Query Operations

Berlin Chen 2003

Reference:

1. Modern Information Retrieval, chapter 5

Introduction

- Users have no detailed knowledge of
 - The collection makeup
 - The retrieval environment

Difficult to formulate queries

- Scenario of (Web) IR
 - 1. An initial (naive) query posed to retrieve relevant docs
 - 2. Docs retrieved are examined for relevance and a new improved query formulation is constructed and posed again

Expand the original query with new terms (query expansion) and rewight the terms in the expanded query (term weighting)

Query Reformulation

- Approaches through query expansion (QE) and terming weighting
 - Feedback information from the user
 - Relevance feedback
 - With vector, probabilistic models et al.
 - Information derived from the set of documents initially retrieved (called local set of documents)
 - · Local analysis
 - -Local clustering, local context analysis
 - Global information derived from document collection
 - Global analysis
 - Similar thesaurus or statistical thesaurus

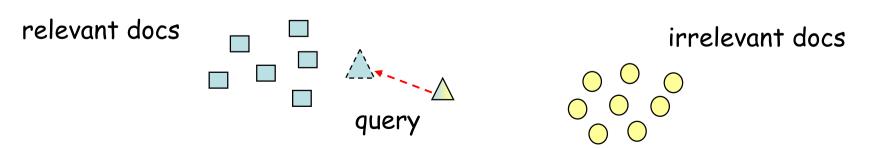
Relevance Feedback

- User (or Automatic) Relevance Feedback
 - The most popular query reformation strategy
- Process for user relevance feedback
 - A list of retrieved docs is presented
 - User or system exam them and marked the relevant ones
 - Important terms are selected from the docs marked as relevant, and the importance of them are enhanced in the new query formulation

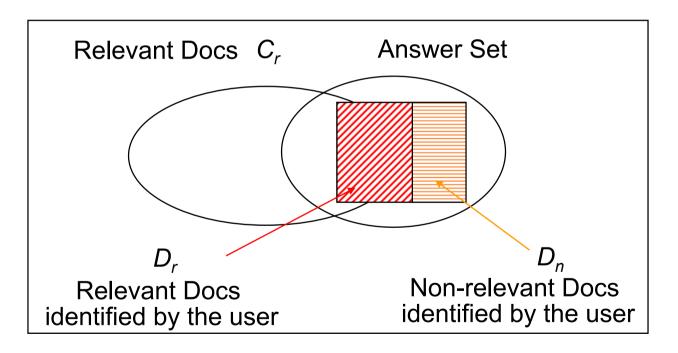
relevant docs
query

irrelevant docs

User Relevance Feedback


Advantages

- Shield users from details of query reformulation
 - User only have to provide a relevance judgment on docs
- Break down the whole searching task into a sequence of small steps
- Provide a controlled process designed to emphasize some terms (relevant ones) and de-emphasize others (non-relevant ones)


For automatic relevance feedback, the whole process is done in an implicit manner.

Assumptions

- Relevant docs have term-weight vectors that resemble each other
- Non-relevant docs have term-weight vectors which are dissimilar from the ones for the relevant docs
- The reformulated query gets to closer to the termweight vector space of relevant docs

Terminology

Doc Collection with size *N*

· Optimal Condition

– The complete set of relevant docs C_r to a given query q is known in advance

$$\vec{q}_{opt} = \frac{1}{|C_r|} \sum_{\forall \vec{d}_i \in C_r} \vec{d}_i - \frac{1}{N - |C_r|} \sum_{\forall \vec{d}_j \notin C_r} \vec{d}_j$$

- Problem: the complete set of relevant docs C_r are not known a priori
 - Solution: formulate an initial query and incrementally change the initial query vector based on the known relevant/non-relevant docs
 - User or automatic judgments

In Practice

1. Standard_Rocchio

Rocchio 1965

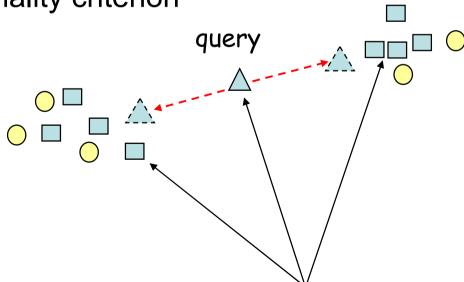
The highest ranked

non-relevant doc

modified query
$$\vec{q}_m = \alpha \cdot \vec{q} + \frac{\beta}{|D_r|} \cdot \sum_{\forall \vec{d}_i \in Dr} \vec{d}_i - \frac{\gamma}{|D_n|} \cdot \sum_{\forall \vec{d}_j \in Dn} \vec{d}_j$$

2. Ide_Regular initial/original query

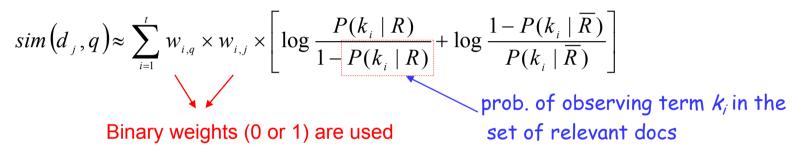
$$\vec{q}_{m} = \alpha \cdot \vec{q} + \beta \cdot \sum_{\forall \vec{d}_{i} \in Dr} \vec{d}_{i} - \gamma \cdot \sum_{\forall \vec{d}_{i} \in Dn} \vec{d}_{j}$$


3. Ide_Dec_Hi

$$\vec{q}_{m} = \alpha \cdot \vec{q} + \beta \cdot \sum_{i} \vec{d}_{i} - \gamma \cdot \max_{non-relevant} (\vec{d}_{j})$$

- Similar results were achieved for the above three approach (Dec-Hi slightly better in the past)
- Usually, constant β is bigger than γ (why?)

- In Practice (cont.)
 - More about the constants
 - Rochio, 1971: $\alpha = 1$
 - Ide, 1971: $\alpha = \beta = \gamma = 1$
 - Positive feedback strategy: $\gamma = 0$


- Advantages
 - Simple, good results
 - Modified term weights are computed directly from the retrieved docs
- Disadvantages
 - No optimality criterion

Term Reweighting for the Probabilistic Model

Roberston & Sparck Jones 1976

Similarity Measure

- Initial Search (with some assumptions)
 - $P(k_i | R) = 0.5$: is constant for all indexing terms
 - $P(k_i \mid \overline{R}) = \frac{n_i}{N}$:approx. by doc freq. of index terms

$$sim \left(d_{j}, q\right) \approx \sum_{i=1}^{t} w_{i,q} \times w_{i,j} \times \log \frac{1 - \frac{N_{i}}{N}}{\frac{n_{i}}{N}}$$

$$= \sum_{i=1}^{t} w_{i,q} \times w_{i,j} \times \log \frac{N - n_{i}}{n_{i}}$$

Term Reweighting for the Probabilistic Model

Relevance feedback (term reweighting alone)

$$P(k_{i} \mid R) = \frac{\left|D_{r,i}\right|}{\left|D_{r}\right|} \leftarrow \begin{array}{c} \text{Relevant docs} \\ \text{containing term } k_{i} \end{array} \qquad \begin{array}{c} P(k_{i} \mid R) = \frac{\left|D_{r,i}\right| + 0.5}{\left|D_{r}\right| + 1} \\ P(k_{i} \mid \overline{R}) = \frac{n_{i} - \left|D_{r,i}\right| + 0.5}{N - \left|D_{r}\right| + 1} \end{array}$$

$$P(k_{i} \mid \overline{R}) = \frac{n_{i} - \left|D_{r,i}\right| + 0.5}{N - \left|D_{r}\right| + 1}$$

$$P(k_{i} \mid \overline{R}) = \frac{\left|D_{r,i}\right| + \frac{n_{i}}{N}}{\left|D_{r}\right| + 1}$$

$$P(k_{i} \mid \overline{R}) = \frac{n_{i} - \left|D_{r,i}\right| + \frac{n_{i}}{N}}{N - \left|D_{r}\right| + 1}$$

$$P(k_{i} \mid \overline{R}) = \frac{n_{i} - \left|D_{r,i}\right| + \frac{n_{i}}{N}}{N - \left|D_{r}\right| + 1}$$

$$sim \ (d_{j}, q) \approx \sum_{i=1}^{t} w_{i,q} \times w_{i,j} \times \left[\log \frac{\frac{\left| D_{r,i} \right|}{\left| D_{r} \right|}}{1 - \frac{\left| D_{r,i} \right|}{\left| D_{r} \right|}} + \log \frac{1 - \frac{n_{i} - \left| D_{r,i} \right|}{N - \left| D_{r} \right|}}{\frac{n_{i} - \left| D_{r,i} \right|}{N - \left| D_{r} \right|}} \right]$$

$$= \sum_{i=1}^{t} w_{i,q} \times w_{i,j} \times \log \left[\frac{\left| D_{r,i} \right|}{\left| D_{r} \right| - \left| D_{r,i} \right|} \cdot \frac{N - \left| D_{r} \right| - n_{i} + \left| D_{r,i} \right|}{n_{i} - \left| D_{r,i} \right|} \right]$$

Term Reweighting for the Probabilistic Model

Advantages

- Feedback process is directly related to the derivation of new weights for query terms
- The term reweighting is optimal under the assumptions of term independence and binary doc indexing

Disadvantages

- Document term weights are not taken into considered
- Weights of terms in previous query formulations are disregarded
- No query expansion is used
 - The same set of index terms in the original query is reweighted over and over again

A Variant of Probabilistic Term Reweighting

Croft 1983

· Differences

- Distinct initial search assumptions
- Within-document frequency weight included
- Initial search (assumptions)

$$sim(d_{j},q) \propto \sum_{i=1}^{t} w_{i,q} w_{i,j} F_{i,j,q}$$

$$F_{i,j,q} = (C + idf_{i}) \bar{f}_{i,j} \qquad \bar{f}_{i,j} = K + (1 + K) \frac{f_{i,j}}{\max(f_{i,j})}$$

~ Inversed document frequency ~ Term frequency

A Variant of Probabilistic Term Reweighting

Relevance feedback

$$F_{i,j,q} = (C + \log \frac{P(k_i | R)}{1 - P(k_i | R)} + \log \frac{1 - P(k_i | \overline{R})}{P(k_i | \overline{R})}) \overline{f}_{i,j}$$

$$P(k_{i} | R) = \frac{\left| D_{r,i} \right| + 0.5}{\left| D_{r} \right| + 1}$$

$$P(k_{i} | \overline{R}) = \frac{n_{i} - \left| D_{r,i} \right| + 0.5}{N - \left| D_{r} \right| + 1}$$

A Variant of Probabilistic Term Reweighting

Advantages

- The within-doc frequencies are considered
- A normalized version of these frequencies is adopted
- Constants C and K are introduced for greater flexibility

Disadvantages

- More complex formulation
- No query expansion

Evaluation of relevance feedback Strategies

- Recall-precision figures of user reference feedback is unrealistic
 - Since the user has seen the docs during reference feedback
 - A significant part of the improvement results from the high ranker ranks assigned to the set R of docs

$$\vec{q}_{m} = \alpha \cdot \vec{q} + \frac{\beta}{|D_{r}|} \cdot \sum_{\forall \vec{d}_{i} \in Dr} \vec{d}_{i} - \frac{\gamma}{|D_{n}|} \cdot \sum_{\forall \vec{d}_{j} \in Dn} \vec{d}_{j}$$
modified query original query

Relevant Docs C_{r} Answer Set

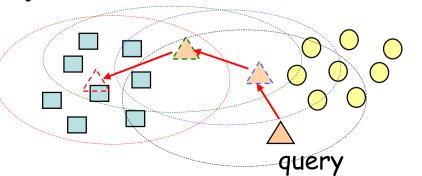
$$D_{r}$$
Relevant Docs Non-relevant Docs

Doc Collection with size N

 The real gains in retrieval performance should be measured based on the docs not seen by the user yet

Evaluation of relevance feedback Strategies

- Recall-precision figures relative to the residual collection
 - Residual collection
 - The set of all docs minus the set of feedback docs provided by the user
 - Evaluate the retrieval performance of the modified query \overrightarrow{q}_m considering only the residual collection
 - The recall-precision figures for \overrightarrow{q}_m tend to be lower than the figures for the original query \overrightarrow{q}
 - It's OK! If we just want to compare the performance of different relevance feedback strategies


Automatic Local/Global Analysis

- Recall in user relevance feedback cycles
 - Top ranked docs separated into two classes
 - Relevant docs
 - Non-relevant docs
 - Terms in known relevant docs help describe a larger cluster of relevant docs
 - From a "clustering" perspective

Attar and Fraenkel 1977

 Description of larger cluster of relevant docs is built iteratively with assistance from the user

relevant docs

irrelevant docs

Automatic Local/Global Analysis

- Alternative approach: automatically obtain the description for a large cluster of relevant docs
 - Identify terms which are related to the query terms
 - Synonyms
 - Stemming variations
 - Terms are close each other in context
 - Two strategies
 - Global analysis
 - All docs in collection are used to determine a global thesaurus-like structure for QE

陳水扁 總統 與 總統府 秘書長 陳師孟 …

- Local analysis
 - Docs retrieved at query time are used to determine terms for QE
 - Local clustering, local context analysis

QE through Local Clustering

- QE through Clustering
 - Build global structures such as association matrices to quantify term correlations
 - Use the correlated terms for QE
 - But not always effective in general collections

```
陳水扁 總統 呂秀蓮 綠色矽島 勇哥 吳淑珍 … 陳水扁 視察 阿里山 小火車
```

- QE through Local Clustering
 - Operate solely on the docs retrieved for the query
 - Not suitable for Web search: time consuming
 - Suitable for intranets
 - Especially, as the assistance for search information in specialized doc collections like medical doc collections

QE through Local Clustering

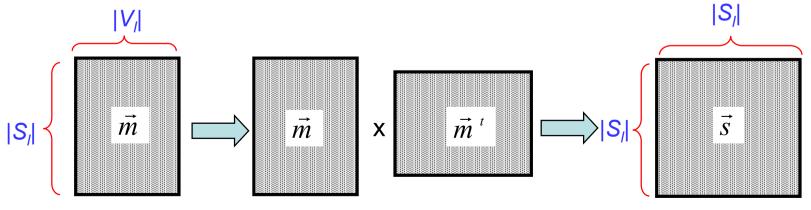
Definition

- Stem
 - V(s): a non-empty subset of words which are grammatical variants of each other
 - E.g. {polish, polishing, polished}
 - A canonical form s of V(s) is called a stem
 - -e.g., s=polish
- For a given query
 - Local doc set D_i: the set of documents retrieved
 - local vocabulary V_i : the set of all distinct words (stems) in the local document set
 - S_{l} the set of all distinct stem derived from V_{l}

Association clusters

Consider the co-occurrence of stems (terms) inside docs

Metric Clusters


Consider the distance between two terms in a doc

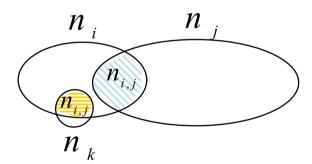
· Scalar Clusters

- Consider the neighborhoods of two terms
 - Do they have similar neighborhoods?

Association clusters

- Based on the co-occurrence of stems (terms) inside docs
 - Assumption: stems co-occurring frequently inside docs have a synonymity association
- An association matrix with $|S_i|$ rows and $|V_i|$ columns
 - Each entry $f_{s_i,j}$ the frequency of a stem s_i in a doc d_j

stem-stem association matrix


Association clusters

 Each entry In the stem-stem association matrix stands for the correlation factor between two stems

$$c_{u,v} = \sum_{d_j \in D_l} f_{s_{u,j}} \times f_{s_{v,j}}$$

- The unnormalized form

$$S_{u,v} = C_{u,v}$$

The normalized form

$$S_{u,v} = \frac{c_{u,v}}{c_{u,u} + c_{v,v} - c_{u,v}}$$

Association clusters

- The u-th row in the association matrix stands all the associations for the stem s_{ij}
- A local association cluster $S_{\nu}(m)$
 - Defined as a set of stems s_v ($v \neq u$) with their respective values $s_{u,v}$ being the top m ones in the u-th row of the association matrix
- Given a query, only the association clusters of query terms are calculated
 - The stems (terms) belong to the association clusters are selected and added the query formulation

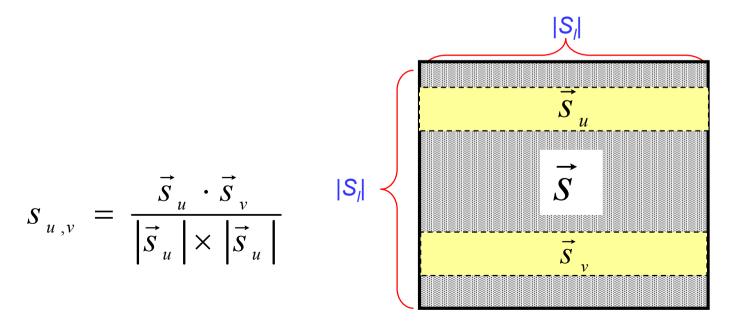
Metric Clusters

 Take into consideration the distance between two terms in a doc while computing their correlation factor

$$c_{u,v} = \sum_{k_i \in V(s_u)} \sum_{k_j \in V(s_v)} \frac{1}{r(k_i, k_j)}$$
no. of words between k_i and k_j in the same doc $r(k_i, k_j) = \infty$ if k_i and k_j are in distinct docs

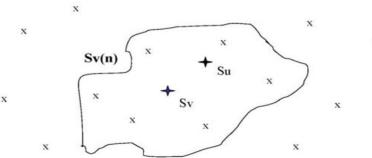
- The entry of **local stem-stem metric correlation** matrix \vec{s} can be expressed as
 - The unnormalized form

$$S_{u,v} = C_{u,v}$$


The normalized form

$$S_{u,v} = \frac{C_{u,v}}{|V(S_u)| \times |V(S_v)|}$$

The local association clusters of stems can be similarly defined


Scalar Clusters

- **Idea**: two stems (terms) with similar neighborhoods have some synonymity relationship
- Derive the synonymity relationship between two stems by comparing the sets $S_{\nu}(m)$ and $S_{\nu}(m)$

QE through Local Clustering

- Iterative Search Formulation
 - "**neighbor**": a stem s_u belongs to a cluster associated to another term s_v is said to be a neighbor of s_v
 - Not necessarily synonyms in the grammatrical sense
 - Stems belonging to clusters associated to the query stems (terms) can be used to expand the original query

stems s_u as a neighbor or the stem s_v

QE through Local Clustering

- Iterative Search Formulation
 - Query expansion
 - For each stem $s_v \in q$, select m neighbors stems from the cluster $S_v(m)$ and add them to the query
 - The additional neighbor stems will retrieve new relevant docs
 - The impact of normalized or unnormalized clusters
 - Unnormalized: group stems with high frequency
 - Normalized: group rare stems
 - Union of them provides a better representation of stem (term) correlations

Local Context Analysis

Local Analysis

Calculation of term correlations at query time

- Based on the set of docs retrieved for the original query
- Based on term (stem) correlation inside docs
- Terms are neighbors of each query terms are used to expand the query
- Global Analysis

Pre-calculation of term correlations

- Based on the whole doc collection
- The thesaurus for term relationships are built by considering small contexts (e.g. passages) and phrase structures instead of the context of the whole doc
- Terms closest to the whole query are selected for query expansion

Local context analysis combines features

from both

Local Context Analysis

Xu and Croft 1996

- Operations of local context analysis
 - Document concepts: Noun groups from retrieved docs as the units for QE instead of single keywords
 - Concepts selected from the top ranked passages (instead of docs) based on their co-occurrence with the whole set of query terms (no stemming)

QE through Local Context Analysis

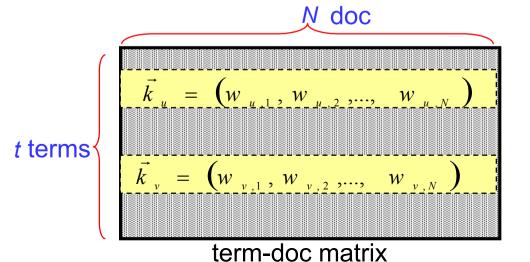
- The operations can be further described in three steps
 - Retrieve the top n ranked passages using the original query (a doc is segmented into several passages)
 - For each concept c in the top ranked passages, the similarity sim(q,c) between the whole query q and the concept c is computed using a variant of tf-idf ranking
 - The top m ranked concepts are added to the original query q
 - Each concept is assigned a weight 1-0.9x i/m (i: the position in rank)
 - Original query terms are stressed by a weight of 2

QE through Local Context Analysis

The similarity between a concept and a query

$$sim (q,c) = \prod_{k_i \in q} \left(\delta + \frac{\log (f(c,k_i) \times idf_c)}{\log n} \right)_{infrequent terms}^{idf_i}$$

Set to 0.1 to avoid zero


$$f\left(c\,,\,k_{\,i}\,\right) = \sum_{i\,,\,j}^{n} pf_{\,i\,,\,j} \times pf_{\,c\,,\,j}$$
 the no. of top ranked passages considered

$$idf_c = \max\left(1, \frac{\log_{10} N/np_c}{5}\right)$$
 the no. of passages in the collection

$$idf_i = \max\left(1, \frac{\log_{10} N/np_i}{5}\right)$$
 the no. of passages containing concept c

Qiu and Frei 1993

- How to construct the similarity thesaurus
 - Term to term relationships rather than term co-occurrences are considered
- How to select term for query expansion
 - Terms for query expansion are selected based on their similarity to the whole query rather the similarities to individual terms

Docs are interpreted as indexing elements here

- Doc frequency within the term vector
- •Inverse term frequency

Definition

- $-f_{u,i}$: the frequency of term k_u in document d_i
- $-t_i$: the number of distinct index terms in document d_i
- Inverse term frequency

$$itf_{j} = \log \frac{t}{t_{j}}$$

 The weight associated with each entry in the term-doc matrix

$$w_{u,j} = \frac{\left(0.5 + 0.5 \frac{f_{u,j}}{\max_{j} f_{u,j}}\right) \times itf_{j}}{\sqrt{\sum_{l=1}^{N} \left[\left(0.5 + 0.5 \frac{f_{u,l}}{\max_{l} f_{u,l}}\right) \times itf_{l}\right]^{2}}} \text{ Let term vector have a unit norm}$$

• The relationship between two terms k_u and k_v

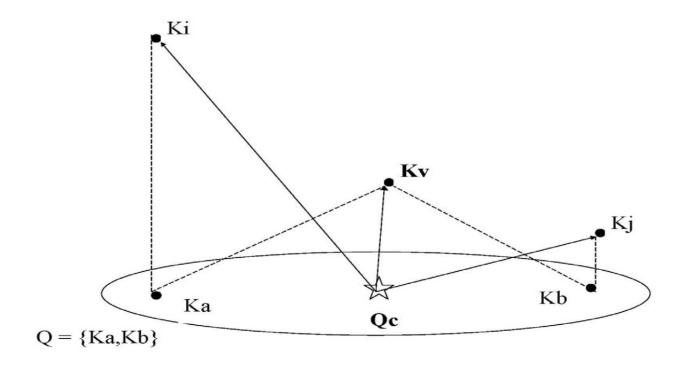
$$c_{u,v} = \vec{k}_u \cdot \vec{k}_v = \sum_{\forall d_j} w_{u,j} \times w_{v,j}$$
 is a cosine measure

The computation is computationally expensive

Concept-based QE

- Steps for QE based on a similarity thesaurus
 - 1. Represent the query in the term-concept space

$$\vec{q} = \sum_{k_u \in a} w_{u,q} \times \vec{k}_u$$


2.Based on the global thesaurus, compute a similarity between the each term k_v and the whole query q

$$sim(q, k_v) = \left(\sum_{k_u \in q} w_{u,q} \times \vec{k}_u\right) \cdot \vec{k}_v = \sum_{k_u \in q} w_{u,q} \times c_{u,v}$$

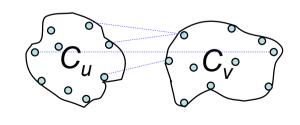
- 3. Expand the query with the top r ranked terms according to $sim(q,k_v)$
 - The weight assigned to the expansion term

$$w_{v,q'} = \frac{sim(k_v, q)}{\sum_{k_u \in q} w_{u,q}}$$

• The term k_{ν} selected for query expansion might be quite close to the whole query while its distances to individual query terms are larger

- The similarity between query and doc measured in the term-concept space
 - Doc is first represented in the term-concept space

$$\vec{d}_{j} = \sum_{k_{v} \in d_{j}} w_{v,j} \times \vec{k}_{v}$$


- Similarity measure

$$sim (q, d_j) \propto \sum_{k_v \in d_j} \sum_{k_u \in q} w_{v,j} \times w_{u,q} \times c_{u,v}$$

- Analogous to the formula for query-doc similarity in the generalized vector space model
 - Differences
 - » Weight computation
 - » Only the top *r* ranked terms are used here

- Global thesaurus is composed of classes which group correlated terms in the context of the whole collection
- Such correlated terms can then be used to expand the original user query
 - The terms selected must be low frequency terms
- However, it is difficult to cluster low frequency terms
 - To circumvent this problem, we cluster docs into classes instead and use the low frequency terms in these docs to define our thesaurus classes
 - This algorithm must produce small and tight clusters

- Complete link algorithm
 - Place each doc in a distinct cluster
 - Compute the similarity between all pairs of clusters
 - Determine the pair of clusters $[C_u, C_v]$ with the highest inter-cluster similarity (using the cosine formula)
 - Merge the clusters C_u and C_v
 - Verify a stop criterion. If this criterion is not met then go back to step 2.
 - Return a hierarchy of clusters
- Similarity between two clusters is defined as the minimum of similarities between all pair of inter-cluster docs

Cosine formula of the vector model is used

- Given the doc cluster hierarchy for the whole collection, the terms that compose each class of the global thesaurus are selected as follows
 - Obtain from the user three parameters
 - TC: Threshold class
 - NDC: Number of docs in class
 - MIDF: Minimum inverse doc frequency

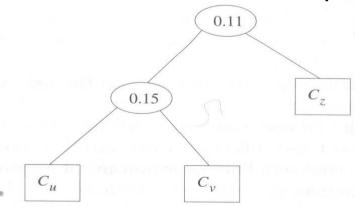
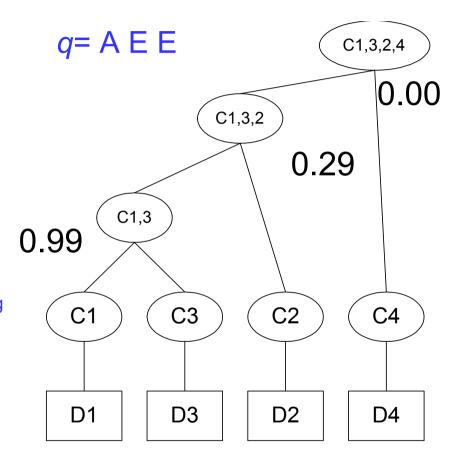


Figure 5.3 Hierarchy of three clusters (inter-cluster similarities indicated in the ovals) generated by the complete link algorithm.


- Use the parameter TC as threshold value for determining the doc clusters that will be used to generate thesaurus classes
 - It has to be surpassed by $sim(C_u, C_v)$ if the docs in the clusters C_u and C_v are to be selected as sources of terms for a thesaurus class
- Use the parameter NDC as a limit on the size of clusters (number of docs) to be considered
 - A low value of NDC might restrict the selection to the smaller clusters

- Consider the set of docs in each doc cluster preselected above
 - Only the lower frequency docs are used as sources of terms for the thesaurus classes
 - The parameter MIDF defines the minimum value of inverse doc frequency for any term which is selected to participate in a thesaurus class
- Given the thesaurus classes have been built, they can be to query expansion

Example

idf E = 0.60

```
Doc1 = D, D, A, B, C, A, B, C
Doc2 = E, C, E, A, A, D
Doc3 = D. C. B. B. D. A. B. C. A
Doc4 = A
sim(1,3) = 0.99
sim(1,2) = 0.40
                     cosine formula
sim(2,3) = 0.29
                    with tf-idf weighting
sim(4,1) = 0.00
sim(4,2) = 0.00
sim(4,3) = 0.00
idf A = 0.0
idf B = 0.3
idf C = 0.12
idf D = 0.12
```


• TC = 0.90 NDC = 2.00 MIDF = 0.2

$$q'=ABEE$$