Models for Retrieval and Browsing

- Fuzzy Set, Extended Boolean, Generalized Vector Space Models

Berlin Chen 2003

Reference:

1. Modern Information Retrieval, chapter 2

Outline

- Alternative Set Theoretic Models
 - Fuzzy Set Model (Fuzzy Information Retrieval)
 - Extended Boolean Model
- Alternative Algebraic Models
 - Generalized Vector Space Model

Fuzzy Set Theory

- Framework for representing classes whose boundaries are not well defined
- Key idea is to introduce the notion of a degree of membership associated with the elements of a set
- This degree of membership varies from 0 to 1 and allows modeling the notion of marginal membership
- Thus, membership is now a gradual instead of abrupt (as conventional Boolean logic)

Definition

- A fuzzy subset A of a universal of discourse U is characterized by a membership function μ_A : $U \rightarrow [0,1]$
 - which associates with each element u of U a number $\mu_A(u)$ in the interval [0,1]
- Let A and B be two fuzzy subsets of *U*. Also, let A be the complement of A. Then,
 - Complement $\mu_{\overline{A}}(u) = 1 \mu_{A}(u)$
 - Union $\mu_{A \cup B}(u) = \max(\mu_A(u), \mu_B(u))$
 - intersection $\mu_{A \cap B}(u) = \min(\mu_A(u), \mu_B(u))$

- Fuzzy information retrieval
 - Fuzzy sets are modeled based on a thesaurus
 - This thesaurus is constructed by a term-term correlation matrix
 - \vec{c} : a term-term correlation matrix
 - $C_{i,l}$: a normalized correlation factor for terms k_i and k_l

$$c_{i,l} = \frac{n_{i,l}}{n_i + n_l - n_{i,l}}$$

 $c_{i,l} = \frac{n_{i,l}}{n_i + n_l - n_{i,l}} \qquad \begin{array}{c} n_i : \text{no of docs that contain } k_i \\ n_{i,l} : \text{no of docs that contain both } k_i \text{ and } k_l \end{array}$

- We now have the notion of proximity among index terms
- The union and intersection operations are modified here
 - Union: algebraic sum (instead of max)
 - Intersection: algebraic product (instead of min)

– The degree of membership between a doc d_j and an index term k_i

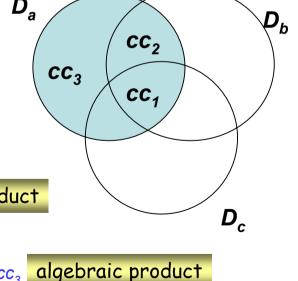
$$u_{i,j} = 1 - \prod_{k_1 \in d_i} (1 - c_{i,j})$$

- Computes an **algebraic sum** (instead of \max function) over all terms in the doc d_i
 - Implemented as the complement of a negative algebraic product (why?)
- A doc d_j belongs to the fuzzy set associated to the term k_i if its own terms are related to k_i
- If there is at least one index term k_i of d_j which is strongly related to the index ($c_{i,l} \sim 1$) then $\mu_{i,j} \sim 1$
 - $-k_i$ is a good fuzzy index for doc d_i
 - And vice versa

• Example:

- Query $q=k_a \wedge (k_b \vee \neg k_c)$ disjunctive normal form $\overrightarrow{q}_{dnf}=(k_a \wedge k_b \wedge k_c) \vee (k_a \wedge k_b \wedge \neg k_c) \vee (k_a \wedge \neg k_b \wedge \neg k_c)$ = $cc_1+cc_2+cc_3$
- $-D_a$ is the fuzzy set of docs associated to the term k_a
- Degree of membership

$$\begin{split} \mu_{q,j} &= \mu_{c\mathbf{q}+cc_2+cc_3,j} & \text{algebraic sum} \\ &= 1 - \prod_{i=1}^3 (1 - \mu_{cc_i,j}) & \text{negative algebraic product} \\ &= 1 - (1 - \mu_{a,j} \mu_{b,j} \mu_{c,j}) & \text{cc}_3 & \text{algebraic product} \\ &\times (1 - \mu_{a,j} \mu_{b,j} (1 - \mu_{c,j})) \times (1 - \mu_{a,j} (1 - \mu_{b,j}) (1 - \mu_{c,j})) \end{split}$$



- Fuzzy IR models have been discussed mainly in the literature associated with fuzzy theory
- Experiments with standard test collections are not available

Salton et al., 1983

Motive

- Extend the Boolean model with the functionality of partial matching and term weighting
 - E.g.: in Boolean model, for the qery $q=k_x \wedge k_y$, a doc contains either k_x or k_y is as irrelevant as another doc which contains neither of them
- Combine Boolean query formulations with characteristics of the vector model
 - Term weighting
 - Algebraic distances for similarity measures

a ranking can

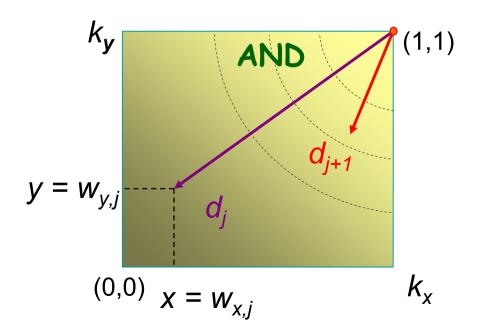
- Term weighting
 - The weight for the term k_x in a doc d_i is

$$w_{x,j} = tf_{x,j} \times \frac{idf_x}{\max_i idf_i}$$
 Normalized idf

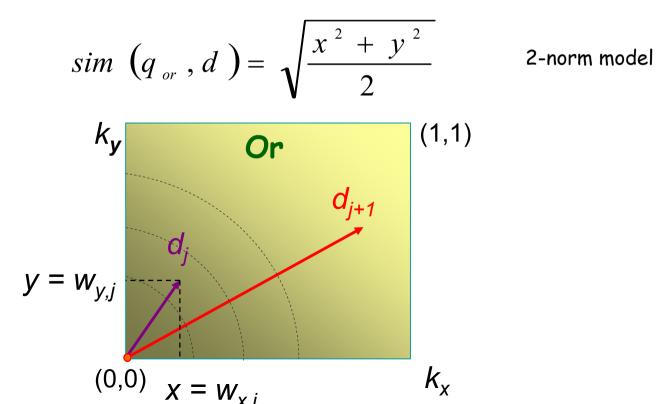
- $W_{x,j}$ is normalized to lay between 0 and 1
- Assume two index terms k_x and k_y were used
 - Let x denote the weight $w_{x,j}$ of term k_x on doc d_i
 - Let \mathcal{Y} denote the weight $\mathcal{W}_{y,j}$ of term k_y on doc d_j
 - The doc vector $\vec{d}_j = (w_{x,j}, w_{y,j})$ is represented as $d_j = (x, y)$
 - Queries and docs can be plotted in a two-dimensional map

- If the query is $q=k_X \wedge k_V$ (conjunctive query)
 - -The docs near the point (1,1) are preferred
 - -The similarity measure is defined as

$$sim(q_{and}, d) = 1 - \sqrt{\frac{(1-x)^2 + (1-y)^2}{2}}$$
 2-norm model



- If the query is $q=k_X\vee k_V$ (disjunctive query)
 - -The docs far from the point (0,0) are preferred
 - -The similarity measure is defined as



Generalization

- t index terms are used $\rightarrow t$ -dimensional space
- p-norm model, $1 \le p \le \infty$

$$q_{and} = k_{1} \wedge^{p} k_{2} \wedge^{p} ... \wedge^{p} k_{m} \implies sim(q_{and}, d) = 1 - \left(\frac{(1 - x_{1})^{p} + (1 - x_{2})^{p} + ... + (1 - x_{m})^{p}}{m}\right)^{\frac{1}{p}}$$

$$q_{or} = k_{1} \vee^{p} k_{2} \vee^{p} ... \vee^{p} k_{m} \implies sim(q_{or}, d) = \left(\frac{x_{1}^{p} + x_{2}^{p} + ... + x_{m}^{p}}{m}\right)^{\frac{1}{p}}$$

Some interesting properties

•
$$p=1 \implies sim(q_{and}, d) = sim(q_{or}, d) = \frac{x_1 + x_2 + ... + x_m}{m}$$

•
$$p = \infty \implies sim(q_{and}, d) = min(x_i)$$

 $sim(q_{or}, d) = max(x_i)$

• Example query 1: $q = (k_1 \wedge^p k_2) \vee^p k_3$

Processed by grouping the operators in a predefined

order

Sim
$$(q, d) = \left(\frac{\left(1 - x_1\right)^p + \left(1 - x_2\right)^p}{2}\right)^{\frac{1}{p}} + x_3^p}{2}$$

- Example query 2: $q = (k_1 \lor^2 k_2) \land^\infty k_3$
 - Combination of different algebraic distances

$$sim (q, d) = min \left(\left(\frac{x_1^2 + x_2^2}{2} \right)^{\frac{1}{2}}, x_3 \right)$$

Advantages

$$q = (k_1 \wedge^p k_2) \vee^p k_3$$

- A hybrid model including properties of both the set theoretic models and the algebraic models
 - Relax the Boolean algebra by interpreting Boolean operations in terms of algebraic distances
- Disadvantages
 - Distributive operation does not hold for ranking computation

• E.g.:
$$q_1 = (k_1 \land k_2) \lor k_3, q_2 = (k_1 \lor k_3) \land (k_2 \lor k_3)$$

 $sim (q_1, d) \neq sim (q_2, d)$

Assumes mutual independence of index terms

Wong et al., 1985

- Premise
 - Classic models enforce independence of index terms
 - For the Vector model
 - Set of term vectors $\{\overrightarrow{k_1}, \overrightarrow{k_1}, ..., \overrightarrow{k_t}\}$ are linearly independent and form a basis for the subspace of interest
 - Frequently, it means pairwise orthogonality $-\forall i,j \Rightarrow \overrightarrow{k_i} \bullet \overrightarrow{k_j} = \overrightarrow{0}$ (in a more restrictive sense)
- · Wong et al. proposed an interpretation
 - The index term vectors are linearly independent, but not pairwise orthogonal
 - Generalized Vector Model

Key idea of Generalized Vector Model

 Index term vectors form the basis of the space are not orthogonal and are represented in terms of smaller components (minterms)

Notations

- $-\{k_1, k_2, ..., k_t\}$: the set of all terms
- $-w_{i,j}$: the weight associated with $[k_i, d_j]$
- Minterms: binary indicators (0 or 1) of all patterns of occurrence of terms within documents
 - Each represent one kind of co-occurrence of index terms in a specific document

Representations of minterms

$$m_1 = (0,0,...,0)$$

$$m_2 = (1,0,...,0)$$

$$m_3$$
=(0,1,...,0)

$$m_{a}$$
=(1,1,...,0)

$$m_5$$
=(0,0,1,..,0)

. . .

$$m_{2^t}$$
=(1,1,1,..,1)

2^t minterms

Points to the docs where only index terms k_1 and k_2 co-occur and the other index terms disappear

Point to the docs containing all the index terms

$$\overrightarrow{m_1}$$
=(1,0,0,0,0,....,0)
 $\overrightarrow{m_2}$ =(0,1,0,0,0,....,0)
 $\overrightarrow{m_3}$ =(0,0,1,0,0,...,0)
 $\overrightarrow{m_4}$ =(0,0,0,1,0,...,0)
 $\overrightarrow{m_5}$ =(0,0,0,0,1,...,0)
...
 $\overrightarrow{m_2}$ t=(0,0,0,0,0,...,1)

2^t minterm vectors

Pairwise orthogonal vectors $\overrightarrow{m_i}$ associated with minterms m_i as the basis for the generalized vector space

- Minterm vectors are pairwise orthogonal. But, this does not mean that the index terms are independent
 - Each minterm specifies a kind of dependence among index terms

• The vector associated with the term k_i is represented by **summing** up all minterms containing it and **normalizing**

$$\vec{k}_{i} = \frac{\sum_{\forall r, g_{i}(m_{r})=1} c_{i,r} \vec{m}_{r}}{\sqrt{\sum_{\forall r, g_{i}(m_{r})=1} c_{i,r}^{2}}}$$

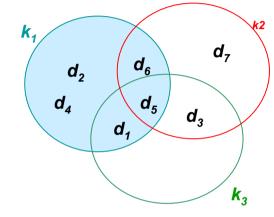
$$c_{i,r} = \sum_{\substack{d_j \mid g_l(\bar{d}_j) = g_l(m_r), \text{ for all } l}} w_{i,j}$$

All the docs whose term co-occurrence relation (pattern) can be represented as (exactly coincide with that of) minterm m_r

- •The weight associated with the pair $[k_i, m_r]$ sums up the weights of the term k_i in all the docs which have a term occurrence pattern given by m_r .
- •Notice that for a collection of size *N*, only *N* minterms affect the ranking (and not

• **Example** (a system with three index terms)

minterm	k_1	k_2	k_3
m_1	0	0	0
m_2	1	0	0
m_3	0	1	0
m_4	1	1	0
m_5	0	0	1
m_6	1	0	1
m_7	0	1	1
m_8	1	1	1



$\vec{k}_{\scriptscriptstyle 1} = \vec{k}_{\scriptscriptstyle 1}$	$\underline{c_{1,2}\vec{m}_2 + c_{1,4}\vec{m}_4 + c_{1,6}\vec{m}_6 + c_{1,8}\vec{m}_8}$
	$\sqrt{{c_{1,2}}^2 + {c_{1,4}}^2 + {c_{1,6}}^2 + {c_{1,8}}^2}$
$\vec{k} =$	$\underline{c_{2,3}\vec{m}_3 + c_{2,4}\vec{m}_4 + c_{2,7}\vec{m}_7 + c_{2,8}\vec{m}_8}$
n_2	$\sqrt{{c_{2,3}}^2 + {c_{2,4}}^2 + {c_{2,7}}^2 + {c_{2,8}}^2}$
$ec{k}$ -	$-\frac{c_{3,5}\vec{m}_5 + c_{3,6}\vec{m}_6 + c_{3,7}\vec{m}_7 + c_{3,8}\vec{m}_8}{2}$
n_3	$\sqrt{{c_{3}}^{2} + {c_{3}}^{2} + {c_{3}}^{2} + {c_{3}}^{2} + {c_{3}}^{2}}$

	k_1	k_2	k_3	minterm
d_1	2	0	1	<i>m</i> ₆
d_2	1	0	0	m_2
d_3	0	1	3	<i>m</i> ₇
d_4	2	0	0	m_2
d_5	1	2	4	m_8
d_6	1	2	0	m_4
d_7	0	5	0	<i>m</i> ₃
\overline{q}	1	2	3	

 $c_{2,3} = w_{2,7} = 5$

 $c_{2,8} = w_{2,5} = 2$

$$\vec{k}_1 = \frac{3\vec{m}_2 + 1\vec{m}_4 + 2\vec{m}_6 + 1\vec{m}_8}{\sqrt{3^2 + 1^2 + 2^2 + 1^2}} = \frac{3\vec{m}_2 + 1\vec{m}_4 + 2\vec{m}_6 + 1\vec{m}_8}{\sqrt{15}}$$

$$\vec{k}_{2} = \frac{5\vec{m}_{3} + 2\vec{m}_{4} + 1\vec{m}_{7} + 2\vec{m}_{8}}{\sqrt{5^{2} + 2^{2} + 1^{2} + 2^{2}}} = \frac{5\vec{m}_{3} + 2\vec{m}_{4} + 1\vec{m}_{7} + 2\vec{m}_{8}}{\sqrt{34}} \qquad \vec{k}_{3} = \frac{0\vec{m}_{5} + 1\vec{m}_{6} + 3\vec{m}_{7} + 4\vec{m}_{8}}{\sqrt{0^{2} + 1^{2} + 3^{2} + 4^{2}}} = \frac{1\vec{m}_{6} + 3\vec{m}_{7} + 4\vec{m}_{8}}{\sqrt{26}}$$

$$\vec{k}_3 = \frac{0\vec{m}_5 + 1\vec{m}_6 + 3\vec{m}_7 + 4\vec{m}_8}{\sqrt{0^2 + 1^2 + 3^2 + 4^2}} = \frac{1\vec{m}_6 + 3\vec{m}_7 + 4\vec{m}_8}{\sqrt{26}}$$

$$\vec{d}_{1} = 2\vec{k}_{1} + 1\vec{k}_{3}$$

$$= \frac{2 \cdot 3}{\sqrt{15}} \sum_{d_{1},2}^{s_{d_{1},2}} + \frac{2 \cdot 1}{\sqrt{15}} \vec{m}_{4} + \left(\frac{2 \cdot 2}{\sqrt{15}} + \frac{1 \cdot 1}{\sqrt{26}}\right) \vec{m}_{6} + \frac{1 \cdot 3}{\sqrt{26}} \vec{m}_{7} + \left(\frac{2 \cdot 1}{\sqrt{15}} + \frac{1 \cdot 4}{\sqrt{26}}\right) \vec{m}_{8}$$

$$\vec{d}_{1} = 2\vec{k}_{1} + 2\vec{k}_{2} + 3\vec{k}_{3}$$

$$\left(\frac{1}{5}\right)\vec{m}_{6} + \frac{1\cdot 3}{\sqrt{26}}\vec{m}_{7} + \left(\frac{2\cdot 1}{\sqrt{15}} + \frac{1\cdot 4}{\sqrt{26}}\right)\vec{m}_{8}$$

$$= \frac{1 \cdot 3}{\sqrt{15}} \vec{m}_2 + \frac{2 \cdot 5}{\sqrt{34}} \vec{m}_3 + \left(\frac{1 \cdot 1}{\sqrt{15}} + \frac{2 \cdot 2}{\sqrt{34}}\right) \vec{m}_4 + \left(\frac{1 \cdot 2}{\sqrt{15}} + \frac{3}{\sqrt{15}}\right) \vec{m}_4 + \left(\frac{1 \cdot 2}$$

$$= \frac{1 \cdot 3}{\sqrt{15}} \vec{m}_{2} + \frac{2 \cdot 5}{\sqrt{34}} \vec{m}_{3} + \left(\frac{1 \cdot 1}{\sqrt{15}} + \frac{2 \cdot 2}{\sqrt{34}}\right) \vec{m}_{4} + \left(\frac{1 \cdot 2}{\sqrt{15}} + \frac{3 \cdot 1}{\sqrt{26}}\right) \vec{m}_{6} + \left(\frac{2 \cdot 1}{\sqrt{34}} + \frac{3 \cdot 3}{\sqrt{26}}\right) \vec{m}_{7} + \left(\frac{1 \cdot 1}{\sqrt{15}} + \frac{2 \cdot 2}{\sqrt{34}} + \frac{3 \cdot 4}{\sqrt{26}}\right) \vec{m}_{8}$$

$$s_{q,2} \qquad s_{q,3} \qquad s_{q,4} \qquad s_{q,6} \qquad s_{q,7} \qquad s_{q,8}$$

$$\sum_{q,8} s_{q,i} \cdot s_{q,i} \cdot s_{d,i}$$

$$sim\left(q\,,d_{_{1}}\right) = \frac{s_{_{q,2}}s_{_{d_{1},2}} + s_{_{q,4}}s_{_{d_{1},4}} + s_{_{q,6}}s_{_{d_{1},6}} + s_{_{q,7}}s_{_{d_{1},7}} + s_{_{q,8}}s_{_{d_{1},8}}}{\sqrt{s_{_{q,2}}^{\,2} + s_{_{q,3}}^{\,2} + s_{_{q,4}}^{\,2} + s_{_{q,6}}^{\,2} + s_{_{q,7}}^{\,2} + s_{_{q,8}}^{\,2}}\sqrt{s_{_{d_{1},2}}^{\,2} + s_{_{d_{1},4}}^{\,2} + s_{_{d_{1},6}}^{\,2} + s_{_{d_{1},7}}^{\,2} + s_{_{d_{1},8}}^{\,2}}}$$

- Term Correlation
 - The degree of correlation between the terms k_i and k_j can now be computed as

$$\vec{k}_{i} \bullet \vec{k}_{j} = \sum_{\forall r \mid g_{i}(m_{r}) = 1 \land g_{j}(m_{r}) = 1} C_{i,r} \times C_{j,r}$$

 Do not need to be normalized? (because we have done it before!)

Advantages

- Model considers correlations among index terms
- Model does introduce interesting new ideas

Disadvantages

- Not clear in which situations it is superior to the standard Vector model
- Computation costs are higher