Models for Retrieval and Browsing

- Classical IR Models

Berlin Chen 2003

Reference:

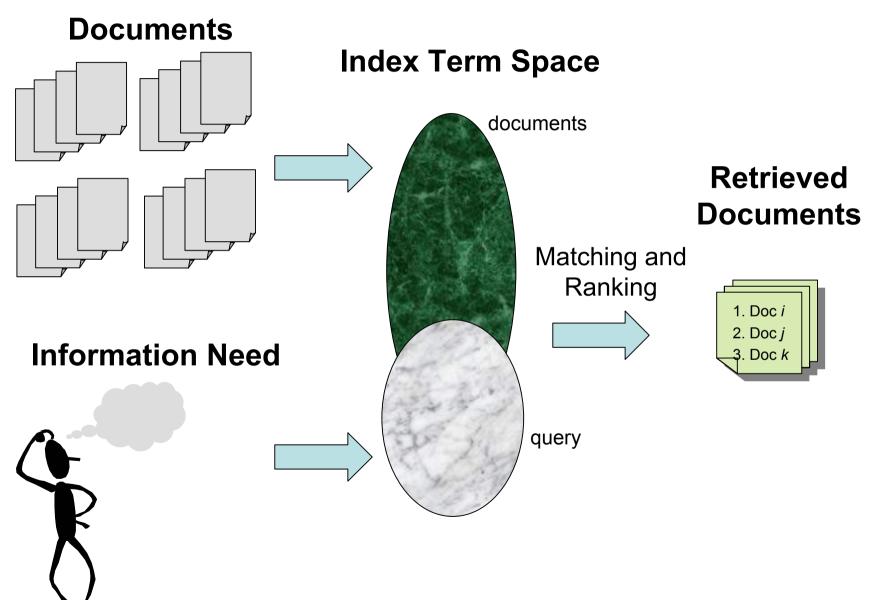
1. Modern Information Retrieval, chapter 2

Index Terms

- Meanings From Two Perspectives
 - In a restricted sense (keyword-based)
 - An index term is a (predefined) keyword (usually a noun) which has some semantic meaning of its own
 - In a more general sense (word-based)
 - An index term is simply any word which appears in the text of a document in the collection
- The semantics (main themes) of the documents and the user information need should be expressed through sets of index terms
 - Match between the documents and user queries is in the (imprecise?) space of index terms

Index Terms

- Documents retrieved are flrequently irrelevant
 - Since most users have no training in query formation, problem is even worst
 - E.g: frequent dissatisfaction of Web users
 - Issue of deciding document relevance, i.e. ranking, is critical for IR systems



Ranking Algorithms

- Also Called The Information Retrieval Models
- Ranking Algorithms
 - Predict which documents are relevant and which are not
 - Attempt to establish a simple ordering of the document retrieved
 - Documents at the top of the ordering are more likely to be relevant
 - The core of information retrieval systems

Ranking Algorithms

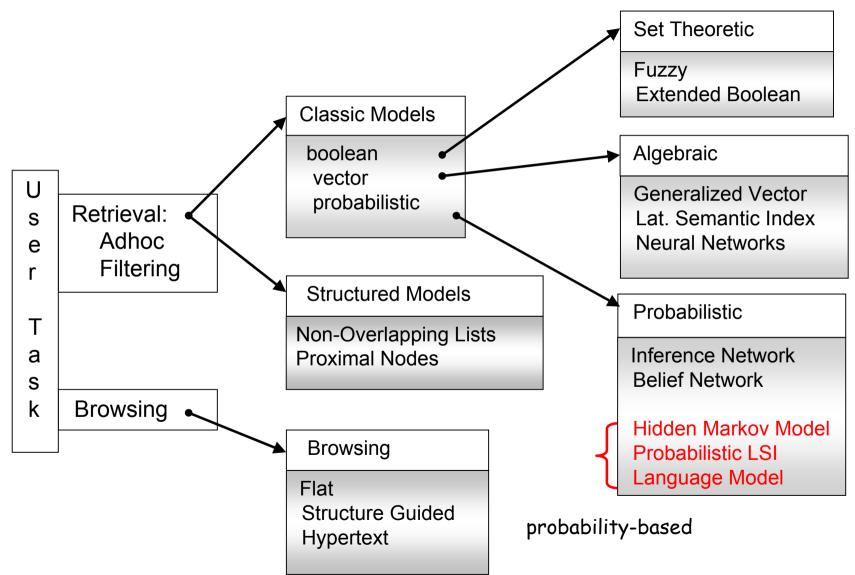
- A ranking is based on fundamental premisses regarding the notion of relevance, such as:
 - Common sets of index terms
 - Sharing of weighted terms
 - Likelihood of relevance
- Distinct sets of premisses lead to a distinct IR models

Taxonomy of Classic IR Models

- Boolean Model (Set Theoretic)
 - Documents and queries are represented as sets of index terms
- Vector (Space) Model (Algebraic)
 - Documents and queries are represented as vectors in a *t*-dimensional space
- Probabilistic Model (Probabilistic)
 - Document and query are represented based on probability theory

Alternative modeling paradigms also have been extensively studied !

Taxonomy of Classic IR Models



Taxonomy of Classic IR Models

LOGICAL VIEW OF DOCUMENTS

USER TASK		Index Terms	Full Text	Full Text + Structure
	Retrieval	Classic Set Theoretic Algebraic Probabilistic	Classic Set Theoretic Algebraic Probabilistic	Structured
	Browsing	Flat	Flat Hypertext	Structure Guided Hypertext

 The same IR models can be used with distinct document logical views

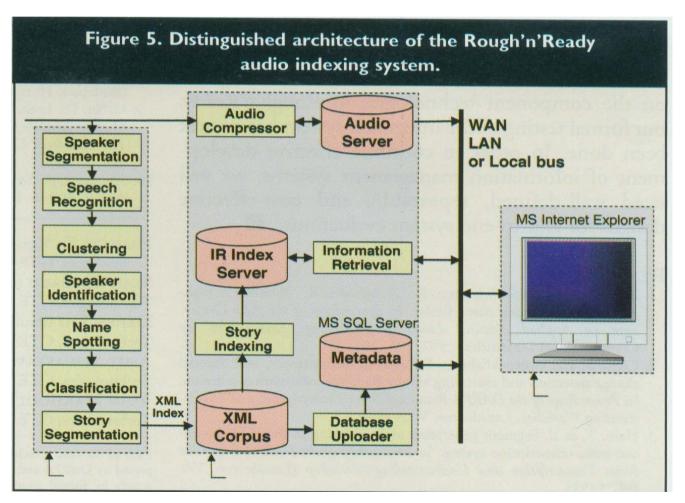
Browsing the Text Content

- Flat/Structure Guided/Hypertext
- Example (Spoken Document Retrieval)

	hy - Microsoft Internet Explorer av Fgvarkes Iools ≫ 👍 + ⇒ · ② 🗿 औ ②t 🗃 ≫ Agåress 🖻 Hitp://hool/RVMainControl.htm	r r≫Go Links	- 6				
World No	World News Tonight 01/31/98 V P 1 2 2 2 Rough'n'Ready						
female 1 male 2	It's a strategy to pressure on council making deals and it's known each day in Southern California latest danger from hell. From ABC news World headquarters in New York january thirty first nineteen ninety this is world news tonight saturday here's Elizabeth Vargas.	Foreign relations with the United States Inspections United Nations					
Elizabeth Vargas	Good evening and defense secretary William Cohen said today that a military strike against a rock would be quote substantial in size and impact but Cohen stressed that the strike would not be able to remove Saddam Hussein from power or eliminate his deadly arsenal the defense secretary also had strong words today for the United Nations Security Council ABC's John Mcwethy reports.	Iraq Politics and government					
male 4	With more american firepower being considered for the Persian Gulf defense secretary Cohen today issued by are the administration's toughest criticism of the UN security council without mentioning Russia or China buying named Cohen took dead aim at their reluctance to get tough with Iraq.						
male 5	Frankly I find it incredibly hard to accept the proposition but in the face of Saddam's actions and that of members of the Security Council cannot bring themselves to to clear that this is a fundamental or material breach of old conduct on his part I think it challenges the credibility of Security Council.						

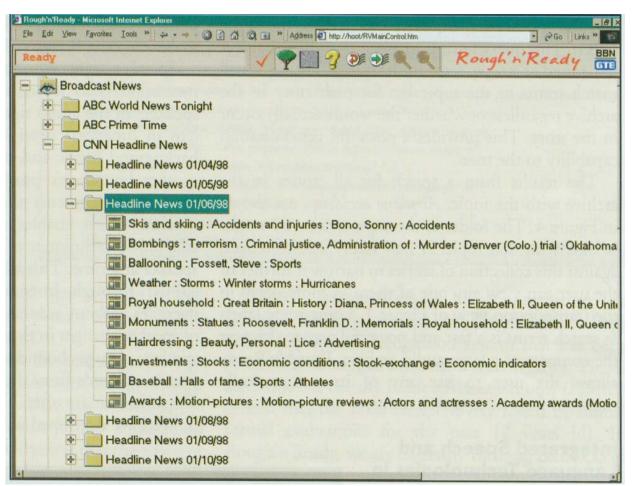
Browsing the Text Content

• Example (Spoken Document Retrieval)



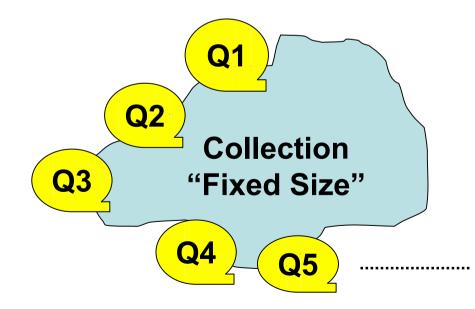
Browsing the Text Content

Example (Spoken Document Retrieval)



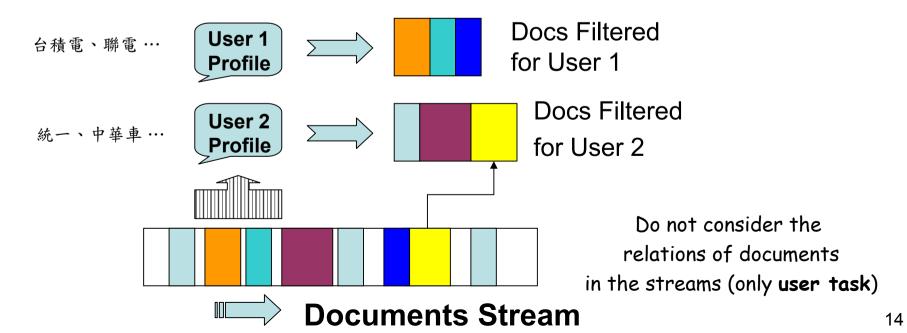
Retrieval: Ad Hoc and Filtering

- Ad hoc retrieval
 - Documents remain relatively static while new queries are submitted the system
 - The most common form of user task



Retrieval: Ad Hoc and Filtering

- Filtering
 - Queries remain relatively static while new documents come into the system (and leave)
 - User Profiles: describe the users' preferences
 - E.g. news wiring services in the stock market



Filtering & Routing

- Filtering task indicates to the user which document might be interested to him
 - Determine which ones are really relevant is fully reserved to the user
 - Documents with a ranking about a given threshold is selected
 - But no ranking information of filtered documents is presented to user
- **Routing**: a variation of filtering
 - Ranking information of the filtered documents is presented to the user
 - The user can examine the Top N documents
- The vector model is preferred

Filtering: User Profile Construction

- Simplistic approach
 - Describe the profile through a set of keywords
 - The user provides the necessary keywords
 - User is not involved too much
 - Drawback: If user not familiar with the service (e.g. the vocabulary of upcoming documents)
- Elaborate approach
 - Collect information from user the about his preferences
 - Initial (primitive) profile description is adjusted by relevance feedback (from relevant/irrelevant information)
 - Profile is continue changing

A Formal Characterization of IR Models

- The quadruple /**D**, **Q**, *F*, $R(q_i, d_j)$ / definition
 - D: a set composed of logical views (or representations) for the documents in collection
 - Q: a set composed of logical views (or representations) for the user information needs
 - F: a framework for modeling documents representations, queries, and their relationships and operations
 - $R(q_i, d_j)$: a ranking function which associations a real number with $q_i \in \mathbf{Q}$ and $d_j \in \mathbf{D}$

A Formal Characterization of IR Models

- Classic Boolean model
 - Set of documents
 - Standard operations on sets
- Classic vector model
 - t-dimensional vector space
 - Standard linear algebra operations on vectors
- Classic probabilistic model
 - Sets (relevant/irrelevant document sets)
 - Standard probabilistic operations
 - Mainly the Bayes' theorem

Classic IR Models - Basic Concepts

- Each document represented by a set of representative keywords or index terms
- An index term is a document word useful for remembering the document main themes
- Usually, index terms are nouns because nouns have meaning by themselves
 - Complements: adjectives, adverbs, amd connectives
- However, search engines assume that all words are index terms (full text representation)

Classic IR Models - Basic Concepts

- Not all terms are equally useful for representing the document contents
 - less frequent terms allow identifying a narrower set of documents
- The importance of the index terms is represented by weights associated to them
 - Let
 - k_i be an index term
 - d_i be a document
 - w_{ij} be a weight associated with (k_i, d_j)
 - $\vec{d_j} = (w_{1,j}, w_{2,j}, ..., w_{t,j})$: an index term vector for the document d_j
 - $g_i(\vec{d}_j) = w_{i,j}$
 - The weight w_{ij} quantifies the importance of the index term for describing the document semantic contents

Classic IR Models - Basic Concepts

- Correlation of index terms
 - E.g.: computer and network
 - Consideration of such correlation information does not consistently improve the final ranking result
 - Complex and slow operations
- Important Assumption/Simplification
 - Index term weights are mutually independent !

The Boolean Model

- Simple model based on set theory
- A query specified as boolean expressions with and, or, not operations
 - Precise semantics and neat formalism
 - Terms are either present or absent, i.e., $w_{ij} \in \{0,1\}$
- A query can be expressed as a disjunctive normal form (DNF) composed of conjunctive components
 - $-\vec{q}_{dnf}$: the DNF for a query q
 - \vec{q}_{cc} : conjunctive components (binary weighted vectors) of \vec{q}_{dnf}

The Boolean Model

• For intance, a query $[q = k_a \land (k_b \lor \neg k_c)]$ can be written as a DNF $\vec{q}_{dnf} = (1,1,1) \lor (1,1,0) \lor (1,0,0)$ conjunctive components Ka K (1,1,0) (1,0,0) $k_a \wedge (k_b \vee \neg k_c)$ (1, 1, 1) $=(k_a \wedge k_b) \vee (k_a \wedge \neg k_c)$ $= (k_a \wedge k_b \wedge k_c) \vee (k_a \wedge k_b \wedge \neg k_c)$ $\vee (k_a \wedge k_b \wedge \neg k_c) \vee (k_a \wedge \neg k_b \wedge \neg k_c)$ $= (k_a \wedge k_b \wedge k_c) \vee (k_a \wedge k_b \wedge \neg k_c) \vee (k_a \wedge \neg k_b \wedge \neg k_c)$ $\Rightarrow \overrightarrow{q_{dot}} = (1,1,1) \lor (1,1,0) \lor (1,0,0)$ K_c

The Boolean Model

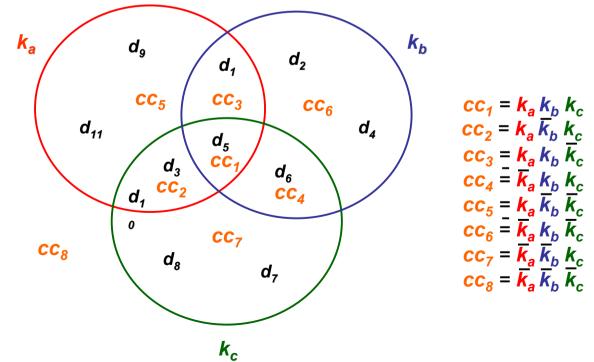
• The similarity of a document d_i to the query q

$$sim(d_{j},q) = \begin{cases} 1: \text{ if } \exists \vec{q}_{cc} \mid (\vec{q}_{cc} \in \vec{q}_{dnf} \land (\forall k_{i}, g_{i}(\vec{d}_{j}) = g_{i}(\vec{q}_{cc})) \\ 0: \text{ otherwise} \end{cases}$$

- $sim(d_j,q)=1$ means that the document d_j is relevant to the query q
- Each document d_j can be represented as a conjunctive component

Advantages of the Boolean Model

- Simple queries are easy to understand relatively easy to implement
- Dominant language in commercial systems until the WWW



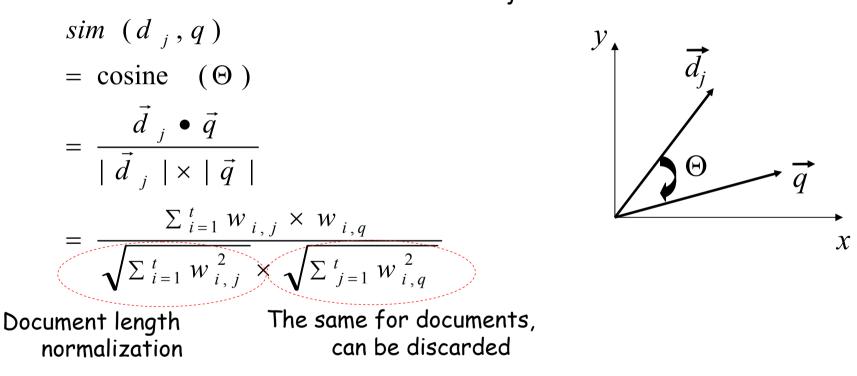
Drawbacks of the Boolean Model

- Retrieval based on binary decision criteria with no notion of partial matching (no term weighting)
 - No ranking (ordering) of the documents is provided (absence of a grading scale)
 - Term freqency counts in documents not considered
- Information need has to be translated into a Boolean expression which most users find awkward
 - The Boolean queries formulated by the users are most often too simplistic (difficult to specify what is wanted)
- As a consequence, the Boolean model frequently returns either too few or too many documents in response to a user query

- Also called Vector Space Model
- Some perspectives
 - Use of binary weights is too limiting
 - Non-binary weights provide consideration for partial matches
 - These term weights are used to compute a degree of similarity between a query and each document
 - Ranked set of documents provides for better matching for user information need

- Definition:
 - $-w_{ij} > =0$ whenever $k_i \in d_j$
 - $-w_{iq} \ge 0$ associated with the pair $[k_i, q]$
 - document vector $d_j = (w_{1j}, w_{2j}, \dots, w_{tj})$
 - query vector $\vec{q} = (w_{1q}, w_{2q}, ..., w_{tq})$
 - To each term k_i is associated a unitary vector $\vec{u_i}$
 - The unitary vectors $\vec{u_i}$ and $\vec{u_s}$ are assumed to be **orthonormal** (i.e., index terms are assumed to occur independently within the documents)
- The *t* unitary vectors $\vec{u_i}$ form an orthonormal basis for a *t*-dimensional space
 - Queries and documents are represented as weighted vectors

• The similarity of a document d_i to the query q



 Establish a threshold on sim(d_j,q) and retrieve documents with a degree of similarity above the threshold

- How to compute the weights w_{ij} and w_{iq} ?
- A good weight must take into account two effects:
 - Quantification of intra-document contents (similarity)
 - *tf* factor, the **term frequency** within a document
 - High term frequency is needed
 - Quantification of inter-documents separation (dissimilarity)
 - Low document frequency is preferred
 - *idf* (*IDF*) factor, the inverse document frequency

$$- w_{i,j} = tf_{i,j} * idf_i$$

- Let,
 - -N be the total number of docs in the collection
 - $-n_i$ be the number of docs which contain k_i
 - *freq*_{*i*,*j*} raw frequency of k_i within d_j
- A normalized tf factor is given by

$$tf_{i,j} = \frac{freq_{i,j}}{\max_{l} freq_{l,j}}$$

- where the maximum is computed over all terms which occur within the document d_i

• The *idf* factor is computed as

$$idf_{i} = \log \frac{N}{n_{i}}$$

Document frequency of term $k_i = \frac{n_i}{N}$

- the *log* is used to make the values of *tf* and *idf* comparable. It can also be interpreted as the amount of information associated with the term k_i
- The best term-weighting schemes use weights which are give by

$$w_{i,j} = tf_{i,j} \times \log \frac{N}{n_i}$$

- the strategy is called a *tf-idf* weighting scheme

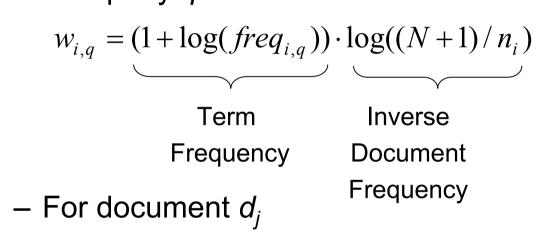
• For the query term weights, a suggestion is

$$w_{i,q} = (0.5 + \frac{0.5 \text{ freq}_{i,q}}{\max_{l} \text{ freq}_{i,q}}) \times \log \frac{N}{n_{i}}$$
 Salton & Buckley

- The vector model with *tf-idf* weights is a good ranking strategy with general collections
- The vector model is usually as good as the known ranking alternatives. It is also simple and fast to compute

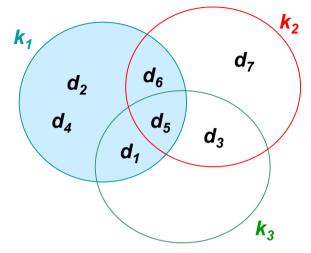
- Advantages:
 - Term-weighting improves quality of the answer set
 - Partial matching allows retrieval of docs that approximate the query conditions
 - Cosine ranking formula sorts documents according to degree of similarity to the query
- Disadvantages:
 - Assumes mutual independence of index terms
 - Not clear that this is bad though (??)

Another *tf-idf* term weighting scheme
 For query q



$$w_{i,j} = (1 + \log(freq_{i,j}))$$

• Example

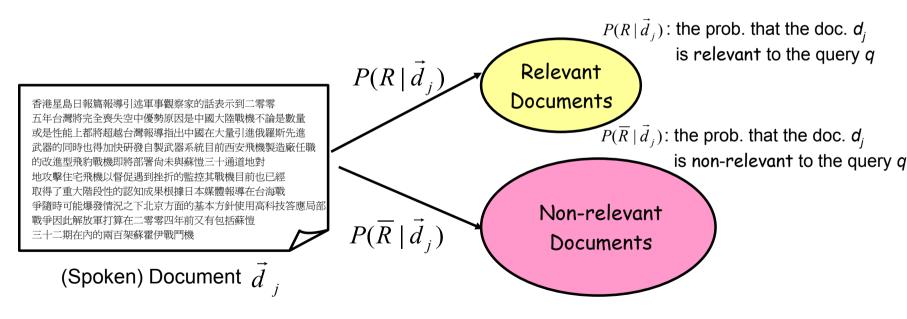


	K 1	k ₂	k ₃	<i>q</i> ∙ <i>d</i> _j
d ₁	1	0	1	2
d ₂	1	0	0	1
d ₃	0	1	1	2
d ₄	1	0	0	1
d ₅	1	1	1	3
d ₆	1	1	0	2
d ₇	0	1	0	1
q	1	1	1	

Roberston & Sparck Jones 1976

- Known as the Binary Independence Retrieval (BIR) model
 - "Binary": All weights of index terms are binary (0 or 1)
 - "Independence": index terms are independent !
- Capture the IR problem using a probabilistic framework
 - Bayes' decision Rule

- Retrieval is modeled as a classification process
 - Two classes for each query: the relevant or nonrelevant documents



- Given a user query, there is an ideal answer set
 - The querying process as specification of the properties of this ideal answer set
- Problem: what are these properties?
 - Only the semantics of index terms can be used to characterize these properties
- Guess at the beginning what they could be
 - I.e., an initial guess for the primimary probabilistis description of ideal answer set
- Improve by iteration

Given a particular document d_j, calculate the probability of belonging to the relevant class, retrieve if greater than probability of belonging to non-relevant class

$$P(R \mid \vec{d}_j) > P(\overline{R} \mid \vec{d}_j)$$
 Bayes' Decision Rule

• The similarity of a document d_i to the query q

$$sim(d_{j}, q) = \frac{P(R \mid \vec{d}_{j})}{P(\overline{R} \mid \vec{d}_{j})}$$
Likelihood Ratio Test
The same for all documents

$$= \frac{P(\vec{d}_{j} \mid R)P(R)}{P(\vec{d}_{j} \mid \overline{R})P(\overline{R})} \approx \frac{P(\vec{d}_{j} \mid R)}{P(\vec{d}_{j} \mid \overline{R})}$$

• Explanation

- P(R) : the prob. that a doc randomly selected form the entire collection is relevant
- $P(\vec{d}_j | R)$: the prob. that the doc d_j is relevant to the query q (selected from the relevant doc set R)
- Further assume independence of index terms

- Further assume independence of index terms
 - Another representation

$$sim \left(d_{j}, q\right) \approx \frac{\prod_{i=1}^{t} \left[P\left(k_{i} \mid R\right)^{g_{i}\left(\overline{d}_{j}\right)} P\left(\overline{k_{i}} \mid R\right)^{1-g_{i}\left(\overline{d}_{j}\right)}\right]}{\prod_{i=1}^{t} \left[P\left(k_{i} \mid \overline{R}\right)^{g_{i}\left(\overline{d}_{j}\right)} P\left(\overline{k_{i}} \mid \overline{R}\right)^{1-g_{i}\left(\overline{d}_{j}\right)}\right]}$$

$$- \text{Take logarithms}$$

$$sim (d_{j}, q) \approx \log \frac{\prod_{i=1}^{c} \left[P(k_{i} \mid R)^{g_{i}(\overline{d}_{j})} P(\overline{k_{i}} \mid R)^{1-g_{i}(\overline{d}_{j})} \right]}{\prod_{i=1}^{c} \left[P(k_{i} \mid \overline{R})^{g_{i}(\overline{d}_{j})} \left(P(\overline{k_{i}} \mid \overline{R}) \right)^{1-g_{i}(\overline{d}_{j})} \right]} \text{The same for all documents!}$$

$$\stackrel{\left[P(k_{i} \mid R) + P(\overline{k_{i}} \mid R) = 1\right]}{P(k_{i} \mid \overline{R}) + P(\overline{k_{i}} \mid \overline{R})} = \sum_{i=1}^{i=t} g_{i}(\overline{d}_{j}) \log \frac{P(k_{i} \mid R) P(\overline{k_{i}} \mid \overline{R})}{P(k_{i} \mid \overline{R}) P(\overline{k_{i}} \mid R)} + \sum_{i=1}^{i=t} \log \frac{P(\overline{k_{i}} \mid R)}{P(\overline{k_{i}} \mid \overline{R})}$$

$$= \sum_{i=1}^{i=t} g_{i}(\overline{d}_{j}) \left[\log \frac{P(k_{i} \mid R)}{1 - P(k_{i} \mid R)} + \log \frac{1 - P(k_{i} \mid \overline{R})}{P(k_{i} \mid \overline{R})} \right]$$

$$42$$

• Further assume independence of index terms – Use term weighting $w_{i,q} \times w_{i,j}$ to replace $g_i(\vec{d}_j)$

$$sim(d_{j},q) \approx \sum_{i=1}^{i=t} g_{i}(\overline{d}_{j}) \left[\log \frac{P(k_{i} \mid R)}{1 - P(k_{i} \mid R)} + \log \frac{1 - P(k_{i} \mid \overline{R})}{P(k_{i} \mid \overline{R})} \right]$$
$$\approx \sum_{i=1}^{i=t} w_{i,q} \times w_{i,j} \times \left[\log \frac{P(k_{i} \mid R)}{1 - P(k_{i} \mid R)} + \log \frac{1 - P(k_{i} \mid \overline{R})}{P(k_{i} \mid \overline{R})} \right]$$

Binary weights (0 or 1) are used here

- Initial Assumptions
 - $P(k_i | R) = 0.5$: is constant for all indexing terms
 - $P(k_i | \overline{R}) = \frac{n_i}{N}$:approx. by distribution of index terms among all doc in the collection, i.e. the document frequency of indexing term k_i (Suppose that $|\overline{R}| > |R|, N \approx |\overline{R}|$)) (n_i : no. of doc that contain k_i . N: the total doc no.)
- Re-estimate the probability distributions
 - Use the initially retrieved and ranked Top V documents

$$P(k_i \mid R) = \frac{V_i}{V}$$
$$P(k_i \mid \overline{R}) = \frac{n_i - V}{N - V}$$

$$V_i$$
: the no. of documents in V that contain k_i

- Handle the problem of "zero" probabilities
 - Add constants as the adjust constant

$$P(k_i | R) = \frac{V_i + 0.5}{V + 1}$$
$$P(k_i | \overline{R}) = \frac{n_i - V_i + 0.5}{N - V + 1}$$

- Or use the information of document frequency

$$P(k_i \mid R) = \frac{\frac{V_i + \frac{n_i}{N}}{V + 1}}{\frac{N_i - V_i + \frac{n_i}{N}}{N - V + 1}}$$
$$P(k_i \mid \overline{R}) = \frac{\frac{N_i - V_i + \frac{n_i}{N}}{N - V + 1}}{\frac{N_i - V_i + 1}{N - V + 1}}$$

- Advantages
 - Documents are ranked in decreasing order of probability of relevance
- Disadvantages
 - Need to guess initial estimates for $P(k_i | R)$
 - All weights are binary: the method does not take into account *tf* and *idf* factors
 - Independence assumption of index terms

Brief Comparison of Classic Models

- Boolean model does not provide for partial matches and is considered to be the weakest classic model
- Salton and Buckley did a series of experiments that indicate that, in general, the vector model outperforms the probabilistic model with general collections