Semantics and Logical Form

Berlin Chen 2003

References:

- 1. Speech and Language Processing, chapter 14
- 2. Natural Language Understanding, chapter 8
- Jim Martin's lectures

Introduction

- Everyday language tasks
 - Answer an essay question on an exam
 - Decide what to order at a restaurant by reading a menu
 - Learn to use a new piece of software by reading the manual
 - Realize that you've been insulted
 - Follow a recipe

Meaning Representations

• Example: "I have a car"

Semantics

- The study of the meaning of linguistic sentences
 - Meaning of morphemes

utterances

- Meaning of words
- Meaning of phrases

- Steps for determining the meaning of a sentence
 - Compute a context-independent notion of meaning in logical form (semantic interpretation)
 - Interpret the logical form in context to produce the final meaning representation (contextual interpretation)

The study of language in context is called pragmatics.

Issues

- Formal representations for capturing meaning
 - Meaning representation (languages)
 - E.g., First Order Predicate Calculus (FOPC), Semantic Network, Semantic Frames, ...
- Algorithms for mapping from utterances to the meaning representations
 - E.g., compositional semantic analysis, semantic grammars, ...

Verifiability

- Use meaning representation to determine the relationship between the meaning of a sentence and the world we know it
- E.g., Query: "Does Maharani serve vegetarian food?"
 Serves(Maharani, VegetarianFood)
- The straightforward way
 - Make it possible for a system to compare, or match, the representation of meaning of an input against the representations (facts) in the KB

Unambiguous Representations

- Single linguistic inputs may have different meaning representations assigned to them based on the circumstances in which they occur
- ambiguity cf. vagueness
 - It's not always easy to distinguish ambiguity from vagueness
 - E.g., child or goat
- ambiguity I have two kids and George has three
- vagueness I have one horse and George has two

mare, colt, trotter

Unambiguous Representations

- Ambiguity
 - Lexical (word sense) ambiguity
 - Syntactic (structural) ambiguity
 - Disambiguation
 - Structural information of the sentences
 - Word co-occurrence constraints
- Vagueness
 - Make it difficult to determine what to do with a particular input based on it's meaning representations
 - Some word senses are more specific than others

Canonical Form

- Inputs talking the same thing should have the same meaning representation
- Dilemma in internal knowledge representations
 - If the knowledge based contain all possible alternative representations of the same fact

Overheads on KB maintenance or semantic analysis

- How to maintain consistence between various representations is a crucial problem
- Example

The input query Using various propositions

Does Maharani have vegetarian dish?

Does they have vegetarian food at Maharani?

Are vegetarian dishes served at Maharani?

Does Maharani serve vegetarian fare?

Canonical Form

- Assign the same meaning representation to various propositions for a query
 - Simplify the matching/reasoning tasks
 - But complicate the semantic analysis because of different words and syntax used in the propositions
 - vegetarian fare/dishes/food
 - having/serving
- We can exploit the underlying systematic meaning relationships among word senses and among grammatical constructions to make this task tractable
 - E.g., choosing the shared sense among words

Inference and Variables

- Simple matching of knowledge base will not always give the appropriate answer to the request
 - E.g.: "Can vegetarians eat at Maharani?"
- The system should has the ability to draw valid conclusions based on the meaning representation of inputs and the stored background knowledge
 - Determine the TRUE or FALSE of the input propositions
- Such a process is called inference

Inference and Variables

 For the request without making reference to any particular object, involving the use of variable is needed, e.g.,

I'd like to find a restaurant where I can get vegetarian food.

Restaurant(x) ^ Serves(x, VegetarianFood)

 Matching is successful only if the variable can be replaced by some known object in the KB such that the entire proposition is satisfied

Expressiveness

- The meaning representation scheme must be expressive enough to handle an extremely wide range of subject matter
- That's a ideal situation!

Predicate-Argument Structure

- All languages have a form of predicateargument arrangement at the core of their semantic structure
- Predicate
 - Constants that describe events, actions, relationships and properties
- Argument
 - An appropriate number of terms serve as the arguments

Predicate-Argument Structure

- As we have seen before
 - In natural languages, some words and constituents function as predicates and some as arguments

```
Verbs, VPs, PPs, ... Nouns, NPs, ...
```

Example

- "want" conveys a two-argument predicate
- There are two arguments to this predicate
- Both arguments must be NPs
- The first argument ("I") is pre-verbal and plays the role of the subject
- The second argument ("Italian food") is postverbal and plays the role of direct object

Predicate-Argument Structure

- Verbs by no means the only objects in a grammar that can carry a predicate-argument structure
 - Example1: "prepositions"
 an Italian restaurant under fifteen dollars
 Under(ItalianRestaurant, \$15)
 - Example2: "Nouns"

Make a reservation for this evening at 8

⇒ Reservation(Hearer, Today, 8PM)

First Order Predicate Calculus (FOPC)

- Also called First Order Logic (FOL)
- Make use of FOPC as the representational framework, because it is
 - Fexible, well-understood, and computational tractable
 - Produced directly from the syntactic structure of a sentence
 - Specify the sentence meaning without having to refer back natural language itself
 - Context-independency: does not contain the results of any analysis that requires interpretation of the sentences in context

First Order Predicate Calculus (FOPC)

- FOPC allows
 - The analysis of Truth conditions
 - Allows us to answer yes/no questions
 - Supports the use of variables
 - Allows us to answer questions through the use of variable binding
 - Supports inference
 - Allows us to answer questions that go beyond what we know explicitly
 - Determine the truth of propositions that do not literally (exactly) present in the KB

Terms: the device for representing objects

Variables

- Make assertions and draw references about objects without having to make reference to any particular named object (anonymous objects)
- Depicted as single lower-case letters

Constants

- Refer to specific objects in the world being described
- Depicted as single capitalized letters or single capitalized words

- Terms: (cont.)
 - Functions
 - Refer to unique objects without having to associate a name constant with them
 - Syntactically the same as single predicates

Predicates:

- Symbols refer to the **relations** holding among some fixed number of objects in a given domain
- Or symbols refer to the properties of a single object
 - Encode the category membership
- The arguments to a predicates must be terms, not other predicates

A CFG specification of the syntax of FOPC

```
Formula \rightarrow AtomicFormula
                                                                Formula Connective Formula
                                                                Quantifier Variable,... Formula
                                                                ¬ Formula
                                                                (Formula)
                                       AtomicFormula \rightarrow Predicate(Term,...)
                                                   Term \rightarrow Function(Term,...)
                                                                Constant
                                                                Variable
                                            Connective \rightarrow \land |\lor| \Rightarrow
                                             Quantifier \rightarrow \forall \mid \exists
                                               Constant \rightarrow A \mid VegetarianFood \mid Maharani \cdots
                                               Variable \rightarrow x \mid y \mid \cdots
atomic representations
                                              Predicate \rightarrow Serves \mid Near \mid \cdots
                                               Function \rightarrow LocationOf | CuisineOf | ...
```

21

Logical Connectives

- The \land (and), \neg (or), \lor (not), \Rightarrow (imply) operators
- 16 possible truth functional binary values

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$
False	False	True	False	False	True
False	True	True	False	True	True
True	False	False	False	True	False
True	True	False	True	True	True

- Used to form larger composite representations
- Example

I only have five dollars and I don't have a lot of time $Have(Speaker, FiveDollars) \land \neg Have(Speaker, LotOfTime)$

Quantifiers

- The existential quantifier ∃
 - Pronounced as "there exists"
 - Example:

a restaurant that serves Mexican food near ICSI.

```
\exists x \ Restaurant(x) \land Serve(x, MexicanFood)
 \land Near(LocationOf(x), LocationOf(ICSI))
```

- The universal quantifier ∀
- To satisfy the condition, at least one substitution must result in truth
- Pronounced as "for all"
- **Example**: $\forall x \ VegetarianRestaurant(x) \land Serve(x, MexicanFood)$?

All vegetarian restaurant serve vegetarian food.

$$\forall x \ VegetarianRestaurant(x) \Rightarrow Serve(x, MexicanFood)$$

 The ability to add valid new propositions to a KB, or to determine the truth of propositions that are not literally (exactly) contained in the KB

modus ponens

- The most important inference method in FOPC
- Known as "if-then"

The formula below the line can be inferred from the formulas above the line by some form of inference.

 If the left-hand side of an implication rule is present in the KM, then the right-hand side can be inferred

Example

```
Vegetarian Restaurant (Rudys)
\forall x \ Vegetarian Restaurant(x) \Rightarrow Serve(x, Mexican Food)
Serve(Rudys, Mexican Food)
```

a new fact

- Two ways of use
 - Forward chaining
 - Just as described previously
 - As individual facts are added into KB, modus ponens is used to fire all applicable implication rules
 - All inference is performed in advance
 - Advantage: answer subsequent queries using simple table lookup (fast!)
 - Disadvantage: store too much facts that will never be needed
 - Example: "production systems" in cognitive modeling work

- Two ways of use (cont.)
 - Backward chaining
 - Run in reverse to prove specific propositions, call the queries
 - First see if the queries is present in the KB
 - If not, search for applicable implications in KB, whose consequent matches the query formula
 - If there are such a rule, then the query can be proved if the antecedent of any one of them can be shown to be true
 - Recursively performed by backward chaining on the antecedent as a new query
 - Example: the **Prolog** is a backward chaining system

- Backward chaining (cont.)
 - Should distinguish between
 - Reasoning via backward chaining from queries to known facts
 - Reasoning backwards from known consequent to unknown antecedents

Representations of Important Topics

- Several issues should be considered in meaning representation of a few important topics
 - Categories
 - Events
 - Time
 - Aspect
 - Beliefs

Categories

Old representations

Categories are commonly presented using unary predicates

VegetarianRestaurant(Maharani)

- However, categories are relations, rather than objects
- Difficult to make assertion about categories themselves

MostPopular(Maharani, Vegetarian Restaurant)

is a predicate, not a term

- Solution → reification
 - Represent categories as objects

Categories

New representations

 The new notation of membership in a category, or relation held between objects and the categories, e.g.,

```
ISA(Maharani, Vegetarian Restaurant) (is a)
```

Relation held between categories, e.g.,

```
AKO(VegetarianRestaurant, Restaurant)
(a kind of)
```

A category inclusion relationship

Events

Old representations

 Events are represented as single predicates with as many arguments as are needed, e.g.

```
I ate.
                                             Eating (Speaker)
                                            Eating (Speaker, TurkeySand wich)
   I ate a turkey sandwich.
                                            Eating (Speaker, TurkeySand wich, Desk)
   I ate a turkey sandwich at my desk.
                                            Eating _{A} (Speaker, Desk)
   I ate at my desk.
                                            Eating (Speaker, Lunch)
(5)
   I ate lunch.
                                            Eating (Speaker, TurkeySand wich, Lunch)
   I ate a turkey sandwich for lunch.
(6)
   I ate a turkey sandwich for lunch at my desk.
                                        Eating (Speaker, TurkeySand wich, Lunch, Desk)
```

How can we make logic connections between these predicates

Events

New representations

- Solution → reification
 - Represent events as objects which can be quantified and related to other objects
 - $\exists w \, \mathit{ISA}(w, Eating) \land Eater(w, Speaker)$
 - ② $\exists w \, ISA(w, Eating) \land Eater(w, Speaker) \land Eaten(w, TurkeySandwich)$
 - ⑥ $\exists w \, ISA(w, Eating) \land Eater(w, Speaker)$ $\land Eaten(w, TurkeySandwich) \land MealEaten(w, Lunch)$
- Features
 - No need to specify a fixed number of arguments for a given surface predicate

Time

- Events are associated with either points or intervals in time, as on a time line
 - An ordering can be imposed on distinct events by situating them on the time line
 - Ordering relationship: past, present, future
- Representations without temporal information

```
I arrived in New York.
I am arriving in New York.
I will arrive in New York.
```

```
\exists w \ ISA(w, Arriving) \land Arriver(w, Speaker)
 \land Destinatio \ n(w, New York)
```

Time

Representations with temporal information

I arrived in New York.

```
\exists w \, ISA(w, Arriving) \land Arriver(w, Speaker) \land Destination(w, New York) \land IntervalOf(w, i) \land EndPoint(i, e) \land Precedes(e, Now)
```

I am arriving in New York.

```
\exists w \, ISA(w, Arriving) \land Arriver(w, Speaker) \land Destination(w, New York) \land IntervalOf(w, i) \land MemberOf(i, Now)
```

I will arrive in New York.

```
\exists w \, ISA(w, Arriving) \land Arriver(w, Speaker) \land Destination(w, New York) \land IntervalOf(w, i) \land EndPoint(i, e) \land Precedes(Now, e)
```

 However, the relation between verb tenses and points in time is by no means straightforward

Flight 1902 arrived late.

Flight 1902 had arrived late.

Time

E: the time of event

R: the reference time

U: the time of utterance

Aspects

Aspect concerns a cluster of relative topics about events

Stative

- The event participant has a particular property, or is in a state, at a given point in time
- E.g.,
 I know my departure gate.

Activity

- The event undertaken by a participant that has no particular end point
- E.g.,

 John is flying.

Aspects

Accomplishment

- The event has a natural end point and result in a particular state
- E.g.,

He booked me a reservation.

She booked a flight in a minute.

..stopping booking ..

Achievement

- Though of as happening in an instant, also results in a state
- E.g., ...stopping reaching ..?

 She found her gate.

Lreached New York.

Beliefs

- Representations for some kind of hypothetical world
 - Denote a relation from the speaker, or some other entry, to this hypothetical world
 - Words have such an ability: believe, want, image, know... (take various sentence-like constituents as arguments)
 - E.g.,

I believe that Mary ate British food.

```
Believes (Speaker, \exists v \; ISA(v, Eating) \land Eater(v, Marry) \land Eaten(v, BritishFood))

modal operator
```

Semantic Analysis

- The process of assigning a meaning representation to a linguistic input
 - A lot of ways to deal with it
 - Make more or less use of syntax

Compositional Analysis

- Principle of Compositionality
 - The meaning of a sentence/construction can be composed (derived) from the meanings of its parts
 - What parts?
 - The constituents of the syntactic parse of the linguistic input
 - Words → Phrases → Clauses
- Non-compositionality
 - There are lots of constructions whose meanings can't be derived from the meanings of their parts
 - E.g., idioms, metaphors, ...

Syntax-Driven Semantic Analysis

 The meaning representation to the input utterance is solely based on static knowledge from the lexicon and the syntactic grammar

Semantic Argumentations to CFG Rules

 A set of instructions to specify how to compute the meaning representation of a construction from the meaning of its constituent parts

$$A \rightarrow \alpha_1...\alpha_n$$
 { $f(\alpha_j.sem,...\alpha_k.sem)$ }
 $A.sem = f(\alpha_j.sem,...\alpha_k.sem)$

- The semantics attached to A can be computed from some function applied to the semantics of A's parts

```
NP \rightarrow ProperNoun \quad \{ProperNoun .sem\}
NP \rightarrow MassNoun \quad \{MassNoun .sem\}
ProperNoun \rightarrow AyCaramba \quad \{AyCaramba \}
MassNoun \rightarrow Meat \quad \{Meat\}
```

Semantic Argumentations to CFG Rules

$$S \rightarrow NP \ VP \ \{VP.sem(NP.sem)\}$$

 $VP \rightarrow Verb \ NP \ \{Verb.sem(NP.sem)\}$
 $Verb \rightarrow Serves \ \{\lambda x \lambda y \ \exists e \ Isa(e, Serving) \land Server(e, y) \land Served(e, x)\}$
lambda notation

 Take the semantics attached to one daughter and applying it as a function to the semantics of the other daughters

Semantic Argumentations to CFG Rules

- The operations permitted in the semantic rules fall into two classes
 - Pass the semantics of a daughter up unchanged to the mother

```
NP \rightarrow ProperNoun \quad \{ProperNoun .sem\}

NP \rightarrow MassNoun \quad \{MassNoun .sem\}
```

 Apply (as a function) the semantics of one of the daughters of a node to the semantics of the other daughters

```
S \rightarrow NP \ VP \ \{VP.sem(NP.sem)\}

VP \rightarrow Verb \ NP \ \{Verb.sem(NP.sem)\}
```