Query Languages

Berlin Chen 2003

Reference:

1. Modern Information Retrieval, chapter 4

The Kinds of Queries

- Data retrieval
 - Pattern-based querying
 - Retrieve docs that contains (or exactly match) the objects that satisfy the conditions clearly specified in the query
 - A single erroneous object implies failure!
- Information retrieval
 - Keyword-based querying
 - Retrieve relevant docs in response to the query (the formulation of a user information need)
 - Allow the answer to be ranked

The Kinds of Queries

- On-line databases or CD-ROM archives
 - High level software packages should be viewed as query languages
 - Named "protocols"

Different query languages are formulated and then used at different situations, by considering

- The underlying retrieval models
- The content (semantics) and structure (syntax) of the text

Models: Boolean, vector-space, HMM Formulations/word-treating machineries: Stop-word list, stemming, query-expansion,

The Retrieval Units

- The retrieval unit: the basic element which can be retrieved as an answer to a query
 - A set of such basic elements with ranking information
- The retrieval unit can be a file, a doc, a Web page, a paragraph, a passage, or some other structural units
- Simply referred as "docs"

- Keywords
 - Those words can be used for retrieval by a query
 - A small set of words extracted from the docs
 - Preprocessing is needed
- Characteristics of keyword-based queries
 - A query composed of keywords and the docs containing such keywords are searching for
 - Intuitive, easy to express, and allowing for fast ranking
 - A query can be a single keyword or more complex combination of operation involving several keywords

- Single-word queries
 - Query: The elementary query is a word
 - **Docs**: The docs are long sequences of words
 - What is a word in English ?
 - A word is a sequence of letters surrounded by separators
 - Some characters are not letters but do not split a word, e.g. the hyphen in 'on-line'
 - Words possess semantic/conceptual information

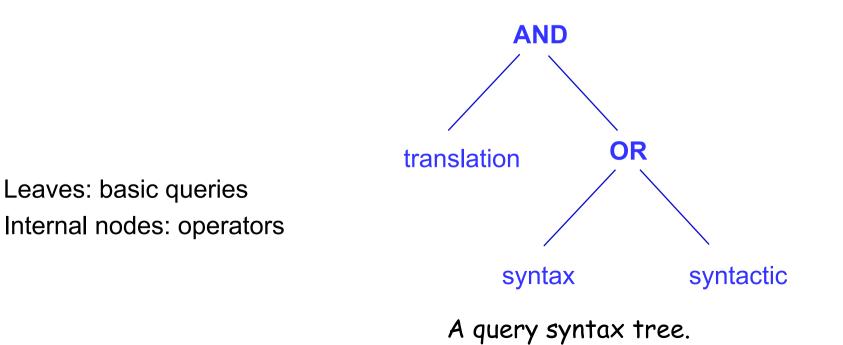
- Single-word queries (cont.)
 - The use of word statistics for IR ranking
 - Word occurrences inside texts
 - Term frequency: number of times a word in a doc
 - Inverse document frequency: number of docs in which a word appears
 - Word positions in the docs
 - May be required, e.g., a interface highlighting each occurrence of a specific word

- Context queries
 - Complement single-word queries with ability to search words in a given context, i.e., near other words
 - Words appearing near each other may signal a higher likelihood of relevance than if they appear apart
 - Phrases of words or words are proximal in the text

- Context queries (cont.)
 - Two types of queries
 - Phrase

Separators in the text or query may not be the same

- A sequence of single-word queries
- Q: "enhance" and "retrieval"
- D: "...enhance the retrieval...."
- Proximity
- May not consider word ordering
- A sequence of single words (or phrases) is given together with a maximum allowed distance between them


- A relaxed version of the phrase query

» E.g., two keywords occur within four wordsD: "...enhance the power of retrieval..."

- Context queries (cont.)
 - Ranking
 - Phrases: analogous to single words
 - Proximity queries: the same way if physical proximity is not used as a parameter in ranking
 - Just as a hard-limiter
 - But physical proximity has semantic value !

Boolean Queries

 Have a syntax composed of atoms (basic queries) that retrieve docs, and of Boolean operators which work on their operands

- **Boolean Queries** (cont.)
 - Commonly used operators
 - **OR**, e.g. $(e_1 \text{ OR } e_2)$
 - Select all docs which satisfy e_1 or e_2 . Duplicates $e_1 OR e_2$ are eliminated

 e_1 and e_2 are basic queries

d,

 d_3

 d_{8}

 d_{10}

- AND, e.g. $(e_1 AND e_2)$ $d_{10} d_{8}$
 - Select all docs which satisfy both e_1 and e_2
- **BUT**, e.g. $(e_1 BUT e_2)$
 - Select all docs which satisfy e_1 but not e_2

No partial matching between a doc and a query No ranking of retrieved docs are provided!

- Boolean Queries (cont.)
 - A relaxed version: a "fuzzy Boolean" set of operators
 - The meaning of AND and OR can be relaxed
 - all : the AND operator
 - -*one*: the OR operator (at least one)
 - *some*: retrieval elements appearing in more operands than the OR
 - Docs are ranked higher when having a larger number of elements in common with the query

- Natural language
 - Push the fuzzy Boolean model even further
 - The distinction between AND and OR are complete blurred
 - A query is an enumeration of words and context queries
 - All the documents matching a portion of the user query are retrieved
 - Docs matching more parts of the query assigned a higher ranking
 - Negation also can be handled by penalizing the ranking score
 - E.g. some words are not desired

- Pattern matching: allow the retrieval of doc based on some patterns
 - A pattern is a set of syntactic features must occur in a text segments
 - Segments satisfying the pattern specifications are said to "match the pattern"
 - E.g. the prefix of a word
 - A kind of data retrieval
- Pattern matching (data retrieval) can be viewed as an enhanced tool for information retrieval
 - Require more sophisticated data structures and algorithms to retrieve efficiently

- Types of patterns
 - Words
 - **Prefixes**: a string from the beginning of a text word
 - E.g. 'comput': 'computer', 'computation',...
 - Suffixes: a string from the termination of a text word
 - E.g. 'ters': 'computers', 'testers', 'painters',...
 - Substrings: A string within a text word
 - E.g. 'tal': 'coastal', 'talk', 'metallic', ...
 - Ranges: a pair of strings matching any words lying between them in lexicographic order
 - E.g. between 'held' and 'hold': 'hoax' and 'hissing',...

- Allowing errors: a word together with an error threshold
 - Useful for when query or doc contains typos or misspelling
 - Retrieve all text words which are 'similar' to the given word
 - edit (or Levenshtein) distance: the minimum number of character insertions, deletions, and replacements needed to make two strings equal

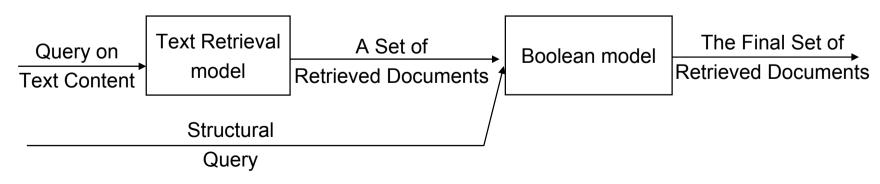
-E.g. 'flower' and 'flo wer'

 maximum allowed edit distance: query specifies the maximum number of allowed errors for a word to match the pattern

Regular Expressions

- General patterns are built up by simple strings and several operations
- **union**: if e_1 and e_2 are regular expressions, then $(e_1 | e_2)$ matches what e_1 or e_2 matches
- **concatenation**: if e_1 and e_2 are regular expressions, the occurrences of $(e_1 e_2)$ are formed by the occurrences of e_1 immediately followed by those of e_2
- repetition (Kleene closure): if e is a regular expression, then (e^{*}) matches a sequence of zero or more contiguous occurrence of e
- Example:
 - 'pro (blem | tein) (s | ε) (0 | 1 | 2)*' matches words 'problem2', 'proteins', etc.

– Extended Patterns


- Subsets of the regular expressions expressed with a simpler syntax
- System can convert extended patterns into regular expressions, or search them with specific algorithms
- E.g.: classes of characters:

RE	Expansion	Match	Example Patterns
∖d	[0-9]	any digit	Party_of <u>_5</u>
∖D	[^0-9]	any non-digit	<u>B</u> lue_moon
∖w	[a-zA-Z0-9 _]	any alphanumeric or space	<u>D</u> aiyu
$\setminus W$	[^\w]	a non-alphanumeric	<u>!</u> !!!
∖s	[] r t n f]	whitespace (space, tab)	
∖S	[^\s]	Non-whitespace	<u>in</u> Concord

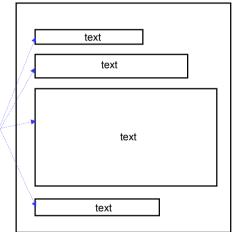
Structural Queries

- Docs are allowed to be queried with respect to both their text content and structural constraints
 - **Text content**: words, phrases, or patterns
 - Structural constraints: containment, proximity, or other restrictions on the structural elements (e.g., chapters, sections, etc.)

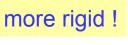
Mixing contents and structures in queries

Structural Queries

- Three main structures discussed here
 - Form-like fixed structure
 - Hierarchical structure
 - Hypertext structure


simple

complex

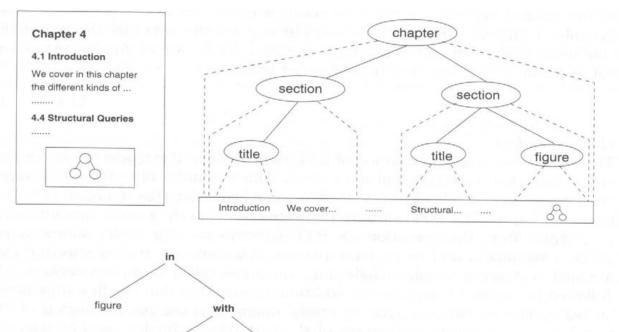

What structure a text may have? What can be queried about that structure? (the query model) How to rank docs?

Form-like Fixed Structure

- Docs have a fixed set of **fields**, much like a filled form
 - Each field has some text inside
 - Some fields are not presented in all docs
 - Text has to be classified into a field
 - Fields are not allow to nest or overlap
 - A given pattern only can be associated with a specified filed

- E.g., a mail achieve (sender, receiver, date, subject, body ..)
 - Search for the mail sent to a given person with "football" in the subject field
- Compared with the relational database systems
 - Different fields with different data types

Hypertext Structure


- A hypertext is a directed graph where
 - Nodes hold some text (content)
 - The links represents connection (structural connectivity) between nodes or between positions inside the nodes
- Retrieval from a hypertext began as a merely navigational activity
 - Manually traverse the hypertext nodes following links to search what one wanted
 - It's still not possible to query the hypertext based on its structure
- An interesting proposal to combine browsing and searching on the web WebGlimpse

Ć)

▲B

Hierarchical Structure

- Represent a recursive decomposition of the text and is a natural model for many text collections
 - E.g., books, articles, legal documents,...

"structural'

with

section

title

Issues of Hierarchical Structure

- Static or dynamic structure
 - Statistic: one or more explicit hierarchies can be queried, e.g., by ancestry
 - Dynamic: not really a hierarchy, the required elements are built on the fly
 - Implemented over a normal text index
- Restrictions on the structure
 - The text or the answers may have restrictions about nesting and/or overlapping for efficiency reasons
 - In other cases, the query language is restricted to avoid restricting the structure

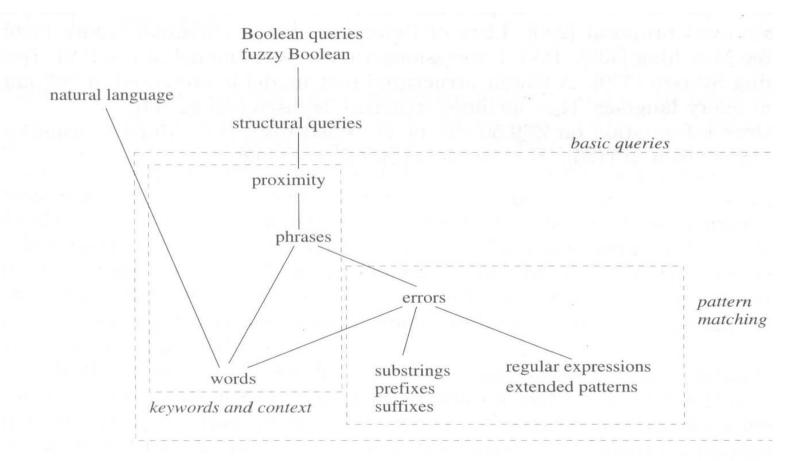
Issues of Hierarchical Structure

- Integration with text
 - Effective Integration of queries on text content with queries on text structure
 - From perspectives of classical IR models and structural models, respectively Classical model: primary -> text
 - secondary->structure

Structural model: primary -> structure secondary->text

- Query language
 - Some features for queries on structure including selection of areas that
 - Contain (or not) other areas
 - Are contained (or not) in other areas
 - Follow (or are followed by) other areas
 - Are close to other areas
 - Also including set manipulation

Query Protocols


- The query languages used automatically by software applications to query text databases
 - Standards for querying CD-ROMs
 - Or, intermediate languages to query library systems
- Important query protocols
 - Z39.50
 - For bibliographical information systems
 - Protocols for not only the query language but also the client-server connection
 - WAIS (Wide Area Information Service)
 - A networking publishing protocol
 - For querying database through the Internet

Query Protocols

- CD-ROM publishing protocols
 - Provide "disk interchangeability": flexibility in data communication between primary information providers and end users
 - Some example protocols
 - CCL (Common Command Language)
 - CD-RDx (Compact Disk Read only Data exchange)
 - SFQL (Structured Full-text Query Languages)

Trends and Research Issues

Types of queries and how they are structured

