
1

Part-of-Speech Tagging

Berlin Chen 2003

References:
1. Speech and Language Processing, chapter 8
2. Foundations of Statistical Natural Language Processing, chapter 10

2

Review

• Tagging (part-of-speech tagging)
– The process of assigning (labeling) a part-of-speech

or other lexical class marker to each word in a
sentence (or a corpus)

• Decide whether each word is a noun, verb,
adjective, or whatever

The/AT representative/NN put/VBD chairs/NNS on/IN the/AT table/NN

– An intermediate layer of representation of syntactic
structure
• When compared with syntactic parsing

– Above 96% accuracy for most successful approaches

3

Introduction

• Parts-of-speech
– Known as POS, word classes, lexical tags,

morphology classes
• Tag sets

– Penn Treebank : 45 word classes used (Francis, 1979)
• Penn Treebank is a parsed corpus

– Brown corpus: 87 word classes used (Marcus et al., 1993)

– ….

The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.

4

The Penn Treebank POS Tag Set

5

Disambiguation

• Resolve the ambiguities and chose the proper
tag for the context

• Most English words are unambiguous (have only
one tag) but many of the most common words
are ambiguous
– E.g.: “can” can be a (an auxiliary) verb or a noun
– E.g.: statistics of Brown corpus

- 11.5% word types are
ambiguous

- But 40% tokens are ambiguous
(However, the probabilities of
tags associated a word are
not equal → many ambiguous
tokens are easy to disambiguate)

6

Process of POS Tagging

Tagging Algorithm

A String of Words
A Specified

Tagset

A Single Best Tag of Each Word
VB DT NN .
Book that flight .

VBZ DT NN VB NN ?
Does that flight serve dinner ?

7

POS Tagging Algorithms

• Fall into One of Two Classes
• Rule-based Tagger

– Involve a large database of hand-written
disambiguation rules

• E.g. a rule specifies that an ambiguous word is a
noun rather than a verb if it follows a determiner

• ENGTWOL: a simple rule-based tagger based on
the constraint grammar architecture

• Stochastic/Probabilistic Tagger
– Use a training corpus to compute the probability of a

given word having a given context
– E.g.: the HMM tagger chooses the best tag for a

given word (maximize the product of word likelihood and tag
sequence probability)

8

POS Tagging Algorithms

• Transformation-based/Brill Tagger
– A hybrid approach
– Like rule-based approach, determine the tag of an

ambiguous word based on rules
– Like stochastic approach, the rules are automatically

included from previous tagged training corpus with
the machine learning technique

9

Rule-based POS Tagging

• Two-stage architecture
– First stage: Use a dictionary to assign each word a

list of potential part-of-speech
– Second stage: Use large lists of hand-written

disambiguation rules to winnow down this list to a
single part-of-speech for each word

Pavlov had shown that salivation …
Pavlov PAVLOV N NOM SG PROPER
had HAVE V PAST VFIN SVO

HAVE PCP2 SVO
shown SHOW PCP2 SVOO SVO SV
that ADV

PRON DEM SG
DET CENTRAL DEM SG
CS

salivation N NOM SG

An example for
The ENGTOWL tagger

A set of 1,100 constraints
can be applied to the input
sentence

10

Rule-based POS Tagging

• Simple lexical entries in the ENGTWOL lexicon

past participle

11

Rule-based POS Tagging

Example:
It isn’t that odd!

I consider that odd.

one

ADV

Compliment

A

NUM

12

HMM-based Tagging

• Also called Maximum Likelihood Tagging
– Pick the most-likely tag for a word

• For a given sentence or words sequence , an
HMM tagger chooses the tag sequence that
maximizes the following probability

() () tags1 previoustagtagwordmaxargtag −⋅= nPP i
i

i

N-gram HMM tagger

tag sequence probabilityword/lexical likelihood

13

HMM-based Tagging

• Assumptions made here
– Words are independent of each other

• A word’s identity only depends on its tag
– “Limited Horizon” and “Time Invariant” (“Stationary”)

• A word’s tag only depends on the previous tag
(limited horizon) and the dependency does not
change over time (time invariance)

• Time invariance means the tag dependency won’t
change as tag sequence appears different positions
of a sentence

14

HMM-based Tagging

• Apply bigram-HMM tagger to choose the best
tag for a given word
– Choose the tag ti for word wi that is most probable

given the previous tag ti-1 and current word wi

– Through some simplifying Markov assumptions

()iij
j

i wttPt ,maxarg 1−=

() ()jiij
j

i twPttPt 1maxarg −=

tag sequence probability word/lexical likelihood

15

HMM-based Tagging

• Apply bigram-HMM tagger to choose the best
tag for a given word

()
()
()

()
() ()
() () () ()jiij

j
ijji

j

ijjii
j

iij
j

ii

iij

j

iij
j

i

twPttPttPtwP

ttPttwP

twtP

twP
twtP

wttPt

11

11

1

1

1

1

maxargmaxarg

,maxarg

,maxarg

,
maxarg

,maxarg

−−

−−

−

−

−

−

==

=

=

=

=

The same for all tags

The probability of a word
only depends on its tag

16

HMM-based Tagging

• Example: Choose the best tag for a given word

Secretariat/NNP is /VBZ expected/VBN to/TO race/VB tomorrow/NN

to/TO race/??? P(VB|TO) P(race|VB)=0.00001

P(NN|TO) P(race|NN)=0.000007

0.34 0.00003

0.021 0.00041

Pretend that the previous
word has already tagged

17

HMM-based Tagging

• Apply bigram-HMM tagger to choose the best
sequence of tags for a given sentence

()
() ()

()
() ()
() ()

() ()[]

() ()[] ,...,,maxarg

 ,...,,,,...,,...,,maxarg

,...,,,...,,,...,,maxarg

maxarg

maxarg

maxargˆ

1
121

,...,2,1

1
2111121

,...,2,1

211121
,...,2,1

∏

∏

=
−

=
−−

=

=

=

=

=

=

n

i
iiii

nttt

n

i
niiii

nttt

nnn
nttt

T

T

T

twPttttP

tttwwwPttttP

tttwwwPtttP

TWPTP
WP

TWPTP

WTPT

The probability of a word
only depends on its tag

18

HMM-based Tagging
• The Viterbi algorithm for the bigram-HMM tagger

w1

Tag State

w2 wi wn

1 2 i n-1 n Word Sequence

wn-1

t1

tj

tJ

tj+1

tj-1

t1

tj

tJ

tj+1

tj-1

t1

tj

tJ

tj+1

tj-1

t1

tj

tJ

tj+1

tj-1

t1

tj

tJ

tj+1

tj-1
1π

MAX MAX

1−jπ
jπ
1+jπ

Jπ

19

HMM-based Tagging

• The Viterbi algorithm for the bigram-HMM tagger

() ()
() () ()[] ()
() () ()[]

()

()
 end

 do 1- step 1 to1:ifor

argmaxion 3.Terminat

argmax

1 2maxInduction 2.

1tion Initializa 1.

1

1

1
1

1

11

+

≤≤

−
≤≤

−

=
=

=

=

≤≤≤≤=

≤≤=

iii

n
Jj

n

kji
Jj

i

jikjiii

kk

XX
n-

jX

ttPkj

Jkn,i, twPttPkj

Jk, twPπk

ψ

δ

δψ

δδ

δ

20

HMM-based Tagging

• Apply trigram-HMM tagger to choose the best
sequence of tags for a given sentence
– When trigram model is used

• Maximum likelihood estimation based on the
relative frequencies observed in the pre-tagged
training corpus (labeled data)

() () () ()

= ∏∏

==
−−

n

i
ii

n

i
iii

nttt
twPtttPttPtPT

13
12121

,..,2,1

 ,maxargˆ

() ()
()

() ()
()i

ii
ii

iii

iii
iii

tc
twctwP

tttc
tttc

tttP

,

,
12

12
12

=

=
−−

−−
−−

Smoothing is needed !

21

HMM-based Tagging

w1

Tag State

w2 wi wn

1 2 i n-1 n Word Sequence

wn-1

MAX

with tag history t1

with tag history tj

with tag history tJ

• Apply trigram-HMM tagger to choose the best
sequence of tags for a given sentence

J copies of tag states

22

HMM-based Tagging

• Probability re-estimation based on unlabeled
data

• EM (Expectation-Maximization) algorithm is applied
– Start with a dictionary that lists which tags can

be assigned to which words
» word likelihood function cab be estimated
» tag transition probabilities set to be equal

– EM algorithm learns (re-estimates) the word
likelihood function for each tag and the tag
transition probabilities

• However, a tagger trained on hand-tagged data
worked better than one trained via EM

23

Transformation-based Tagging

• Also called Brill tagging
– An instance of Transformation-Based Learning (TBL)

• Spirits
– Like the rule-based approach, TBL is based on rules

that specify what tags should be assigned to what
word

– Like the stochastic approach, rules are automatically
induced from the data by the machine learning
technique

• Note that TBL is a supervised learning technique
– It assumes a pre-tagged training corpus

24

Transformation-based Tagging

• How the TBL rules are learned
– Three major stages

• Label every word with its most-likely tag using a
set of tagging rules

• Examine every possible transformation (rewrite
rule), and select the one that results in the most
improved tagging (supervised!)

• Re-tag the data according this rule

– The above three stages are repeated until some
stopping criterion is reached

• Such as insufficient improvement over the previous
pass

25

Transformation-based Tagging

• Example
So, race will be initially coded as NN
(label every word with its most-likely tag)

P(NN|race)=0.98
P(VB|race)=0.02

1. is/VBZ expected/VBN to/To race/NN tomorrow/NN

2. the/DT race/NN for/IN outer/JJ space/NN

Refer to the correct tag
Information of each word,
and find the tag of race in “1”
is wrong

Learn/pick a most suitable transformation rule: (by examining every possible transformation)

Change NN to VB while the previous tag is TO

expected/VBN to/To race/NN → expected/VBN to/To race/VBRewrite rule:

26

Transformation-based Tagging

• Templates (abstracted transforms)
– The set of possible transformation may be infinite

• Should limit the set of transformations
• The design of a small set of templates is needed

Rules learned by
Brill’s original tagger

Brill’s templates.
Each begins with
“Change tag a to tag

b when ….”

Modal verbs (should, can,…)

Verb, past participle

Verb, 3sg, Present

27

Transformation-based Tagging

• Templates (abstracted transforms)

28

Transformation-based Tagging

• Algorithm

The GET_BEST_INSTANCE procedure in the example algorithm is
“Change tag from X to Y if the previous tag is Z”.

for all combinations
of tags

Get best instance
for each transformation

29

Multiple Tags and Multi-part Words

• Multiple tags
– A word is ambiguous between multiple tags and it is

impossible or very difficult to disambiguate, so
multiple tags is allowed, e.g.
• adjective versus preterite versus past

participle (JJ/VBD/VBN)
• adjective versus noun as prenominal modifier

(JJ/NN)
• Multi-part words

– Certain words are split or some adjacent words are
treated as a single word

would/MD n’t/RB Children/NNS ‘s/POS
in terms of (in/II31 terms/II32 of/II33)

30

Tagging of Unknown Words

• Simplest unknown-word algorithm
– Pretend that each unknown word is ambiguous

among all possible tags, with equal probability
– Must rely solely on the contextual POS-trigram to

suggest the proper tag
• Slightly more complex algorithm

– Based on the idea that the probability distribution of
tags over unknown words is very similar to the
distribution of tags over words that occurred only
once in a training set

– The likelihood for an unknown word is determined by
the average of the distribution over all singleton in the
training set (similar to Good-Turing?)

Nouns or Verbs

()?ii twP

31

Tagging of Unknown Words

• Most-powerful unknown-word algorithm
– Hand-designed features

• The information about how the word is spelled
(inflectional and derivational features), e.g.:

– Words end with s (→plural nouns)
– Words end with ed (→past participles)

• The information of word capitalization (initial or
non-initial) and hyphenation

– Features induced by machine learning
• E.g.: TBL algorithm uses templates to induce

useful English inflectional and derivational features
and hyphenation

() () () ()iiiii tptptptwP phendings/hycaptialwordunknown ⋅⋅−=

The first N letters of the word
The last N letters of the word

32

Evaluation of Taggers

• Compare the tagged results with a human
labeled Gold Standard test set in percentages
of correction
– Most tagging algorithms have an accuracy of around

96~97% for the sample tagsets like the Penn
Treebank set

– Upper bound (ceiling) and lower bound (baseline)
• Ceiling: is achieved by seeing how well humans do

on the task
– A 3~4% margin of error

• Baseline: is achieved by using the unigram most-
like tags for each word

– 90~91% accuracy can be attained

33

Error Analysis

• Confusion matrix

• Major problems facing current taggers
– NN (noun) versus NNP (proper noun) and JJ

(adjective)
– RP (particle) versus RB (adverb) versus JJ
– VBD (past tense verb) versus VBN (past participle

verb) versus JJ

34

Applications of POS Tagging

• Tell what words are likely to occur in a word’s
vicinity
– E.g. the vicinity of the possessive or person pronouns

• Tell the pronunciation of a word
– DIScount (noun) and disCOUNT (verb) …

• Advanced ASR language models
– Word-class N-grams

• Partial parsing
– A simplest one: find the noun phrases (names) or

other phrases in a sentence

35

Applications of POS Tagging

• Information retrieval
– Word stemming
– Help select out nouns or important words from a doc
– Phrase-level information

• Phrase normalization

• Information extraction
– Semantic tags or categories

United, States, of, America → “United States of America”
secondary, education → “secondary education”

Book publishing, publishing of books

36

Applications of POS Tagging

• Question Answering
– Answer a user query that is formulated in the form of

a question by return an appropriate noun phrase such
as a location, a person, or a date

• E.g. “Who killed President Kennedy?”

In summary, the role of taggers appears to be
a fast lightweight component that gives
sufficient information for many applications
– But not always a desirable preprocessing stage for

all applications
– Many probabilistic parsers are now good enough !

37

Class-based N-grams

• Use the lexical tag/category/class information to
augment the N-gram models

– Maximum likelihood estimation

() () ()1
1

1
1

−
+−

−
+− = n

Nnnnn
n

Nnn ccPcwPwwP

prob. of a word given the tag prob. of a word given the tag

() ()
()

() ()
()∑

=

=

l
jl

jk

kj

ji

ccC

ccC
ccP

cC
wCcwP

Constraints: a word may
only belong to one lexical
category

38

行 政 院 院 長 決 定 廢 核 四

ㄒ一ㄥ ㄓㄥ ㄩㄢ ㄩㄢ ㄓㄤ ㄐㄩㄝ ㄉㄧㄥ ㄈㄟ ㄏㄜ ㄙ

興

行

鄭

政

興政

行政

院

園

院長

院 漲

長

園長

園

決

覺

掘

決定

確定

定

訂

訂費

廢

非

費

和

核

合

賜

四

行政院

政院

合適

