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Review

• Tagging (part-of-speech tagging)
– The process of assigning (labeling) a part-of-speech 

or other lexical class marker to each word in a 
sentence (or a corpus)

• Decide whether each word is a noun, verb, 
adjective, or whatever

The/AT representative/NN put/VBD chairs/NNS on/IN the/AT table/NN

– An intermediate layer of representation of syntactic 
structure
• When compared with syntactic parsing

– Above 96% accuracy for most successful approaches
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Introduction

• Parts-of-speech
– Known as POS, word classes, lexical tags, 

morphology classes 
• Tag sets

– Penn Treebank : 45 word classes used (Francis, 1979)
• Penn Treebank is a parsed corpus

– Brown corpus: 87 word classes used (Marcus et al., 1993)

– ….

The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.
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The Penn Treebank POS Tag Set
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Disambiguation

• Resolve the ambiguities and chose the proper 
tag for the context

• Most English words are unambiguous (have only 
one tag) but many of the most common words 
are ambiguous
– E.g.: “can” can be a (an auxiliary) verb or a noun 
– E.g.: statistics of Brown corpus  

- 11.5% word types are
ambiguous

- But 40% tokens are ambiguous
(However, the probabilities of 
tags associated a word are 
not equal → many ambiguous
tokens are easy to disambiguate)
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Process of POS Tagging

Tagging Algorithm

A String of Words
A Specified

Tagset

A Single Best Tag of Each Word
VB     DT   NN   .
Book that flight .

VBZ   DT    NN    VB     NN    ?
Does that  flight serve dinner ?
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POS Tagging Algorithms

• Fall into One of Two Classes
• Rule-based Tagger

– Involve a large database of hand-written 
disambiguation rules

• E.g. a rule specifies that an ambiguous word is a 
noun rather than a verb if it follows a determiner

• ENGTWOL: a simple rule-based tagger based on 
the constraint grammar architecture

• Stochastic/Probabilistic Tagger
– Use a training corpus to compute the probability of a 

given word having a given context 
– E.g.: the HMM tagger chooses the best tag for a 

given word (maximize the product of word likelihood and tag 
sequence probability)
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POS Tagging Algorithms

• Transformation-based/Brill Tagger
– A hybrid approach
– Like rule-based approach, determine the tag of an 

ambiguous word based on rules
– Like stochastic approach, the rules are automatically 

included from previous tagged training corpus with 
the machine learning technique  
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Rule-based POS Tagging

• Two-stage architecture
– First stage: Use a dictionary to assign each word a 

list of potential part-of-speech
– Second stage: Use large lists of hand-written 

disambiguation rules to winnow down this list to a 
single part-of-speech for each word

Pavlov       had shown that salivation …
Pavlov       PAVLOV N NOM SG PROPER
had            HAVE V PAST VFIN SVO

HAVE PCP2 SVO
shown       SHOW PCP2 SVOO SVO SV
that            ADV

PRON DEM SG
DET CENTRAL DEM SG
CS

salivation   N NOM SG

An example for
The ENGTOWL tagger

A set of 1,100 constraints
can be applied to the input
sentence 
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Rule-based POS Tagging

• Simple lexical entries in the ENGTWOL lexicon

past participle
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Rule-based POS Tagging

Example:
It isn’t that odd!

I consider that odd.

one

ADV

Compliment

A

NUM
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HMM-based Tagging

• Also called Maximum Likelihood Tagging
– Pick the most-likely tag for a word

• For a given sentence or words sequence , an 
HMM tagger chooses the tag sequence that 
maximizes the following probability 

( ) ( ) tags1 previoustagtagwordmaxargtag −⋅= nPP i
i

i

N-gram HMM tagger

tag sequence probabilityword/lexical likelihood
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HMM-based Tagging

• Assumptions made here
– Words are independent of each other

• A word’s identity only depends on its tag
– “Limited Horizon” and “Time Invariant” (“Stationary”) 

• A word’s tag only depends on the previous tag 
(limited horizon) and the dependency does not 
change over time (time invariance)

• Time invariance means the tag dependency won’t 
change as tag sequence appears different positions 
of a sentence
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HMM-based Tagging

• Apply bigram-HMM tagger to choose the best 
tag for a given word 
– Choose the tag ti for word wi that is most probable 

given the previous tag ti-1 and current word wi

– Through some simplifying Markov assumptions

( )iij
j

i wttPt ,maxarg 1−=

( ) ( )jiij
j

i twPttPt 1maxarg −=

tag sequence probability word/lexical likelihood
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HMM-based Tagging

• Apply bigram-HMM tagger to choose the best 
tag for a given word 
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HMM-based Tagging

• Example: Choose the best tag for a given word 

Secretariat/NNP is /VBZ expected/VBN to/TO race/VB tomorrow/NN

to/TO race/??? P(VB|TO) P(race|VB)=0.00001

P(NN|TO) P(race|NN)=0.000007

0.34          0.00003

0.021        0.00041

Pretend that the previous
word has already tagged
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HMM-based Tagging

• Apply bigram-HMM tagger to choose the best 
sequence of tags for a given sentence
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HMM-based Tagging
• The Viterbi algorithm for the bigram-HMM tagger
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HMM-based Tagging

• The Viterbi algorithm for the bigram-HMM tagger
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HMM-based Tagging

• Apply trigram-HMM tagger to choose the best 
sequence of tags for a given sentence
– When trigram model is used

• Maximum likelihood estimation based on the 
relative frequencies observed in the pre-tagged 
training corpus (labeled data)
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HMM-based Tagging

w1

Tag State

w2 wi wn

1            2                        i n-1         n Word Sequence

wn-1

MAX

with tag history t1

with tag history tj

with tag history tJ

• Apply trigram-HMM tagger to choose the best 
sequence of tags for a given sentence

J copies of tag states
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HMM-based Tagging

• Probability re-estimation based on unlabeled 
data

• EM (Expectation-Maximization) algorithm is applied
– Start with a dictionary that lists which tags can 

be assigned to which words
» word likelihood function cab be estimated
» tag transition probabilities set to be equal

– EM algorithm learns (re-estimates) the word 
likelihood function for each tag and the tag 
transition probabilities

• However, a tagger trained on hand-tagged data 
worked better than one trained via EM
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Transformation-based Tagging

• Also called Brill tagging
– An instance of Transformation-Based Learning (TBL)

• Spirits
– Like the rule-based approach, TBL is based on rules 

that specify what tags should be assigned to what 
word

– Like the stochastic approach, rules are automatically 
induced from the data by the machine learning 
technique

• Note that TBL is a supervised learning technique
– It assumes a pre-tagged training corpus 
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Transformation-based Tagging

• How the TBL rules are learned
– Three major stages

• Label every word with its most-likely tag using a 
set of tagging rules

• Examine every possible transformation (rewrite 
rule), and select the one that results in the most 
improved tagging (supervised!)

• Re-tag the data according this rule

– The above three stages are repeated until some 
stopping criterion is reached

• Such as insufficient improvement over the previous 
pass 
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Transformation-based Tagging

• Example
So, race will be initially coded as NN
(label every word with its most-likely tag)

P(NN|race)=0.98
P(VB|race)=0.02

1. is/VBZ expected/VBN to/To race/NN tomorrow/NN

2. the/DT race/NN for/IN outer/JJ space/NN

Refer to the correct tag
Information of each word, 
and find the tag of race in “1”
is wrong

Learn/pick a most suitable transformation rule: (by examining every possible transformation)

Change NN to VB while the previous tag is TO

expected/VBN to/To race/NN → expected/VBN to/To race/VBRewrite rule:
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Transformation-based Tagging

• Templates (abstracted transforms)
– The set of possible transformation may be infinite

• Should limit the set of transformations
• The design of a small set of templates is needed

Rules learned by 
Brill’s original tagger

Brill’s templates.
Each begins with
“Change tag a to tag

b when ….”

Modal verbs (should, can,…)

Verb, past participle 

Verb, 3sg, Present
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Transformation-based Tagging

• Templates (abstracted transforms)
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Transformation-based Tagging

• Algorithm

The GET_BEST_INSTANCE procedure in the example algorithm is 
“Change tag from X to Y if the previous tag is Z”.

for all combinations
of tags

Get best instance 
for each transformation
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Multiple Tags and Multi-part Words

• Multiple tags
– A word is ambiguous between multiple tags and it is 

impossible or very difficult to disambiguate, so 
multiple tags is allowed, e.g.
• adjective versus preterite versus past 

participle (JJ/VBD/VBN) 
• adjective versus noun as prenominal modifier

(JJ/NN) 
• Multi-part words

– Certain words are split or some adjacent words are 
treated as a single word

would/MD n’t/RB Children/NNS ‘s/POS
in terms of (in/II31 terms/II32 of/II33)
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Tagging of Unknown Words

• Simplest unknown-word algorithm
– Pretend that each unknown word is ambiguous 

among all possible tags, with equal probability
– Must rely solely on the contextual POS-trigram to 

suggest the proper tag
• Slightly more complex algorithm

– Based on the idea that the probability distribution of 
tags over unknown words is very similar to the 
distribution of tags over words that occurred only 
once in a training set

– The likelihood for an unknown word is determined by 
the average of the distribution over all singleton in the 
training set (similar to Good-Turing? )

Nouns or Verbs

( )?ii twP
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Tagging of Unknown Words

• Most-powerful unknown-word algorithm
– Hand-designed features

• The information about how the word is spelled 
(inflectional and derivational features), e.g.:

– Words end with s (→plural nouns)
– Words end with ed (→past participles)

• The information of word capitalization (initial or 
non-initial) and hyphenation

– Features induced by machine learning
• E.g.: TBL algorithm uses templates to induce 

useful English inflectional and derivational features 
and  hyphenation 

( ) ( ) ( ) ( )iiiii tptptptwP phendings/hycaptialwordunknown ⋅⋅−=

The first N letters of the word
The last N letters of the word 
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Evaluation of Taggers

• Compare the tagged results with a human 
labeled Gold Standard test set in percentages 
of correction
– Most tagging algorithms have an accuracy of around 

96~97% for the sample tagsets like the Penn 
Treebank set

– Upper bound (ceiling) and lower bound (baseline)
• Ceiling: is achieved by seeing how well humans do 

on the task
– A 3~4% margin of error

• Baseline: is achieved by using the unigram most-
like tags for each word 

– 90~91% accuracy can be attained
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Error Analysis

• Confusion matrix

• Major problems facing current taggers
– NN (noun) versus NNP (proper noun) and JJ 

(adjective)
– RP (particle) versus RB (adverb) versus JJ
– VBD (past tense verb) versus VBN (past participle 

verb) versus JJ 
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Applications of POS Tagging

• Tell what words are likely to occur in a word’s 
vicinity
– E.g. the vicinity of the possessive or person pronouns

• Tell the pronunciation of a word
– DIScount (noun) and disCOUNT (verb) …

• Advanced ASR language models
– Word-class N-grams

• Partial parsing
– A simplest one: find the noun phrases (names) or 

other phrases in a sentence
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Applications of POS Tagging

• Information retrieval
– Word stemming
– Help select out nouns or important words from a doc
– Phrase-level information

• Phrase normalization

• Information extraction
– Semantic tags or categories

United, States, of, America  → “United States of America”
secondary, education → “secondary education”

Book publishing, publishing of books
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Applications of POS Tagging

• Question Answering
– Answer a user query that is formulated in the form of 

a question by return an appropriate noun phrase such 
as a location, a person, or a date

• E.g. “Who killed President Kennedy?”

In summary, the role of taggers appears to be 
a fast lightweight component that gives 
sufficient information for many applications
– But not always a desirable preprocessing stage for 

all applications
– Many probabilistic parsers are now good enough !
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Class-based N-grams

• Use the lexical tag/category/class information to 
augment the N-gram models 

– Maximum likelihood estimation
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