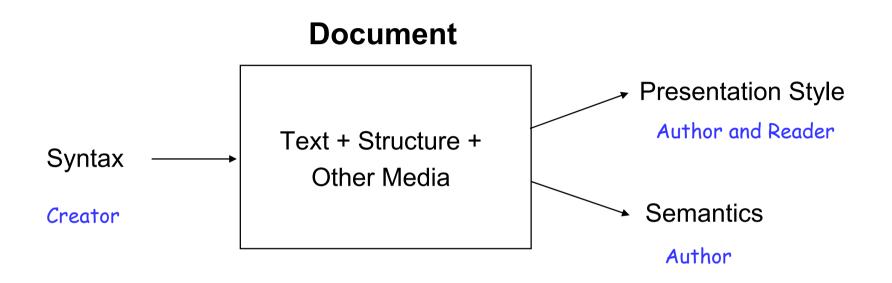
Text Languages and Properties

Berlin Chen 2003

Reference:

1. Modern Information Retrieval, chapter 6

Documents


- A document is a single unit of information
 - Typical text in digital form, but can also include other media
- Two perspectives
 - Logical View
 - A unit like a research article, a book or a manual
 - Physical View
 - A unit like a file, an email, or a Web page

Syntax of a Document

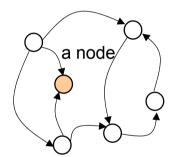
- Syntax of a document can express structure, presentation style, semantics, or even external actions
 - A document can also have information about itself, called metadata
- The syntax of a document can be explicit in its content, or expressed in a simple declarative language or in a programming language
 - But the conversion of documents in one language to other languages (or formats) is very difficult !
 - How to flexibly interchange between applications is becoming important

Many syntax languages are proprietary and specific !

Characteristics of a Document

- The presentation style of a document defines how the document is visualized in a computer window or a printed page
 - But can also includes treatment of other media such as audio or video

Metadata


- Metadata: "data about data"
 - Is information on the organization of the data, the various data domains, and the relationship between them
- Descriptive Metadata
 - Is external to the meaning of the document and pertains more to how document was created
 - Information including author, date, source, title, length, genre, ...
 - E.g., Dublin Core Metadata Element Set
 - 15 fields to describe a doc

Metadata

- Semantic Metadata
 - Characterize the subject matter about the document's contents
 - Information including subject codes, abstract, keywords (key terms)
 - To standardize semantic terms, many areas use specific **ontologies**, which are hierarchical taxonomies of terms describing certain knowledge topics
 - E.g., Library of Congress subject codes

Web Metadata

- Used for many purposes, e.g.,
 - Cataloging
 - Content rating
 - Intellectual property rights
 - Digital signatures
 - Privacy levels
 - Electronic commerce

- RDF (Resource Description Framework)
 - A new standard for Web metadata which provides interoperability between applications
 - Allow the description of Web resources to facilitate automated processing of information

Metadata for Non-textual Objects

- Such as images, sounds, and videos
 - A set of keywords used to describe them
 - Metadescriptions
 - These keywords can later be used to search for these media using classical text IR techniques
 - The emerging approach is content-based indexing
 - Content-Based Image Retrieval
 - Content-Based Speech Retrieval
 - Content-Based Music Retrieval
 - Content-Based Video Retrieval

•

Text

- What are the possible formats of text ?
 - Coding schemes for languages
 - E.g., EBCDIC, ASCII, Unicode(16-bit code)
- What are the statistical properties of text ?
 - How the information content of text can be measured
 - The frequency of different words
 - The relation between the vocabulary size and corpus size

Factors affect IR performance and term weighting and other aspects of IR systems

Text: Formats

- Text documents have no single format, and IR systems deal with them in two ways
 - Convert a document to an internal format
 - Disadvantage: the original application related the document is not useful any more
 - Using filters to handle most popular documents
 - E.g., word processors like Word, WordPerfect, ...
 - But some formats are proprietary and thus can't be filtered
 - Documents in human-readable ASCII form are more portability than those in binary form

Text: Formats

- Other text formats developed for document interchange
 - Rich Text Format (RTF): used by word processors and has ASCII syntax
 - Portable Document Format (PDF) and Postcript: used for display or printing documents
 - MIME (Multipurpose Internet Mail Exchange): support multiple character sets, multiple languages, and multiple media

Text: Information Theory

- Written text contains semantics for information communication
 - E.g., a text where only one symbol appears almost all the time does not convey much information
- Information theory uses entropy to capture information context (uncertainty) of text

Entropy: the amount of information in a text

$$E = -\sum_{i=1}^{\sigma} p_i \log_2 p_i \qquad \left[\sigma : \text{number of symbols} \right]$$

– Given σ =2, and the symbols coded in binary

- Entropy is 1 if both symbols appear the same number of times
- Entropy is 0 if only one symbol appears

Text: Information Theory

- The calculation of entropy depends on the probabilities of symbols which were obtained by a text model
 - The amount of information in a text is measured with regard to the text model
 - E.g., in text compression
 - Entropy is a limit on how much the text can be compressed, depending on the text model

- **Issue1**: Text of natural languages composed of symbols from a finite alphabet set
 - Word-level (within word)
 - Symbols separating words or belonging to words, and symbols are not uniform distributed
 - Vowel letters are more frequent than most constant letters
 - The simple binominal model (0-order Markovian model) was used to generate text
 - However, dependency for letters' occurrences was observed
 - -k-order Markovian model further is used

- Sentence-level (within sentence)
 - Take words as symbols
 - *k*-order Markovian model was used to generate text (also called *n*-gram language models)
 - E.g., text generated by 5-order model using the distribution of words in the Bible might make sense
 - More complex models
 - Finite-state models (regular languages)
 - Grammar models (context-free and other language)

- Trigram approximation to Shakespeare
 - (a) Sweet prince, Falstaff shall die. Harry of Monmouth's grave.
 - (b) This shall forbid it should be branded, if renown made it empty.
 - (c) What is't that cried?
 - (d) Indeed the duke; and had a very good friend.
 - (e) Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done.
 - (f) The sweet! How many then shall posthumus end his miseries.
- Quadrigram approximation to Shakespeare
 - (a) King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in;
 - (b) Will you not tell me who I am?
 - (c) It cannot be but so.
 - (d) Indeed the short and the long. Marry, 'tis a noble Lepidus
 - (e) They say all lovers swear more performance than they are wont to keep obliged faith unforfeited!
 - (f) Enter Leonato's brother Antonio, and the rest, but seek the weary beds of people sick.

- **Issue 2**: How the different words are distributed inside each documents
 - Zipf's law : an approximate model
 - Attempt to capture the distribution of the frequencies (number of occurrences) of the words
 - The frequency of the *i*-th most frequent word is $1 / i^{\theta}$ times that of the most frequent word
 - E.g., in a text of *n* words with a vocabulary of *V* words, the *i*-th most frequent word appears $n/(i^{\theta}H_{v}(\theta))$ times

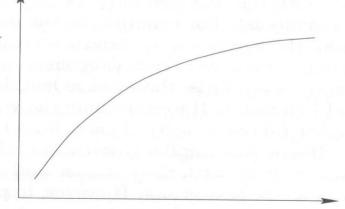
$$H_{V}(\theta) = \frac{1}{1^{\theta}} + \frac{1}{2^{\theta}} + \dots + \frac{1}{V^{\theta}} = \sum_{j=1}^{V} \frac{1}{j^{\theta}}$$

 θ : depends on the text, between 1.5 and 2.0

Words

– A few hundred words take up 50% of the text !

- Words that are too frequent (known as stopwords) can be discarded
- Stopwords often does not carry meaning in natural language and can be ignored


-E.g., "a," "the," "by," etc.

- **Issue 3**: the distribution of words in the documents of a collection
 - The fraction of documents containing a word k time is modeled as a negative binominal distribution

$$F = \begin{pmatrix} \alpha + k - 1 \\ k \end{pmatrix} p^{k} (1 + p)^{-\alpha - k}$$

- p and α are parameters that depend on the word and the document collection
 - E.g., p=9.2 and $\alpha = 0.42$ for the word "said" in the Brown Corpus

- Issue 4: the number of distinct words in a document (also called "document vocabulary")
 - Heaps' Law
 - Predict the growth of the vocabulary size in natural language text
 - The vocabulary of a text of size *n* words is of size
 V=KN^β=O(N^β)
 - -*K*:10~100
 - $-\beta$: a positive number less than 1

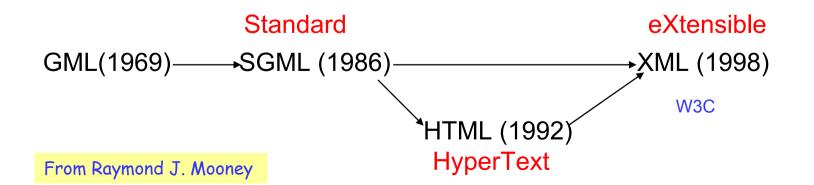
Text size

Also applicable to collections of documents

- **Issue 5**: the average length of words
 - Heaps' Law
 - Imply that the length of words of the vocabulary increases logarithmically with the text size
 - Longer and longer words should appear as the text grows
 - However, in practice, the average length of the words in the overall text is constant because shorter words (stopwords) are common enough

Text: Similarity Models

- The syntactic similarity between strings or documents is measured by a distance function
 - Should be symmetric distance(a,b) = distance(b,a)
 - Should satisfy the triangle inequality $distance(a,c) \le distance(a,b) + distance(b,c)$


- Variant distance functions
 - Hamming distance
 - The number of positions that have different characters between two strings of the same length

Text: Similarity Models

- Variant distance functions
 - Edit (or Levenshtein) distance
 - The minimum number of character insertions, deletions, and substitutions needed to perform to make any two strings equal
 - E.g., 'color' and 'colour', 'survey' and 'surgery'
 - Longest Common Subsequence (LCS)
 - The only allowed operation is deletion of characters
 - Measure the remaining longest common subsequence of both string
 - E.g., 'survey' and 'surgery' \rightarrow 'surey'
- The above similarity measures can be extended to documents

Markup Languages

- The extra textual language used to describe formatting actions, structure information, text semantics, attributes, etc
 - Use marks (or called 'tags') to surround the marked text
- The standard metalanguage for markup is SGML (Standard Generalized Markup Languages)

SGML

- Document Type Declaration (DTD) in SGML
 - Grammar or schema for defining the tags and structure of a particular document type
 - Allows defining structure of a document element using a regular expression
 - Expression defining an **element** can be recursive, allowing the expressive power of a context-free grammar
- A SGML document is defined by
 - DTD (a description of the document structure)
 - The text itself marked with initial and ending tags for describing the structure

SGML

- Information about document's semantics, application conventions, etc., can be expressed informally as comments
 - DTD does not defined the semantics (meaning, presentation, and behavior), intended use of the tag
 - More complete information is usually present in separation documentation
- SGML does not specify how a doc should look
 - Separate content from format
 - Output specification can be added to SGML documents
 - E.g., Document Style Semantic Specification Language (DSSL) ,..

```
<!--SGML DTD for electronic messages -->
<! ELEMENT e-mail
                             - (prolog, contents) >
<!ELEMENT prolog
                          - - (sender, address+, subject?, Cc*) >
<!ELEMENT (sender | address | subject | Cc) - Q (#PCDATA) >
<! ELEMENT contents
                          - - (par | image | audio)+ >
<! ELEMENT par
                          - O (ref | \#PCDATA) + >
                                                             Document Type
<! ELEMENT ref
                          - O EMPTY >
<!ELEMENT (image | audio) - - (#NDATA) >
                                                           Declaration (DTD)
<! ATTLIST e-mail
          id
                       ID
                                             #REQUIRED
          date_sent
                       DATE
                                             #REQUIRED
          status
                       (secret | public )
                                             public >
<! ATTLIST ref
          id
                       IDREF
                                             #REQUIRED >
<!ATTLIST (image | audio )
          id
                       TD
                                             #REQUIRED >
<!--Example of use of previous DTD-->
                                                           A document using
<!DOCTYPE e-mail SYSTEM "e-mail.dtd">
<e-mail id=94108rby date_sent=02101998>
                                                                  DTD
  <prolog>
  <sender> Pablo Neruda </sender>
  <address> Federico García Lorca </address>
  <address> Ernest Hemingway </address>
                                                    optional (omission of )
  <subject> Pictures of my house in Isla Negra 4
  <Cc> Gabriel García Márquez </Cc>
                                                    ending tag
  </prolog>
  <contents>
      <par>
      As promised in my previous letter, I am sending two digital
      pictures to show you my house and the splendid view of the
      Pacific Ocean from my bedroom (photo <ref idref=F2>).
      </par>
      <image id=F1> "photo1.gif" </image>
      <image id=F2> "photo2.jpg" </image>
      <par>
      Regards from the South, Pablo.
  </contents>
</e-mail>
```

Figure 6.3 DTD for structuring electronic mails and an example of its use.

HTML

- HTML: Hypertext Markup Language

 An instance of SGML, created in 1992
 Version 4.0 announced in 1997
- May include code such as Javascript in Dynamic HTML (DHTML)
- Separates layout somewhat by using style sheets (Cascade Style Sheets, CSS)

Visual effects for improving the aesthetics of HTML pages

• HTML primarily defines layout and formatting

XML

- XML: eXtensible Markup Language
 A simplified subset of SGML
- Simplification of original SGML for the Web promoted by WWW Consortium (W3C)
- Fully separates semantic information and layout
 Allow a human-readable semantic makeup
- XML impose rigid syntax on the markup
 - Case sensitive
 - Data validation capabilities

XML

- Allow users to define new tags, define more complex structures
- The using of DTD is optional
- Recent uses of XML include
 - Mathematical Markup Language (MathML)
 - Synchronized Multimedia Interchange Language (SMIL)
 - Resource Description Format (RDF)
 - VoiceXML
 - For speech-enabled Web pages
 - Compete with Microsoft SALT (Speech Application Language Tags)

No DTD included

```
<?XML VERSION="1.0" RMD="NONE" ?>
<e-mail id="94108rby" date_sent="02101998">
  <prolog>
  <sender> Pablo Neruda </sender>
  <address> Federico García Lorca </address>
  <address> Ernest Hemingway </address>
  <subject> Pictures of my house in Isla Negra
  <Cc> Gabriel García Márquez </Cc>
  </prolog>
  <contents>
      <par>
      As promised in my previous letter, I am sending two digital
      pictures to show you my house and the splendid view of the
      Pacific Ocean from my bedroom (photo <ref idref="F2"/>).
      </par>
      <image id="F1" ref="photo1.gif" />
                                                    For elements without
      <image id="F2"> ref="photo2.jpg" />
      <par>
                                                       textual content
      Regards from the South, Pablo.
      </par>
  </contents>
</e-mail>
```

Figure 6.5 An XML document without a DTD analogous to the previous SGML example.

Multimedia

- Most common types of media in multimedia applications
 - Text
 - Sound (Speech/Music)
 - Images
 - Video
- These types of media is quite different in
 - Volume
 - Format
 - The processing requirements

Multimedia

- Formats
 - Image
 - Bit-mapped (or pixel-based) display
 - -XBM, BMP, PCX
 - Simple but consume too much space (redundancy)
 - Compressed Images
 - Compuserve's Graphic Interchange Format (GIF)
 - Lossy Compressed Images
 - » Joint Photographic Experts Group (JPEG)
 - Exchange documents between different applications and platforms
 - Tagged Image File Format (TIFF)
 - True Version Targa Image File (TGA)

Multimedia

- Formats
 - Audio
 - AU, MIDI, WAVE
 - RealAudio, CD formats
 - Video
 - MPEG (Moving Pictures Experts Group), AVI, FLI, QuickTime (by Apple)

Textural Images

- Textural Images: images of documents that contain mainly typed or typeset text
 - Obtained by scanning the documents, usually for archiving purposes
 - Can be used for retrieval purposes and data compression
- Retrieval of Text Images
 - Alternative 1
 - At creation time, a set of keywords (called metadata) is associated with each textual image
 - Conventional text retrieval techniques can be applied to keywords

Textural Images

• Retrieval of Text Images (cont.)

– Alternative 2

- Use OCR to extract the text of the image
- The resultant ASCII text can be used to extract keywords
- Quality depends on the OCR process

– Alternative 3

- Symbols extracted from the images are used as basic units to combine image retrieval techniques with sequence retrieval techniques
 - E.g., approximately matching of symbol strings between the query and extracted symbols
- A promising but difficult issue

Trends and Research Issues

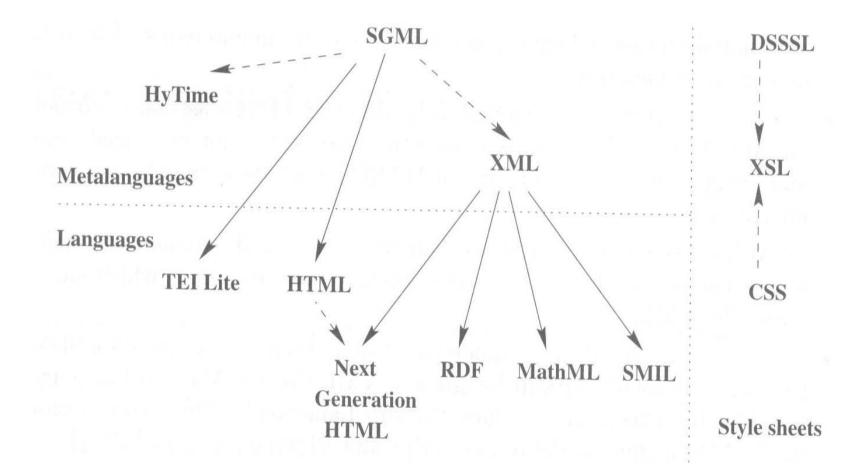


Figure 6.6 Taxonomy of Web languages.