no information about the text
• Progressively learn about its statistical distribution

as the compression process goes on
• Disadvantage: can’t not provide random access to

the compressed file
– Static Modeling

• The distribution for all input text is known
beforehand

• Use the same model (probability distribution)
perform one-pass compression regardless of
what text is being coded

• Disadvantage: probability distribution deviation

27

Statistical Methods

• Three Kinds of Compression Models (cont.)
– Semi-static modeling

• Do not assume any distribution of the data but learn
it in the first pass

– Generate a model specifically for each file that is
to be compressed

• In the second pass, the compression process goes
on based on the estimates

• Disadvantages
– Two-pass processing
– The probability distribution should be transmitted

to the decoder before transmitting the encode
data

28

Statistical Methods

• Using a Model to Compress Text
– Adaptive modeling

– Static/Semi-static modeling

model

encoder

model

decodertext textCompressed
text

model

encoder

model

decodertext textCompressed
text

updating updating

(for semi-static modeling)

29

Statistical Methods: Huffman Coding

• Ideas
– Assign a variable-length encoding in bits to each

symbol and encode and encode each symbol in turn
– Compression achieved by assigned shorter codes to

more frequent symbols
– Uniqueness: No code is a prefix of another

Huffman coding tree

a

each , for is

10

10

10

0

Original text: for each rose, a rose is a rose

013/9rose

002/9a

1111/9is

1101/9for

1011/9,

1001/9each

CodeProb.Symbol

1/9 1/9 1/9 1/9

2/9
2/9

4/92/9

rose

3/91
1

0
5/9

Average=2.44 bits/per sample

30

Statistical Methods: Huffman Coding

• But in the figure of textbook (???)

Huffman coding tree

rose

a

each , for is

10

10

10

0

0 1

1

Original text: for each rose, a rose is a rose

13/9rose

002/9a

01111/9is

01101/9for

01011/9,

01001/9each

CodeProb.Symbol

1/9 1/9 1/9 1/9

2/9 2/9

4/92/9

3/96/9

9/9

42.2

)
9
3log

9
3

9
2log

9
2

9
1log

9
14(

log

222

2

≈

×+×+××−=

−= ∑ ii ppE

Average=2.56 bits/per sample

31

Statistical Methods: Huffman Coding

• Algorithm: an bottom-up approach
– First, a forest of one-node trees (each for a distinct

symbol) whose probabilities sum up to 1
– Next, two nodes with the smallest probabilities

become children of a new created parent node
• The probability of the parent node equals to the

sum of the probabilities of two children nodes
• Nodes that are already children are ignored in

the following process
– Repeat until only one root node of the decoding tree

is formed
The number of trees finally formed will be quite large!
- The interchanges of the left and right subtrees

of any internal node

32

Statistical Methods: Huffman Coding

• The canonical tree
– The height of the left subtree of any node is never

smaller than that of the right subtree
– All leaves are in increasing order of probabilities from

left to right
– Property: the set of code with the same length are

the binary representations of consecutive integers

rosea

each , for is

10

1

0

10

0

0

1

canonical Huffman coding tree

11013/9rose

10002/9a

0111111/9is

0101101/9for

0011011/9,

0001001/9each

Can. CodeOld CodeProb.Symbol
Original text: for each rose, a rose is a rose

1/9 1/9 1/9 1/9

5/9

3/9

2/9 2/9

4/9

9/9

1

Average=2.44 bits/per sample

33

Statistical Methods: Huffman Coding

• The canonical tree
– But in the figure of textbook (???)

rose

a

each , for is

10

10

10

0

0 1

1

canonical Huffman coding tree

113/9rose

01002/9a

001101111/9is

001001101/9for

000101011/9,

000001001/9each

Can. CodeOld CodeProb.Symbol

Original text: for each rose, a rose is a rose

1/9 1/9 1/9 1/9

2/9

3/9

2/9 2/9

4/9

6/9

9/9

42.2

)
9
3log

9
3

9
2log

9
2

9
1log

9
14(

log

222

2

≈

×+×+××−=

−= ∑ ii ppE
Average=2.56 bits/per sample

34

Dictionary Methods: Ziv-Lempel coding

• Idea:
– Replace strings of characters with a reference to a

previous occurrence of the string
• Features:

– Adaptive and effective
– Most characters can be coded as part of a string that

has occurred earlier in the text
– Compression is achieved if the reference, or pointer,

is stored in few bits than the string it replaces
• Disadvantage

– Do not allow decoding to start in the middle of a
compressed file (direct access is not possible)

35

Comparison of the Compression Techniques

• “very good”: compression ratio under 30%
• “good”: compression ratio between 30% and 45%
• “poor”: compression ratio over 45%

noyesyesnoRandom access

Yes
(theoretically)

yesyesnoCompressed pattern
matching

moderatehighlowlowMemory space

very fastvery fastfastslowDecompression Speed

very fastfastfastslowCompression Speed

goodvery goodpoorvery goodCompression Ratio

Ziv-Lempel
Word

Huffman
Character
HuffmanArithmetic

36

Inverted File Compression

• An Inverted File composed of
– Vocabulary
– Occurrences (lists of ascending doc numbers or word

positions)
• The lists can be compressed

– E.g., considered as a sequence of gaps between doc
numbers

• IR processing is usually done starting from the
beginning of the lists

• Original doc numbers can be recomputed through
sums of gaps

• Encode the gaps: smaller ones (for frequent
words) have shorter codes

37

Trends and Research Issues

• Text Preprocessing for indexing
– Lexical analysis
– Elimination of stop words
– Stemming
– Selection of indexing terms

• Text processing for query reformulation
– Thesauri (term hierarchies or relationships)
– Clustering techniques

• Text compression to reduce space, I/O,
communication costs
– Statistical methods
– Dictionary methods

