Models for Retrieval and Browsing

\author{

- Fuzzy Set, Extended Boolean, Generalized Vector Space Models
}

Berlin Chen 2003

Reference:

1. Modern Information Retrieval, chapter 2

Outline

- Alternative Set Theoretic Models
- Fuzzy Set Model (Fuzzy Information Retrieval)
- Extended Boolean Model
- Alternative Algebraic Models
- Generalized Vector Space Model

Fuzzy Set Model

- Fuzzy Set Theory
- Framework for representing classes whose boundaries are not well defined
- Key idea is to introduce the notion of a degree of membership associated with the elements of a set
- This degree of membership varies from 0 to 1 and allows modeling the notion of marginal membership
- Thus, membership is now a gradual instead of abrupt (as conventional Boolean logic)

Fuzzy Set Model

- Definition
- A fuzzy subset A of a universal of discourse U is characterized by a membership function $\mu_{A}: U \rightarrow[0,1]$
- which associates with each element u of U a number $\mu_{A}(u)$ in the interval $[0,1]$
- Let A and B be two fuzzy subsets of U. Also, let \bar{A} be the complement of A. Then,
- Complement $\mu_{\bar{A}}(u)=1-\mu_{A}(u)$
- Union

$$
\mu_{A \cup B}(u)=\max \left(\mu_{A}(u), \mu_{B}(u)\right)
$$

- intersection $\quad \mu_{A \cap B}(u)=\min \left(\mu_{A}(u), \mu_{B}(u)\right)$

Fuzzy Set Model

- Fuzzy information retrieval
- Fuzzy sets are modeled based on a thesaurus
- This thesaurus is constructed by a term-term correlation matrix
- $\vec{c} \quad$: a term-term correlation matrix
- $c_{i, l}$: a normalized correlation factor for terms k_{i} and k_{l}

$$
c_{i, l}=\frac{n_{i, l}}{n_{i}+n_{l}-n_{i, l}} \quad \begin{aligned}
& n_{i}: \text { no of docs that contain } k_{i} \\
& n_{i, l}: \text { no of docs that contain both } k_{i} \text { and } k_{l}
\end{aligned}
$$

- We now have the notion of proximity among index terms
- The union and intersection operations are modified here
- Union: algebraic sum (instead of max)
- Intersection: algebraic product (instead of min)

Fuzzy Set Model

- The degree of membership between a doc d_{j} and an index term k_{i}

$$
u_{i, j}=1-\prod_{k_{l} \in d_{j}}\left(1-c_{i, j}\right)
$$

- Computes an algebraic sum (instead of max function) over all terms in the doc d_{j}
- Implemented as the complement of a negative algebraic product (why?)
- A doc d_{j} belongs to the fuzzy set associated to the term k_{i} if its own terms are related to k_{i}
- If there is at least one index term k_{l} of d_{j} which is strongly related to the index $\left(c_{i, 1} \sim 1\right)$ then $\mu_{i, j} 1$
$-k_{i}$ is a good fuzzy index for doc d_{j}
- And vice versa

Fuzzy Set Model

- Example:
- Query $q=k_{a} \wedge\left(k_{b} \vee \neg k_{c}\right)$
disjunctive normal form $\vec{q}_{d n f}=\left(k_{a} \wedge k_{b} \wedge k_{c}\right) \vee\left(k_{a} \wedge k_{b} \wedge \neg k_{c}\right) \vee\left(k_{a} \wedge \neg k_{b} \wedge \neg k_{c}\right)$ $=C c_{1}+C C_{2}+c C_{3}$
- D_{a} is the fuzzy set of docs associated to the term k_{a}
- Degree of membership
$\mu_{q, j}=\mu_{\text {cqutcertce, }, j} \quad$ algebraic sum

$$
\left.\begin{array}{rl}
=1 & -\prod_{i=1}^{3}\left(1-\mu_{c c_{j, j}}\right) \quad \text { negative algebraic product } \\
=1- & \left(1-\mu_{a, j} \mu_{b, j} \mu_{c, j}\right) \\
& \times(1-\overbrace{\mu_{a, j} \mu_{b, j}\left(1-\mu_{c, j}\right)})) \times(1-\overbrace{\mu_{a, j}\left(1-\mu_{b, j}\right.}^{c c_{3}})\left(1-\mu_{c, j}\right)
\end{array}\right)
$$

Fuzzy Set Model

- Fuzzy IR models have been discussed mainly in the literature associated with fuzzy theory
- Experiments with standard test collections are not available

Extended Boolean Model

Salton et al., 1983

- Motive
- Extend the Boolean model with the functionality of partial matching and term weighting
- E.g.: in Boolean model, for the qery $q=k_{x} \wedge k_{y}$, a doc contains either k_{x} or k_{y} is as irrelevant as another doc which contains neither of them
- Combine Boolean query formulations with characteristics of the vector model
- Term weighting
a ranking can
- Algebraic distances for similarity measures be obtained

Extended Boolean Model

- Term weighting
- The weight for the term k_{x} in a doc d_{j} is

$$
w_{x, j}=t f_{x, j} \times \frac{i d f_{x}}{\max _{i} i d f_{i}} \quad \text { Normalized idf }
$$

- $w_{x, j}$ is normalized to lay between 0 and 1
- Assume two index terms k_{x} and k_{y} were used
- Let x denote the weight $w_{x, j}$ of term k_{x} on $\operatorname{doc} d_{j}$
- Let y denote the weight $w_{y, j}$ of term k_{y} on doc d_{j}
- The doc vector $\vec{d}_{j}=\left(w_{x, j}, w_{y, j}\right)$ is represented as $d_{j}=(x, y)$
- Queries and docs can be plotted in a two-dimensional map

Extended Boolean Model

- If the query is $q=k_{x} \wedge k_{y}$ (conjunctive query)
-The docs near the point $(1,1)$ are preferred
-The similarity measure is defined as

$$
\operatorname{sim}\left(q_{\text {and }}, d\right)=1-\sqrt{\frac{(1-x)^{2}+(1-y)^{2}}{2}} \quad \text { 2-norm model }
$$

Extended Boolean Model

- If the query is $q=k_{x} \vee k_{y}$ (disjunctive query)
-The docs far from the point $(0,0)$ are preferred
-The similarity measure is defined as

$$
\operatorname{sim}\left(q_{o r}, d\right)=\sqrt{\frac{x^{2}+y^{2}}{2}}
$$

2-norm model

Extended Boolean Model

- Generalization
- t index terms are used $\rightarrow t$-dimensional space
- p-norm model, $1 \leq p \leq \infty$
$q_{a n d}=k_{1} \wedge^{p} k_{2} \wedge^{p} \ldots \wedge^{p} k_{m} \Rightarrow \operatorname{sim}\left(q_{a m i}, d\right)=1-\left(\frac{\left(1-x_{1}\right)^{p}+\left(1-x_{2}\right)^{p}+\ldots+\left(1-x_{m}\right)^{p}}{m_{1}}\right)^{\frac{1}{p}}$
$q_{o r}=k_{1} \vee^{p} k_{2} \vee^{p} \ldots \nu^{p} k_{m} \quad \Rightarrow \operatorname{sim}\left(q_{o r}, d\right)=\left(\frac{x_{1}^{p}+x_{2}^{p}+\ldots+x_{m}^{p}}{m}\right)^{\frac{1}{p}}$
- Some interesting properties
- $p=1 \Rightarrow \operatorname{sim}\left(q_{\text {and }}, d\right)=\operatorname{sim}\left(q_{o r}, d\right)=\frac{x_{1}+x_{2}+\ldots+x_{m}}{m}$
- $p=\infty \Rightarrow \operatorname{sim}\left(q_{\text {and }}, d\right)=\min \left(x_{i}\right)$

$$
\operatorname{sim}\left(q_{o r}, d\right)=\max \left(x_{i}\right)
$$

Extended Boolean Model

- Example query 1: $q=\left(k_{1} \wedge^{p} k_{2}\right) \vee^{p} k_{3}$
- Processed by grouping the operators in a predefined

$$
\operatorname{sim}(q, d)=\left(\frac{\left(1-\left(\frac{\left(1-x_{1}\right)^{p}+\left(1-x_{2}\right)^{p}}{2}\right)^{\frac{1}{p}}\right)^{p}+x_{3}^{p}}{2}\right)^{\frac{1}{p}}
$$

- Example query 2: $q=\left(k_{1} \vee^{2} k_{2}\right) \wedge^{\infty} k_{3}$
- Combination of different algebraic distances

$$
\operatorname{sim}(q, d)=\min \left(\left(\frac{x_{1}{ }^{2}+x_{2}{ }^{2}}{2}\right)^{\frac{1}{2}}, x_{3}\right)
$$

Extended Boolean Model

- Advantages

$$
q=\left(k_{1} \wedge^{p} k_{2}\right) \vee^{p} k_{3}
$$

- A hybrid model including properties of both the set theoretic models and the algebraic models
- Relax the Boolean algebra by interpreting Boolean operations in terms of algebraic distances
- Disadvantages
- Distributive operation does not hold for ranking computation

$$
\begin{gathered}
\text { - E.g.: } q_{1}=\left(k_{1} \wedge k_{2}\right) \vee k_{3}, q_{2}=\left(k_{1} \vee k_{3}\right) \wedge\left(k_{2} \vee k_{3}\right) \\
\operatorname{sim}\left(q_{1}, d\right) \neq \operatorname{sim}\left(q_{2}, d\right)
\end{gathered}
$$

- Assumes mutual independence of index terms

Generalized Vector Model

- Premise
- Classic models enforce independence of index terms
- For the Vector model
- Set of term vectors $\left\{\vec{k}_{1}, \vec{k}_{1}, \ldots, \overrightarrow{\left.k_{t}\right\}}\right.$ are linearly independent and form a basis for the subspace of interest
- Frequently, it means pairwise orthogonality
$-\forall i, j \Rightarrow \vec{k}_{i} \cdot \vec{k}_{j}=\overrightarrow{0}$ (in a more restrictive sense)
- Wong et al. proposed an interpretation
- The index term vectors are linearly independent, but not pairwise orthogonal
- Generalized Vector Model

Generalized Vector Model

- Key idea of Generalized Vector Model
- Index term vectors form the basis of the space are not orthogonal and are represented in terms of smaller components (minterms)
- Notations
$-\left\{k_{1}, k_{2}, \ldots, k_{t}\right\}$: the set of all terms
$-w_{i, j}$ the weight associated with $\left[k_{i}, d_{j}\right]$
- Minterms:binary indicators (0 or 1) of all patterns of occurrence of terms within documents
- Each represent one kind of co-occurrence of index terms in a specific document

Generalized Vector Model

- Representations of minterms

$$
\begin{aligned}
& m_{1}=(0,0, \ldots ., 0) \\
& m_{2}=(1,0, \ldots ., 0) \\
& m_{3}=(0,1, \ldots, 0) \\
& m_{4}=(1,1, \ldots, 0) \\
& m_{5}=(0,0,1, . ., 0) \\
& \ldots \\
& m_{2}=(1,1,1, . ., 1)
\end{aligned}
$$

${ }^{t}$ minterms

Points to the docs where only index terms k_{1} and k_{2} co-occur and the other index terms disappear

Point to the docs containing all the index terms

$$
\begin{aligned}
& \overrightarrow{m_{1}}=(1,0,0,0,0, \ldots, 0) \\
& \overrightarrow{m_{2}}=(0,1,0,0,0, \ldots, 0) \\
& \overrightarrow{m_{3}}=(0,0,1,0,0, \ldots, 0) \\
& \overrightarrow{m_{4}}=(0,0,0,1,0, \ldots, 0) \\
& \overrightarrow{m_{5}}=(0,0,0,0,1, \ldots, 0) \\
& \ldots \\
& \overrightarrow{\vec{m}_{2}}=(0,0,0,0,0, \ldots, 1)
\end{aligned}
$$

2^{t} minterm vectors

Pairwise orthogonal vectors \vec{m}_{i} associated with minterms m_{i} as the basis for the generalized vector space

Generalized Vector Model

- Minterm vectors are pairwise orthogonal. But, this does not mean that the index terms are independent
- Each minterm specifies a kind of dependence among index terms

Generalized Vector Model

- The vector associated with the term k_{i} is represented by summing up all minterms containing it and normalizing

$$
\begin{aligned}
& \vec{k}_{i}=\frac{\sum_{\forall r, g_{i}\left(m_{r}\right)=1} c_{i, r} \vec{m}_{r}}{\sqrt{\sum_{\forall r, g_{i}\left(m_{r}\right)=1} c_{i, r}^{2}}} \\
& c_{i, r}=\sum_{d_{j} \mid g_{l}\left(\vec{d}_{j}\right)=g_{l}\left(m_{r}\right), \text { for all } l} \mathcal{W}_{i, j} \\
& \text {-The weight associated with the pair }\left[k_{i}, m_{r}\right] \\
& \text { sums up the weights of the term } k_{i} \text { in all } \\
& \text { the docs which have a term occurrence } \\
& \text { pattern given by } m_{r} \text {. } \\
& \text { - Notice that for a collection of size } N \text {, } \\
& \text { only } N \text { minterms affect the ranking (and not }
\end{aligned}
$$

All the docs whose term co-occurrence relation (pattern) can be represented as (exactly coincide with that of) minterm m_{r}

Generalized Vector Model

- Example (a system with three index terms)

$\boldsymbol{m i n t e r m}$	$\boldsymbol{k}_{\boldsymbol{1}}$	$\boldsymbol{k}_{\boldsymbol{2}}$	$\boldsymbol{k}_{\boldsymbol{3}}$
$\boldsymbol{m}_{\boldsymbol{1}}$	0	0	0
$\boldsymbol{m}_{\boldsymbol{2}}$	1	0	0
$\boldsymbol{m}_{\boldsymbol{3}}$	0	1	0
$\boldsymbol{m}_{\boldsymbol{4}}$	1	1	0
$\boldsymbol{m}_{\boldsymbol{5}}$	0	0	1
$\boldsymbol{m}_{\boldsymbol{6}}$	1	0	1
\boldsymbol{m}_{7}	0	1	1
$\boldsymbol{m}_{\boldsymbol{8}}$	1	1	1

$$
\begin{aligned}
& \vec{k}_{1}=\frac{c_{1,2} \vec{m}_{2}+c_{1,4} \vec{m}_{4}+c_{1,6} \vec{m}_{6}+c_{1,8} \vec{m}_{8}}{\sqrt{{c_{1,2}{ }^{2}+c_{1,4}{ }^{2}+c_{1,6}{ }^{2}+c_{1,8}{ }^{2}}^{2}}} \\
& \vec{k}_{2}=\frac{c_{2,3} \vec{m}_{3}+c_{2,4} \vec{m}_{4}+c_{2,7} \vec{m}_{7}+c_{2,8} \vec{m}_{8}}{\sqrt{{c_{2,3}{ }^{2}+c_{2,4}{ }^{2}+c_{2,7}{ }^{2}+c_{2,8}^{2}}^{2}}} \\
& \vec{k}_{3}=\frac{c_{3,5} \vec{m}_{5}+c_{3,6} \vec{m}_{6}+c_{3,7} \vec{m}_{7}+c_{3,8} \vec{m}_{8}}{\sqrt{{c_{3,5}{ }^{2}+c_{3,6}{ }^{2}+c_{3,7}{ }^{2}+c_{3,8}^{2}}_{2}^{2}}}
\end{aligned}
$$

	$\boldsymbol{k}_{\boldsymbol{1}}$	$\boldsymbol{k}_{\mathbf{2}}$	$\boldsymbol{k}_{\boldsymbol{3}}$	minterm
$\boldsymbol{d}_{\boldsymbol{1}}$	2	0	1	$\boldsymbol{m}_{\boldsymbol{6}}$
$\boldsymbol{d}_{\mathbf{2}}$	1	0	0	\boldsymbol{m}_{2}
$\boldsymbol{d}_{\mathbf{3}}$	0	1	3	\boldsymbol{m}_{7}
$\boldsymbol{d}_{\mathbf{4}}$	2	0	0	$\boldsymbol{m}_{\mathbf{2}}$
$\boldsymbol{d}_{\mathbf{5}}$	1	2	4	$\boldsymbol{m}_{\boldsymbol{8}}$
$\boldsymbol{d}_{\boldsymbol{6}}$	1	2	0	\boldsymbol{m}_{4}
\boldsymbol{d}_{7}	0	5	0	$\boldsymbol{m}_{\boldsymbol{3}}$
\boldsymbol{q}	1	2	3	

$$
\begin{aligned}
& c_{1,2}=w_{1.2}+w_{1.4}=1+2=3 \quad \vec{k}_{1}=\frac{3 \vec{m}_{2}+1 \vec{m}_{4}+2 \vec{m}_{6}+1 \vec{m}_{8}}{\sqrt{3^{2}+1^{2}+2^{2}+1^{2}}} \\
& c_{1,4}=w_{1.6}=1 \\
& c_{1,6}=w_{1,1}=2 \\
& c_{1,8}=w_{1,5}=1
\end{aligned}
$$

$$
\begin{aligned}
& c_{2,3}=w_{2,7}=5 \\
& c_{2,4}=w_{2,6}=2 \\
& c_{2,7}=w_{2,3}=1 \\
& c_{2,8}=w_{2,5}=2
\end{aligned} \quad \vec{k}=\frac{5 \vec{m}_{3}+2 \vec{m}_{4}+1 \vec{m}_{7}+2 \vec{m}_{8}}{\sqrt{5^{2}+2^{2}+1^{2}+2^{2}}}
$$

$$
c_{3,5}=0
$$

$$
c_{3,6}=w_{3,1}=1
$$

$$
c_{3,7}=w_{3,3}=3
$$

$$
\vec{k}_{3}=\frac{0 \vec{m}_{5}+1 \vec{m}_{6}+3 \vec{m}_{7}+4 \vec{m}_{8}}{\sqrt{0^{2}+1^{2}+3^{2}+4^{2}}}
$$

$$
c_{3,8}=w_{3,5}=4
$$

Generalized Vector Model

$\vec{k}_{2}=\frac{5 \vec{m}_{3}+2 \vec{m}_{4}+1 \vec{m}_{7}+2 \vec{m}_{8}}{\sqrt{5^{2}+2^{2}+1^{2}+2^{2}}}=\frac{5 \vec{m}_{3}+2 \vec{m}_{4}+1 \vec{m}_{7}+2 \vec{m}_{8}}{\sqrt{34}}$ $\vec{k}_{3}=\frac{0 \vec{m}_{5}+1 \vec{m}_{6}+3 \vec{m}_{7}+4 \vec{m}_{8}}{\sqrt{0^{2}+1^{2}+3^{2}+4^{2}}}=\frac{1 \vec{m}_{6}+3 \vec{m}_{7}+4 \vec{m}_{8}}{\sqrt{26}}$
$\vec{d}_{1}=2 \vec{k}_{1}+1 \vec{k}_{3}$
$=2 k_{1}+1 k_{3}$
$=\frac{2 \cdot 3}{\sqrt{15}}{\stackrel{s}{d_{1,2}}}_{2}+\frac{2 \cdot 1}{\sqrt{15}} \vec{m}_{4}+\left(\frac{2 \cdot 2}{\sqrt{15}}+\frac{s_{d_{1}, 6}}{\sqrt{26}}\right) \vec{m}_{6}+\frac{1 \cdot 3}{\sqrt{26}} \vec{m}_{7}+\left(\frac{2 \cdot 1}{\sqrt{15}}+\frac{s_{d_{1}, 7}}{\sqrt{26}}\right) \vec{m}_{8}$
$\vec{q}=1 \vec{k}_{1}+2 \vec{k}_{2}+3 \vec{k}_{3}$
$=\underset{s_{q, 2}}{\frac{1 \cdot 3}{\sqrt{15}}} \vec{m}_{2}+\underset{s_{q, 3}}{\frac{2 \cdot 5}{\sqrt{34}}} \vec{m}_{3}+\left(\frac{1 \cdot 1}{\sqrt{15}}+\underset{s_{q, 4}}{\frac{2 \cdot 2}{\sqrt{34}}}\right) \vec{m}_{4}+\left(\frac{1 \cdot 2}{\sqrt{15}}+\frac{3 \cdot 1}{\sqrt{26}}\right) \vec{m}_{6}+\left(\frac{2 \cdot 1}{\sqrt{34}}+\frac{3 \cdot 3}{\sqrt{26}}\right) \vec{m}_{7}+\left(\frac{1 \cdot 1}{\sqrt{15}}+\frac{2 \cdot 2}{\sqrt{34}}+\frac{3 \cdot 4}{\sqrt{26}}\right) \vec{m}_{8}$
$\operatorname{sim}(q, d)=$ consine $(q, d)=\frac{\sum_{s_{q, i} \neq 0 \wedge s_{d, i} \neq 0} s_{q, i} \cdot s_{d, i}}{\sqrt{\sum_{i} s_{q, i}^{2}} \sqrt{\sum_{i} s_{d, i}^{2}}}$
$\operatorname{sim}\left(q, d_{1}\right)=\frac{s_{q, 2} s_{d_{1}, 2}+s_{q, 4} S_{d_{1}, 4}+s_{q, 6} S_{d_{1}, 6}+s_{q, 7} S_{d_{1}, 7}+S_{q, 8} s_{d_{1}, 8}}{\sqrt{S_{q, 2}^{2}+s_{q, 3}^{2}+s_{q, 4}^{2}+s_{q, 6}^{2}+s_{q, 7}^{2}+s_{q, 8}^{2}} \sqrt{s_{d_{1}, 2}^{2}+s_{d_{1}, 4}^{2}+s_{d_{1}, 6}^{2}+s_{d_{1}, 7}^{2}+s_{d_{1}, 8}^{2}}}$

Generalized Vector Model

- Term Correlation
- The degree of correlation between the terms k_{i} and k_{j} can now be computed as

$$
\vec{k}_{i} \bullet \vec{k}_{j}=\sum_{\forall r \mid g_{i}\left(m_{r}\right)=1 \wedge g_{j}\left(m_{r}\right)=1} c_{i, r} \times c_{j, r}
$$

- Do not need to be normalized? (because we have done it before!)

Generalized Vector Model

- Advantages
- Model considers correlations among index terms
- Model does introduce interesting new ideas
- Disadvantages
- Not clear in which situations it is superior to the standard Vector model
- Computation costs are higher

