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Clustering

• Place similar objects in the same group and 
assign dissimilar objects to different groups
– Word clustering

• Neighbor overlap: words occur with the similar left 
and right neighbors (such as in and on)

– Document clustering
• Documents with the similar topics or concepts are 

put together
• But clustering cannot give a comprehensive 

description of the object
– How to label objects shown on the visual display

• Clustering is a way of learning
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Clustering vs. Classification

• Classification is supervised and requires a set of 
labeled training instances for each group (class)

• Clustering is unsupervised and learns without a 
teacher to provide the labeling information of the 
training data set
– Also called automatic or unsupervised classification
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Types of Clustering Algorithms

• Two types of structures produced by clustering 
algorithms
– Flat or non-hierarchical clustering
– Hierarchical clustering

• Flat clustering
– Simply consisting of a certain number of clusters and 

the relation between clusters is often undetermined
• Hierarchical clustering

– A hierarchy with usual interpretation that each node 
stands for a subclass of its mother’s node

• The leaves of the tree are the single objects
• Each node represents the cluster that contains all 

the objects of its descendants
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Hard Assignment vs. Soft Assignment 

• Another important distinction between clustering 
algorithms is whether they perform soft or hard 
assignment

• Hard Assignment
– Each object is assigned to one and only one cluster

• Soft Assignment
– Each object may be assigned to multiple clusters
– An object       has a probability distribution              

over clusters          where                    is the probability 
that       is a member of  

– Is somewhat more appropriate in many tasks such as 
NLP, IR, …
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Hard Assignment vs. Soft Assignment

• Hierarchical clustering usually adopts hard 
assignment while in flat clustering both types of 
clustering are common
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Summarized Attributes of Clustering Algorithms  
• Hierarchical Clustering

– Preferable for detailed data analysis
– Provide more information than flat clustering
– No single best algorithm (each of the algorithms only optimal for 

some applications)
– Less efficient than flat clustering (minimally have to compute n x n

matrix of similarity coefficients) 

• Flat clustering
– Preferable if efficiency is a consideration or data sets are very large
– K-means is the conceptually method and should probably be used 

on a new data because its results are often sufficient 
– K-means assumes a simple Euclidean representation space, and 

so cannot be used for many data sets, e.g., nominal data like 
colors

– The EM algorithm is the most choice. It can accommodate 
definition of clusters and allocation of objects based on complex 
probabilistic models
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Hierarchical Clustering
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Hierarchical Clustering

• Can be in either bottom-up or top-down manners
– Bottom-up (agglomerative)

• Start with individual objects and grouping the most 
similar ones

– E.g., with the minimum distance apart

• The procedure terminates when one cluster 
containing all objects has been formed

– Top-down (divisive)
• Start with all objects in a group and divide them 

into groups so as to maximize within-group
similarity

( ) ( )yxd
yxsim

,1
1,

+
=



10

Hierarchical Agglomerative Clustering (HAC)

• A bottom-up approach
• Assume a similarity measure for determining the 

similarity of two objects
• Start with all objects in a separate cluster and 

then repeatedly joins the two clusters that have 
the most similarity until there is one only cluster 
survived 

• The history of merging/clustering forms a binary 
tree or hierarchy
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Hierarchical Agglomerative Clustering (HAC)

• Algorithm

cluster number
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Distance Metrics

• Euclidian distance (L2 norm)

• L1 norm

• Cosine Similarity (transform to a distance by 
subtracting from 1)
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Measures of Cluster Similarity
• Especially for the bottom-up approaches 
• Single-link clustering

– The similarity between two clusters is the similarity of 
the two closest objects in the clusters

– Search over all pairs of objects that
are from the two different clusters and
select the pair with the greatest similarity

• Complete-link clustering
– The similarity between two clusters is the similarity of 

their two most dissimilar members
– Sphere-shaped clusters are achieved
– Preferable for most IR and NLP

applications
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Measures of Cluster Similarity
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Measures of Cluster Similarity

• Group-average agglomerative clustering
– A compromise between single-link and complete-link 

clustering
– The similarity between two clusters is the average 

similarity between members
– If the objects are represented as length-normalized 

vectors and the similarity measure is the cosine
• There exists an fast algorithm for computing the 

average similarity
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Measures of Cluster Similarity

• Group-average agglomerative clustering (cont.)
– The average similarity SIM between vectors in a 

cluster cj is defined as

– The sum of members in a cluster cj :

– Express                  in terms of 
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Measures of Cluster Similarity

• Group-average agglomerative clustering (cont.)
-As merging two clusters cj and cj , the cluster sum 

vectors             and              are known in advance

– The average similarity for their union will be 
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An Example
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Divisive Clustering

• A top-down approach
• Start with all objects in a single cluster
• At each iteration, select the least coherent

cluster and split it
• Continue the iterations until a predefined 

criterion (e.g., the cluster number) is achieved 
• The history of clustering forms a binary tree or 

hierarchy
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Divisive Clustering

• To select the least coherent cluster, the 
measures used in bottom-up clustering can be 
used again here
– Single link measure
– Complete-link measure
– Group-average measure

• How to split a cluster
– Also is a clustering task (finding two sub-clusters)
– Any clustering algorithm can be used for the splitting 

operation, e.g.,
• Bottom-up algorithms
• Non-hierarchical clustering algorithms (e.g., K-means)
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Divisive Clustering

• Algorithm

:
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Non-Hierarchical Clustering
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Non-hierarchical Clustering

• Start out with a partition based on randomly 
selected seeds (one seed per cluster) and then 
refine the initial partition
– In a multi-pass manner

• Problems associated non-hierarchical clustering
– When to stop
– What is the right number of clusters

• Algorithms introduced here
– The K-means algorithm
– The EM algorithm

MI, group average similarity, likelihood

k-1 → k → k+1

Hierarchical clustering 
also has to face this problem
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The K-means Algorithm

• A hard clustering algorithm
• Define clusters by the center of mass of their 

members
• Initialization

– A set of initial cluster centers is needed
• Recursion

– Assign each object to the cluster whose center is 
closet 

– Then, re-compute the center of each cluster as the 
centroid or mean of its members

• Using the medoid as the cluster center ? 
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The K-means Algorithm

• Algorithm

cluster centroid

cluster assignment

calculation of new centroid
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The K-means Algorithm

• Example 1
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The K-means Algorithm

• Example 2

government
finance
sports

research

name
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The K-means Algorithm

• Choice of initial cluster centers (seeds) is 
important
– Pick at random
– Or use another method such as hierarchical 

clustering algorithm on a subset of the objects
– Poor seeds will result in sub-optimal clustering
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The EM Algorithm

• A soft version of the K-mean algorithm
– Each object could be the member of multiple clusters
– Clustering as estimating a mixture of (continuous) 

probability distributions
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The EM Algorithm

• E–step (Expectation)
– The expectation hi j of the hidden variable zi j

• M-step (Maximization)
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The EM Algorithm

• The initial cluster distributions can be estimated 
using the K-means algorithm

• The procedure terminates when the likelihood 
function                is converged or maximum 
number of iterations is reached
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