Part-of-Speech Tagging

Berlin Chen 2003

1

References:

- 1. Speech and Language Processing, chapter 8
- 2. Foundations of Statistical Natural Language Processing, chapter 10

Review

- Tagging (part-of-speech tagging)
 - The process of assigning (labeling) a part-of-speech or other lexical class marker to each word in a sentence (or a corpus)
 - Decide whether each word is a noun, verb, adjective, or whatever

The/AT representative/NN put/VBD chairs/NNS on/IN the/AT table/NN

- An intermediate layer of representation of syntactic structure
 - When compared with syntactic parsing

- Above 96% accuracy for most successful approaches

Introduction

- Parts-of-speech
 - Known as POS, word classes, lexical tags, morphology classes
- Tag sets
 - Penn Treebank : 45 word classes used (Francis, 1979)
 - Penn Treebank is a parsed corpus
 - Brown corpus: 87 word classes used (Marcus et al., 1993)

—

The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.

The Penn Treebank POS Tag Set

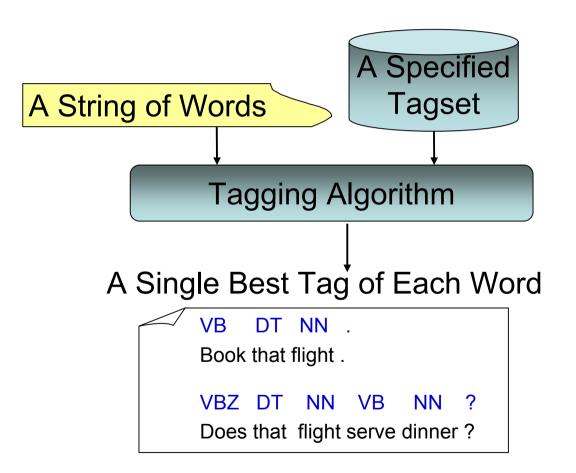
Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%,&
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	¢6	Left quote	(' or '')
POS	Possessive ending	's	"	Right quote	(' or ")
PP	Personal pronoun	I, you, he	6	Left parenthesis	$([, (, \{, <)$
PP\$	Possessive pronoun	your, one's)	Right parenthesis	(],), , >)
RB	Adverb	quickly, never	,	Comma	>
RBR	Adverb, comparative	faster	1	Sentence-final punc	(.!?)
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(:;)
RP	Particle	up, off			

Disambiguation

- Resolve the ambiguities and chose the proper tag for the context
- Most English words are unambiguous (have only one tag) but many of the most common words are ambiguous
 - E.g.: "can" can be a (an auxiliary) verb or a noun
 - E.g.: statistics of Brown corpus

Unambiguous (1 tag)	35,340		ך - 11.5% word types are
Ambiguous (2–7 tags)	4,100		ambiguous
2 tags	3,760		- But 40% tokens are ambiguous
3 tags	264		(However, the probabilities of
4 tags	61		tags associated a word are
5 tags	12		not equal \rightarrow many ambiguous
6 tags	2		tokens are easy to disambiguate)
7 tags	1	("still")	

Process of POS Tagging



POS Tagging Algorithms

- Fall into One of Two Classes
- Rule-based Tagger
 - Involve a large database of hand-written disambiguation rules
 - E.g. a rule specifies that an ambiguous word is a noun rather than a verb if it follows a determiner
 - ENGTWOL: a simple rule-based tagger based on the constraint grammar architecture
- Stochastic/Probabilistic Tagger
 - Use a training corpus to compute the probability of a given word having a given context
 - E.g.: the HMM tagger chooses the best tag for a given word (maximize the product of word likelihood and tag sequence probability)

POS Tagging Algorithms

- Transformation-based/Brill Tagger
 - A hybrid approach
 - Like rule-based approach, determine the tag of an ambiguous word based on rules
 - Like stochastic approach, the rules are automatically included from previous tagged training corpus with the machine learning technique

Rule-based POS Tagging

- Two-stage architecture
 - First stage: Use a dictionary to assign each word a list of potential part-of-speech
 - Second stage: Use large lists of hand-written disambiguation rules to winnow down this list to a single part-of-speech for each word

Pavlov	had shown that salivation	_ An example for
Pavlov	PAVLOV N NOM SG PROPER	The ENGTOWL tagger
had	HAVE V PAST VFIN SVO	
	HAVE PCP2 SVO	
shown	SHOW PCP2 SVOO SVO SV	
that	ADV	
	PRON DEM SG	A set of 1,100 constraints can be applied to the input sentence
	DET CENTRAL DEM SG	
	CS	Serrence
salivation	N NOM SG	

Rule-based POS Tagging

• Simple lexical entries in the ENGTWOL lexicon

Word	POS	Additional POS features
smaller	ADJ	COMPARATIVE
entire	ADJ	ABSOLUTE ATTRIBUTIVE
fast	ADV	SUPERLATIVE
that	DET	CENTRAL DEMONSTRATIVE SG
all	DET	PREDETERMINER SG/PL QUANTIFIER
dog's	Ν	GENITIVE SG
furniture	Ν	NOMINATIVE SG NOINDEFDETERMINER
one-third	NUM	SG
she	PRON	PERSONAL FEMININE NOMINATIVE SG3
show	V	IMPERATIVE VFIN
show	V	PRESENT -SG3 VFIN
show	Ν	NOMINATIVE SG
shown	PCP2	SVOO SVO SV
occurred	PCP2	SV
occurred	V	PAST VFIN SV

*past participle

Rule-based POS Tagging

ADVERBIAL-THAT RULE Given input: "that" if

> Example: It isn't that odd! ADV A I consider that odd. Compliment NUM

- Also called Maximum Likelihood Tagging
 Pick the most-likely tag for a word
- For a given sentence or words sequence , an HMM tagger chooses the tag sequence that maximizes the following probability

$$tag_{i} = \arg \max_{i} P(word|tag_{i}) \cdot P(tag|previous n - 1 tags)$$

word/lexical likelihood tag sequence probability

- Assumptions made here
 - Words are independent of each other
 - A word's identity only depends on its tag
 - "Limited Horizon" and "Time Invariant" ("Stationary")
 - A word's tag only depends on the previous tag (limited horizon) and the dependency does not change over time (time invariance)
 - Time invariance means the tag dependency won't change as tag sequence appears different positions of a sentence

- Apply bigram-HMM tagger to choose the best tag for a given word
 - Choose the tag t_i for word w_i that is most probable given the previous tag t_{i-1} and current word w_i

$$t_i = \arg\max_j P(t_j | t_{i-1}, w_i)$$

Through some simplifying Markov assumptions

$$t_{i} = \arg \max_{j} P(t_{j} | t_{i-1}) P(w_{i} | t_{j})$$

tag sequence probability word/lexical likelihood

Apply bigram-HMM tagger to choose the best tag for a given word

$$t_{i} = \arg \max_{j} P(t_{j}|t_{i-1}, w_{i})$$

$$= \arg \max_{j} \frac{P(t_{j}, w_{i}|t_{i-1})}{P(w_{i}|t_{i-1})}$$
The same for all tags
$$= \arg \max_{j} P(t_{j}, w_{i}|t_{i-1})$$
The probability of a word only depends on its tag
$$= \arg \max_{j} P(w_{i}|t_{i-1}, t_{j}) P(t_{j}|t_{i-1})$$
The probability of a word only depends on its tag
$$= \arg \max_{j} P(w_{i}|t_{j}) P(t_{j}|t_{i-1}) = \arg \max_{j} P(t_{j}|t_{i-1}) P(w_{i}|t_{j})$$

• Example: Choose the best tag for a given word

Secretariat/NNP is /VBZ expected/VBN to/TO race/VB tomorrow/NN

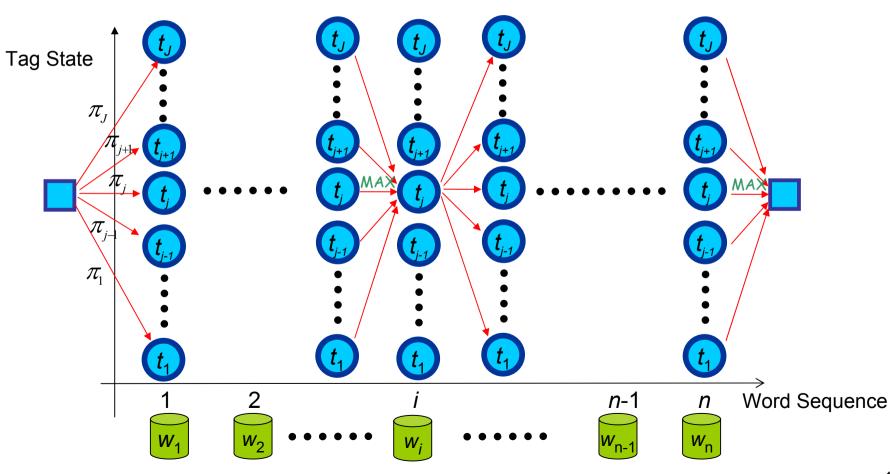
to/TO race/??? P(VB|TO) P(race|VB)=0.000010.021 0.00041 P(NN|TO) P(race|NN)=0.000007Pretend that the previous

word has already tagged

• Apply bigram-HMM tagger to choose the best sequence of tags for a given sentence

$$\begin{aligned} \hat{T} &= \arg \max_{T} \quad P(T|W) \\ &= \arg \max_{T} \quad \frac{P(T)P(W|T)}{P(W)} \\ &= \arg \max_{T} \quad P(T)P(W|T) \\ &= \arg \max_{T} \quad P(T)P(W|T) \\ &= \arg \max_{t_{1},t_{2},...,t_{n}} \quad P(t_{1},t_{2},...,t_{n})P(w_{1},w_{1},...,w_{n}|t_{1},t_{2},...,t_{n}) \\ &= \arg \max_{t_{1},t_{2},...,t_{n}} \quad \prod_{i=1}^{n} \quad \left[P(t_{i}|t_{1},t_{2},...,t_{i-1})P(w_{i}|w_{1},...,w_{i-1},t_{1},t_{2},...,t_{n})\right] \\ &= \arg \max_{t_{1},t_{2},...,t_{n}} \quad \prod_{i=1}^{n} \quad \left[P(t_{i}|t_{1},t_{2},...,t_{i-1})P(w_{i}|t_{i})\right] \quad \text{The probability of a word only depends on its tag} \end{aligned}$$

• The Viterbi algorithm for the bigram-HMM tagger



• The Viterbi algorithm for the bigram-HMM tagger

1. Initialization
$$\delta_1(k) = \pi_k P(w_1|t_k), 1 \le k \le J$$

2. Induction $\delta_i(j) = \left[\max_i \delta_{i-1}(k) P(t_j|t_k)\right] P(w_i|t_j), 2 \le i \le n, 1 \le k \le J$
 $\psi_i(j) = \operatorname*{argmax}_{1\le j\le J} \left[\delta_{i-1}(k) P(t_j|t_k)\right]$
3. Termination $X_n = \operatorname*{argmax}_{1\le j\le J} \delta_n(j)$
for $i := n$ -1 to 1 step -1 do
 $X_i = \psi_i(X_{i+1})$
end

- Apply trigram-HMM tagger to choose the best sequence of tags for a given sentence
 - When trigram model is used

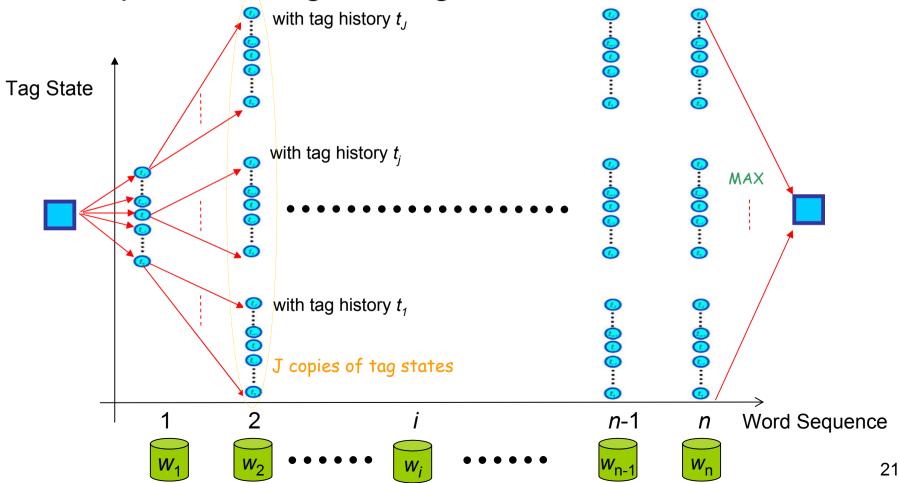
$$\hat{T} = \arg \max_{t_1, t_2, ..., t_n} \left[P(t_1) P(t_2 | t_1) \prod_{i=3}^n P(t_i | t_{i-2}, t_{i-1}) \right] \left[\prod_{i=1}^n P(w_i | t_i) \right]$$

 Maximum likelihood estimation based on the relative frequencies observed in the pre-tagged training corpus (labeled data)

$$P\left(t_{i} | t_{i-2}, t_{i-1}\right) = \frac{c\left(t_{i-2}t_{i-1}t_{i}\right)}{c\left(t_{i-2}t_{i-1}t_{i}\right)} \quad \text{Smoothing is needed !}$$

$$P\left(w_{i} | t_{i}\right) = \frac{c\left(w_{i}, t_{i}\right)}{c\left(t_{i}\right)}$$

• Apply trigram-HMM tagger to choose the best sequence of tags for a given sentence



- Probability re-estimation based on unlabeled data
 - EM (Expectation-Maximization) algorithm is applied
 - Start with a dictionary that lists which tags can be assigned to which words
 - » word likelihood function cab be estimated
 - » tag transition probabilities set to be equal
 - EM algorithm learns (re-estimates) the word likelihood function for each tag and the tag transition probabilities
 - However, a tagger trained on hand-tagged data worked better than one trained via EM

- Also called Brill tagging
 - An instance of Transformation-Based Learning (TBL)
- Spirits
 - Like the rule-based approach, TBL is based on rules that specify what tags should be assigned to what word
 - Like the stochastic approach, rules are automatically induced from the data by the machine learning technique
- Note that TBL is a supervised learning technique
 - It assumes a pre-tagged training corpus

- How the TBL rules are learned
 - Three major stages
 - Label every word with its most-likely tag using a set of tagging rules
 - Examine every possible transformation (rewrite rule), and select the one that results in the most improved tagging (supervised!)
 - Re-tag the data according this rule
 - The above three stages are repeated until some stopping criterion is reached
 - Such as insufficient improvement over the previous pass

Example

P(NN|race)=0.98

P(VB|race)=0.02

So, race will be initially coded as NN (label every word with its most-likely tag)

1. is/VBZ expected/VBN to/To race/NN tomorrow/NN

2. the/DT race/NN for/IN outer/JJ space/NN

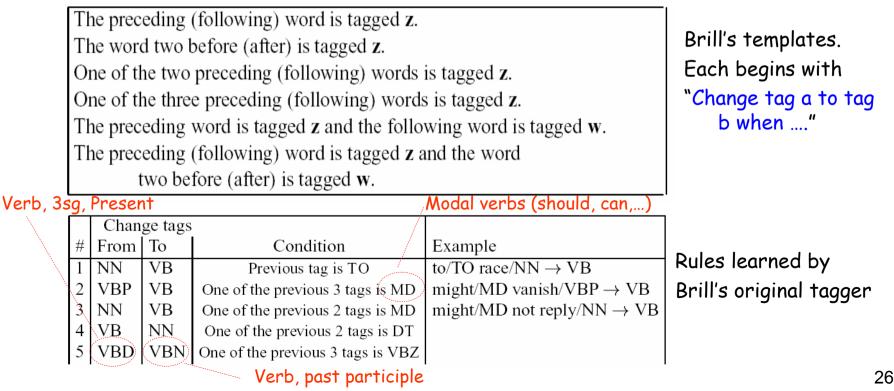
Refer to the correct tag Information of each word, and find the tag of race in "1" is wrong

Learn/pick a most suitable transformation rule: (by examining every possible transformation)

Change NN to VB while the previous tag is TO

Rewrite rule: expected/VBN to/To race/NN → expected/VBN to/To race/VB

- Templates (abstracted transforms)
 - The set of possible transformation may be infinite
 - Should limit the set of transformations
 - The design of a small set of templates is needed



Templates (abstracted transforms)

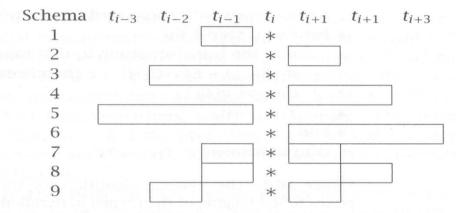


Table 10.7 Triggering environments in Brill's transformation-based tagger. Examples: Line 5 refers to the triggering environment "Tag t^j occurs in one of the three previous positions"; Line 9 refers to the triggering environment "Tag t^j occurs two positions earlier and tag t^k occurs in the following position."

Source tag	Target tag	Triggering environment
NN	VB	previous tag is TO
VBP	VB	one of the previous three tags is MD
JJR	RBR	next tag is JJ
VBP	VB	one of the previous two words is $n't$

Table 10.8 Examples of some transformations learned in transformation-basedtagging.

Algorithm

function GET-BEST-TRANSFORM(corpus, templates) returns transform for each template in templates Get best instance for each transformation (instance, score) + GET-BEST-INSTANCE(corpus, template) if (score > best-transform.score) then best-transform + (instance, score)

return(best-transform)

function GET-BEST-INSTANCE(corpus, template) returns transform for from-tag \leftarrow from tag-1 to tag-n do for all combinations of tags for to-tag \leftarrow from tag -1 to tag -n do for $pos \leftarrow$ from 1 to corpus-size do if (correct-tag(pos) == to-tag && current-tag(pos) == from-tag) num-good-transforms(current-tag(pos-1))++ elseif (correct-tag(pos)=from-tag && current-tag(pos)==from-tag) num-bad-transforms(current-tag(pos-1))++end $best-Z \leftarrow ARGMAX_t(num-good-transforms(t) - num-bad-transforms(t))$ if(num-good-transforms(best-Z) - num-bad-transforms(best-Z) > best-instance.Z) then best-instance + "Change tag from from-tag to to-tag if previous tag is *best-Z*"

return(best-instance)

procedure APPLY-TRANSFORM(transform, corpus) for $pos \leftarrow$ from 1 to corpus-size do if (current-tag(pos)==best-rule-from) && (current-tag(pos-1)==best-rule-prev)) current-tag(pos) = best-rule-to

The **GET_BEST_INSTANCE** procedure in the example algorithm is "Change tag from X to Y if the previous tag is Z".

Multiple Tags and Multi-part Words

- Multiple tags
 - A word is ambiguous between multiple tags and it is impossible or very difficult to disambiguate, so multiple tags is allowed, e.g.
 - adjective versus preterite versus past participle (JJ/VBD/VBN)
 - adjective versus noun as prenominal modifier (JJ/NN)
- Multi-part words
 - Certain words are split or some adjacent words are treated as a single word

would/MD n't/RB Children/NNS 's/POS in terms of (in/II31 terms/II32 of/II33)

Tagging of Unknown Words

- Simplest unknown-word algorithm
 - Pretend that each unknown word is ambiguous among all possible tags, with equal probability
 - Must rely solely on the contextual POS-trigram to suggest the proper tag
- Slightly more complex algorithm
 - Based on the idea that the probability distribution of tags over unknown words is very similar to the distribution of tags over words that occurred only once in a training set Nouns or Verbs
 - The likelihood for an unknown word is determined by the average of the distribution over all singleton in the training set (similar to *Good*-Turing?) $P(w_i|t_i)$?

Tagging of Unknown Words

- Most-powerful unknown-word algorithm
 - Hand-designed features
 - The information about how the word is spelled (inflectional and derivational features), e.g.:
 - Words end with s (\rightarrow plural nouns)
 - -Words end with ed (\rightarrow past participles)
 - The information of word capitalization (initial or non-initial) and hyphenation

 $P(w_i|t_i) = p(\text{unknown} - \text{word}|t_i) \cdot p(\text{captial}|t_i) \cdot p(\text{endings/hyph}|t_i)$

- Features induced by machine learning
 - E.g.: TBL algorithm uses templates to induce useful English inflectional and derivational features and hyphenation The first N letters of the word The last N letters of the word

Evaluation of Taggers

- Compare the tagged results with a human labeled Gold Standard test set in percentages of correction
 - Most tagging algorithms have an accuracy of around 96~97% for the sample tagsets like the Penn Treebank set
 - Upper bound (ceiling) and lower bound (baseline)
 - Ceiling: is achieved by seeing how well humans do on the task

-A 3~4% margin of error

- Baseline: is achieved by using the unigram mostlike tags for each word
 - 90~91% accuracy can be attained

Error Analysis

Confusion matrix

R. Post	IN	JJ	NN	NNP	RB	VBD	VBN
IN		.2	101000	Sin his	.7		
JJ	.2	de-silien	3.3	2.1	1.7	.2	2.7
NN	n alte s	8.7	0 15- P	inter and	0.4500	Held Die	.2
NNP	.2	3.3	4.1	diam'ny s	.2	el su ne	
RB	2.2	2.0	.5	Loren	n-sz h	Real Soft	
VBD	opid 5 h	.3	.5	tim/1-brie	il Imme	59- mm/	4.4
VBN	nd in age	2.8	dim pro	ind director	prost level of	2.6	

- Major problems facing current taggers
 - NN (noun) versus NNP (proper noun) and JJ (adjective)
 - RP (particle) versus RB (adverb) versus JJ
 - VBD (past tense verb) versus VBN (past participle verb) versus JJ

Applications of POS Tagging

- Tell what words are likely to occur in a word's vicinity
 - E.g. the vicinity of the possessive or person pronouns
- Tell the pronunciation of a word
 - DIScount (noun) and disCOUNT (verb) ...
- Advanced ASR language models
 - Word-class N-grams
- Partial parsing
 - A simplest one: find the noun phrases (names) or other phrases in a sentence

Applications of POS Tagging

- Information retrieval
 - Word stemming
 - Help select out nouns or important words from a doc
 - Phrase-level information

United, States, of, America \rightarrow "United States of America" secondary, education \rightarrow "secondary education"

Phrase normalization

Book publishing, publishing of books

- Information extraction
 - Semantic tags or categories

Applications of POS Tagging

- Question Answering
 - Answer a user query that is formulated in the form of a question by return an appropriate noun phrase such as a location, a person, or a date
 - E.g. "Who killed President Kennedy?"

In summary, the role of taggers appears to be a fast lightweight component that gives sufficient information for many applications

- But not always a desirable preprocessing stage for all applications
- Many probabilistic parsers are now good enough !

Class-based N-grams

 Use the lexical tag/category/class information to augment the N-gram models

$$P\left(w_{n} | w_{n-N+1}^{n-1}\right) = P\left(w_{n} | c_{n}\right) P\left(c_{n} | c_{n-N+1}^{n-1}\right)$$

prob. of a word given the tag

prob. of a word given the tag

Maximum likelihood estimation

$$P\left(w_{i} \middle| c_{j}\right) = \frac{C\left(w\right)}{C\left(c\right)}$$
$$P\left(c_{j} \middle| c_{k}\right) = \frac{C\left(c_{k} c_{j}\right)}{\sum_{l} C\left(c_{l} c_{j}\right)}$$

Constraints: a word may only belong to one lexical category

