Discriminative Feature Extraction and Dimension Reduction

Berlin Chen, 2002

Introduction

- Goal: discovering significant patterns or features from the input data
- Salient feature selection or dimensionality reduction

- Compute an input-output mapping based on some desirable properties

Introduction

- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- Heteroscedastic Discriminant Analysis (HDA)

Introduction

FIGURE 4.6. Projection of samples onto a line.

- Formulation
- Model-free (nonparametric)
- With/without prior information
- Model-dependent (parametric)

Principle Component Analysis (PCA)

- Known as Karhunen-Loẻve Transform (1947, 1963)
- Or Hotelling Transform (1933)
- A standard technique commonly used for data reduction in statistical pattern recognition and signal processing
- A transform by which the data set can be represented by reduced number of effective features and still retain the most intrinsic information content
- A small set of features to be found to represent the data samples accurately
- Also called "Subspace Decomposition"

Principle Component Analysis (PCA)

FIGURE 8.4 A cloud of data points is shown in two dimensions, and the density plots formed by projecting this cloud onto each of two axes, 1 and 2, are indicated. The projection onto axis 1 has maximum variance, and clearly shows the bimodal, or clustered character of the data.

Principle Component Analysis (PCA)

- Suppose \boldsymbol{x} is an n-dimensional zero mean random vector, $E_{x}\{x\}=0$
- If \boldsymbol{x} is not zero mean, we can subtract the mean before processing the following analysis
- \boldsymbol{x} can be represented without error by the summation of n linearly independent vectors

$$
\left.\begin{array}{ll}
\boldsymbol{x}=\sum_{i=i}^{n} \underbrace{y_{i}} \boldsymbol{\varphi}_{i}=\boldsymbol{\Phi} \boldsymbol{y} & \text { where } \\
\begin{array}{l}
\boldsymbol{y}=\left[\begin{array}{lllll}
y_{1} & \cdot & y_{i} & \cdot & y_{n}
\end{array}\right]^{T} \\
\text { The } i \text {-th component } \\
\text { the feature (mapped) space }
\end{array} & \boldsymbol{\Phi}=\underbrace{\left[\begin{array}{llll}
\boldsymbol{\varphi}_{1} & \cdot & \boldsymbol{\varphi}_{i} & \cdot
\end{array}\right.}_{\text {The basis vectors }} \boldsymbol{\varphi}_{n}
\end{array}\right]
$$

Principle Component Analysis (PCA)

- Further assume the column (basis) vectors of the matrix $\boldsymbol{\Phi}$ form an orthonormal set

$$
\boldsymbol{\varphi}_{i}^{T} \varphi_{j}=\left\{\begin{array}{l}
1 \\
\text { if } i=j \\
0
\end{array} \quad \text { if } i \neq j\right.
$$

- Such that y_{i} is equal to the projection of \boldsymbol{x} on $\boldsymbol{\varphi}_{i}$

$$
\forall_{i} \quad y_{i}=\boldsymbol{x}^{T} \varphi_{i}=\varphi_{i}^{T} \boldsymbol{x}
$$

- y_{i} also has the following properties
- Its mean is zero, too

$$
E\left\{y_{i}\right\}=E\left\{\varphi_{i}^{T} \boldsymbol{x}\right\}=\varphi_{i}^{T} E\{\boldsymbol{x}\}=\varphi_{i}^{T} \boldsymbol{0} \stackrel{\text {, where }}{=}
$$

- Its variance is

$$
\begin{aligned}
-\sigma_{i}^{2} & =E\left\{y_{i}^{2}\right\}=E\left\{\varphi_{i}^{T} \boldsymbol{x} \boldsymbol{x}^{T} \varphi_{i}\right\}=\varphi_{i}^{T} E\left\{\boldsymbol{x} \boldsymbol{x}^{T}\right\} \varphi_{i} \\
& =\boldsymbol{\varphi}_{i}^{T} \boldsymbol{R} \varphi_{i} \quad[\boldsymbol{R} \text { is the (auto-)correlation matrix of } \boldsymbol{x}]
\end{aligned}
$$

Principle Component Analysis (PCA)

- Further assume the column (basis) vectors of the matrix $\boldsymbol{\Phi}$ form an orthonormal set
- y_{i} also has the following properties
- Its mean is zero, too

$$
E\left\{y_{i}\right\}=E\left\{\varphi_{i}^{T} \boldsymbol{x}\right\}=\varphi_{i}^{T} E\{\boldsymbol{x}\}=\varphi_{i}^{T} \boldsymbol{0}=0
$$

- Its variance is

$$
\begin{aligned}
\sigma_{i}^{2} & =E\left\{y_{i}^{2}\right\}=E\left\{\varphi_{i}^{T} \boldsymbol{x} \boldsymbol{x}^{T} \varphi_{i}\right\}=\varphi_{i}^{T} E\left\{\boldsymbol{x} \boldsymbol{x}^{T}\right\} \varphi_{i} \quad \boldsymbol{R}=E\left\{\boldsymbol{x} \boldsymbol{x}^{T}\right\}=\frac{1}{N} \sum_{i} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \\
& =\varphi_{i}^{T} \boldsymbol{R} \varphi_{i} \quad[\boldsymbol{R} \text { is the (auto-)correlation matrix of } \boldsymbol{x}]
\end{aligned}
$$

- The correlation between two projections y_{i} and y_{j} is

$$
\begin{aligned}
E\left\{y_{i} y_{j}\right\} & =E\left\{\left(\boldsymbol{\varphi}_{i}^{T} \boldsymbol{x}\right)\left(\boldsymbol{\varphi}_{j}^{T} \boldsymbol{x}\right)^{T}\right\}=E\left\{\boldsymbol{\varphi}_{i}^{T} \boldsymbol{x} \boldsymbol{x}^{T} \boldsymbol{\varphi}_{j}\right\} \\
& =\boldsymbol{\varphi}_{i}^{T} E\left\{\boldsymbol{x} \boldsymbol{x} \boldsymbol{x}^{T}\right\} \boldsymbol{\varphi}_{j}=\boldsymbol{\varphi}_{i}^{T} \boldsymbol{R} \boldsymbol{\varphi}_{j}
\end{aligned}
$$

Principle Component Analysis (PCA)

- Minimum Mean-Squared Error Criterion
- We want to choose only m of $\varphi_{i}{ }^{\prime}$ s that we still can approximate \boldsymbol{x} well in mean-squared error criterion

$$
\begin{aligned}
& \boldsymbol{x}=\sum_{i=1}^{n} y_{i} \boldsymbol{\varphi}_{i}=\sum_{i=1}^{m} y_{i} \boldsymbol{\varphi}_{i}+\sum_{j=m+1}^{n} y_{j} \boldsymbol{\varphi}_{j} \\
& \hat{\boldsymbol{x}}(m)=\sum_{i=1}^{m} y_{i} \boldsymbol{\varphi}_{\boldsymbol{i}}
\end{aligned}
$$

$$
\bar{\varepsilon}(m)=E\left\{\|\hat{\boldsymbol{x}}(m)-\boldsymbol{x}\|^{2}\right\}=E\left\{\left(\sum_{j=m+1}^{n} y_{j} \boldsymbol{\varphi}_{j}^{T}\right)\left(\sum_{k=m+1}^{n} y_{k} \boldsymbol{\varphi}_{k}\right)\right\}
$$

$$
E\left\{y_{j}\right\}=0
$$

$$
=E\left\{\sum_{j=m+1}^{n} \sum_{k=m+1}^{n} y_{j} y_{k} \boldsymbol{\varphi}_{j}^{T} \boldsymbol{\varphi}_{k}\right\}
$$

$$
\begin{aligned}
& E\left\{y_{j}\right\}=0 \\
& \sigma_{j}^{2}=E\left\{y_{j}^{2}\right\}-\left(E\left\{y_{j}\right\}\right)^{2}=\sum_{j=m+1}^{n} E\left\{y_{j}^{2}\right\} \\
& \quad=E\left\{v^{2}\right\}
\end{aligned}
$$

$$
=E\left\{y_{j}^{2}\right\}
$$

$$
=\sum_{j=m+1}^{n} \sigma_{j}^{2}=\sum_{j=m+1}^{n} \boldsymbol{\varphi}_{j}^{T} \boldsymbol{R} \boldsymbol{\varphi}_{j}
$$

Principle Component Analysis (PCA)

- Minimum Mean-Squared Error Criterion
- If the orthonormal (basis) set $\varphi_{i}{ }^{\prime}$ s is selected to be the eigenvectors of the correlation matrix \boldsymbol{R}, associated with eigenvalues λ_{i} 's
- They will have the property that:

$$
\boldsymbol{R} \boldsymbol{\varphi}_{j}=\lambda_{j} \boldsymbol{\varphi}_{j}
$$

\boldsymbol{R} is real and symmetric, therefore its eigenvectors form a orthonormal set

- Such that the mean-squared error mentioned above will be

$$
\begin{aligned}
\bar{\varepsilon}(m) & =\sum_{j=m+1}^{n} \sigma_{j}^{2} \\
& =\sum_{j=m+1}^{n} \boldsymbol{\varphi}_{j}^{T} \boldsymbol{R} \boldsymbol{\varphi}_{j}=\sum_{j=m+1}^{n} \boldsymbol{\varphi}_{j}^{T} \lambda_{j} \boldsymbol{\varphi}_{j}=\sum_{j=m+1}^{n} \lambda_{j}
\end{aligned}
$$

Principle Component Analysis (PCA)

- Minimum Mean-Squared Error Criterion
- If the eigenvectors are retained associated with the m largest eigenvalues, the mean-squared error will be

$$
\bar{\varepsilon}_{\text {eigen }}(m)=\sum_{j=m+1}^{n} \lambda_{j} \quad\left(\text { where } \lambda_{1} \geq \ldots \geq \lambda_{m} \geq \ldots \geq \lambda_{n}\right)
$$

- Any two projections y_{i} and y_{j} will be mutually uncorrelated

$$
\begin{aligned}
E\left\{y_{i} y_{j}\right\} & =E\left\{\left(\boldsymbol{\varphi}_{i}^{T} \boldsymbol{x}\right)\left(\boldsymbol{\varphi}_{j}^{T} \boldsymbol{x}\right)^{T}\right\}=E\left\{\boldsymbol{\varphi}_{i}^{T} \boldsymbol{x} \boldsymbol{x}^{T} \boldsymbol{\varphi}_{j}\right\} \\
& =\boldsymbol{\varphi}_{i}^{T} E\left\{\boldsymbol{x} \boldsymbol{x}^{T}\right\} \boldsymbol{\varphi}_{j}=\boldsymbol{\varphi}_{i}^{T} \boldsymbol{R} \boldsymbol{\varphi}_{j}=\lambda_{\mathrm{j}} \boldsymbol{\varphi}_{i}^{T} \boldsymbol{\varphi}_{j}=0
\end{aligned}
$$

- Good news for most statistical modeling
- Gaussians and diagonal matrices

Principle Component Analysis (PCA)

- An two-dimensional example of Principle Component Analysis

Principle Component Analysis (PCA)

- Minimum Mean-Squared Error Criterion
- It can be proved that $\bar{\varepsilon}_{\text {eigen }}(m)$ is the optimal solution under the mean-squared error criterion

To be minimized
constraints
Define: $J=\sum_{j=m+1}^{n} \boldsymbol{\varphi}_{j}^{T} \boldsymbol{R} \boldsymbol{\varphi}_{j}-\sum_{j=m+1}^{n} \sum_{k=m+1}^{n} \mu_{j k}\left(\boldsymbol{\varphi}_{j}^{T} \boldsymbol{\varphi}_{k}-\delta_{j k}\right) \quad \frac{\partial \varphi^{T} \boldsymbol{R} \varphi}{\partial \varphi}=2 \boldsymbol{R} \varphi$
Take derivation

$$
\begin{aligned}
& \Rightarrow \forall_{m+1 \leq j \leq n} \frac{\partial J}{\partial \boldsymbol{\varphi}_{j}}=2 \boldsymbol{R} \boldsymbol{\varphi}_{j}-2 \sum_{k=m+1}^{n} \mu_{j k} \boldsymbol{\varphi}_{k}=0 \quad\left(\text { where } \boldsymbol{\mu}_{j}^{T}=\left[\mu_{j m+1} \ldots \mu_{j n}\right]\right) \\
& \Rightarrow \forall_{m+1 \leq j \leq n} \boldsymbol{R} \boldsymbol{\varphi}_{j}=\boldsymbol{\Phi}_{n-m} \boldsymbol{\mu}_{j} \quad\left(\text { where } \boldsymbol{\Phi}_{n-m}=\left[\boldsymbol{\varphi}_{m+1} \ldots \boldsymbol{\varphi}_{n}\right]\right) \\
& \Rightarrow \boldsymbol{R}\left[\boldsymbol{\varphi}_{m+1} \ldots \boldsymbol{\varphi}_{n}\right]=\boldsymbol{\Phi}_{n-m}\left[\boldsymbol{\mu}_{m+1} \ldots \boldsymbol{\mu}_{n}\right] \\
& \Rightarrow \boldsymbol{R} \boldsymbol{\Phi}_{n-m}=\boldsymbol{\Phi}_{n-m} \boldsymbol{U}_{n-m}\left(\text { where } \boldsymbol{U}_{n-m}=\left[\boldsymbol{\mu}_{m+1} \ldots \boldsymbol{\mu}_{n}\right]\right)
\end{aligned}
$$

Have a particular solution if \boldsymbol{U}_{n-m} is a diagonal matrix and its diagonal elements is the eigenvalues $\lambda_{m+1} \ldots \lambda_{n}$ of \boldsymbol{R} and $\boldsymbol{\varphi}_{m+1} \ldots \boldsymbol{\varphi}_{n}$ is their corresponding eigenvectors

Principle Component Analysis (PCA)

- Given an input vector \boldsymbol{x} with dimensional m
- Try to construct a linear transform $\Phi^{\prime}\left(\Phi^{\prime}\right.$ is an nxm matrix $m<n$) such that the truncation result, $\Phi^{{ }^{\top} \boldsymbol{x}} \boldsymbol{x}$, is optimal in mean-squared error criterion

$\operatorname{minimize} E_{x}\left((\hat{x}-x)^{T}(\hat{x}-x)\right)$

Principle Component Analysis (PCA)

- Data compression in communication

- PCA is an optimal transform for signal representation and dimensional reduction, but not necessary for classification tasks, such as speech recognition
- PCA needs no prior information (e.g. class distributions) of the sample patterns

Principle Component Analysis (PCA) Hebbian-based Maximum Eigenfilter

Principle Component Analysis (PCA)

 Hebbian-based Principal Analysis- The Hebbian-based maximum eigenfilter can be expanded into a single layer feedforward network for principal component analysis (sanger,

$$
\begin{aligned}
& y_{j}(n)=\sum_{i=1}^{m} w_{j i}(n) x_{i}(n), \quad j=1, \ldots, J \\
& \Delta w_{j i}(n)=\eta y_{j}(n)[\underbrace{x_{i}(n)-\sum_{k=1}^{j} w_{k i}(n) y_{k}(n)}_{x_{i}^{\prime}(n)}] \\
& w_{j i}(n+1)=w_{j i}(n)+\Delta w_{j i}(n)
\end{aligned}
$$

It had been proved that
$\lim _{n \rightarrow \infty} \Delta \boldsymbol{w}_{j}(n) \rightarrow \mathbf{0}$
$\lim _{n \rightarrow \infty} \boldsymbol{w}_{j}(n) \rightarrow \boldsymbol{\varphi}_{j}$ (the j-th principal component)

Principle Component Analysis (PCA)

 Hebbian-based Principal Analysis- Example: Image Coding

(a)

256
$8 x 8$
Non-overlapping image block

Weights

(b)

Principle Component Analysis (PCA) Hebbian-based Principal Analysis

- Example: Image Coding

Using first 8 components

(c)

15 to 1 compression

(d)

FIGURE 8.9 (a) An image of parents used in the image coding experiment. (b) 8×8 masks representing the synaptic weights learned by the GHA. (c) Reconstructed image of parents obtained using the dominant 8 principal components without quantization. (d) Reconstructed image of parents with 15 to 1 compression ratio using quantization.

Principle Component Analysis (PCA) Adaptive Principal Components Extraction

- Both feedward and lateral connections are used

$$
\begin{gathered}
y_{j}(n)=\boldsymbol{w}_{j}^{T}(n) \boldsymbol{x}(n)+\boldsymbol{a}_{j}^{T} \boldsymbol{y}_{j-1}(n) \\
\boldsymbol{w}_{j}(n+1)=\boldsymbol{w}_{j}(n)+\eta\left[y_{j}(n) \boldsymbol{x}(n)-y_{j}^{2}(n) \boldsymbol{w}_{j}(n)\right] \\
\boldsymbol{a}_{j}(n+1)=\boldsymbol{a}_{j}(n)-\eta\left[y_{j}(n) \boldsymbol{y}_{j-1}(n)+y_{j}^{2}(n) \boldsymbol{a}_{j}(n)\right]
\end{gathered}
$$

FIGURE 8.11 Network with feedforward and lateral connections for deriving the APEX algorithm.

Principle Component Analysis (PCA) Eigenface and Eigenvoice

- Eigenface in face recognition (1990)
- Consider an individual image to be a linear combination of a small number of face components or "eigenface" derived from a set of reference images
- Steps
- Convert each of the L reference images into a vector of floating point numbers representing light intensity in each pixel
- Calculate the coverance/correlation matrix between these reference vectors
- Apply Principal component Analysis (PCA) find the eigenvectors of the matrix: the eigenfaces
- Besides, the vector obtained by averaging all images are called "eigenface 0 ". The other eigenface from "eigenface 1 " onwards model the variations from this average face

Principle Component Analysis (PCA) Eigenface and Eigenvoice

- Eigenface in face recognition (1990)
- Steps
- Then the faces are then represented as eigenvoice 0 plus a linear combination of the remain $K(K \leq L)$ eigenfaces
- The Eigenface approach persists the minimum meansquared error criterion
- Incidentally, the eigenfaces are not themselves usually plausible faces, only directions of variations between faces

Principle Component Analysis (PCA) Eigenface and Eigenvoice

- Eigenvoice in speaker adaptation (PSTL, 2000)
- Steps
- Concatenating the regarded parameters for each speaker r to form a huge vector a ${ }^{(r)}$ (a supervectors)
- SD model mean parameters (μ)

Let each new speaker S be represented by a point P in K-space

$$
P=e(0)+w(1) * e 1+\cdots+w(K) * e(K) .
$$

Principle Component Analysis (PCA) Eigenface and Eigenvoice

- Eigenvoice in speaker adaptation

Fig. 1. Block diagram for eigenvoice speaker adaptation

Principle Component Analysis (PCA) Eigenface and Eigenvoice

- Eigenvoice in speaker adaptation
- Dimension 1 (eigenvoice 1):
- Correlate with pitch or sex
- Dimension 2 (eigenvoice 2):
- Correlate with amplitude
- Dimension 3 (eigenvoice 3):
- Correlate with second-formant movement

Linear Discriminant Analysis

- Given a set of sample vectors with labeled (class) information, try to find a linear transform \boldsymbol{W} such that the ratio of average between-class variation over average within-class variation is maximal

Fig. 10-1 An example of feature extraction for classification.

Linear Discriminant Analysis (LDA)

- Suppose there are N sample vectors \boldsymbol{x}_{i} with dimensionality n, each of them is belongs to one of the J classes $g\left(x_{i}\right)=j, \quad j \in\{1,2, \ldots ., J\}, g(\cdot)$ is class index
- The sample mean is: $\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}$
- The class sample means are: $\bar{x}_{j}=\frac{1}{N_{j}} g\left(x_{i}\right)=j, x_{i}$
- The class sample covariances are: $\Sigma_{j}=\frac{1}{N_{j} g\left(x_{i}\right)=j}\left(x_{i}-\bar{x}_{j}\right)\left(x_{i}-\bar{x}_{j}\right)^{r}$
- The average within-class variation before transform

$$
\boldsymbol{S}_{w}=\frac{1}{N} \sum_{j} N_{j} \boldsymbol{\Sigma}_{j}
$$

- The average between-class variation before transform

$$
\boldsymbol{S}_{b}=\frac{1}{N} \sum_{j} N_{j}\left(\overline{\boldsymbol{x}}_{j}-\overline{\boldsymbol{x}}\right)\left(\overline{\boldsymbol{x}}_{j}-\overline{\boldsymbol{x}}\right)^{T}
$$

Linear Discriminant Analysis (LDA)

- If the transform $\boldsymbol{W}=\left[w_{1} \boldsymbol{w}_{2} \ldots \boldsymbol{w}_{m}\right]$ is applied
- The sample vectors will be $\boldsymbol{y}_{i}=\boldsymbol{W}^{T} \boldsymbol{x}_{i}$
- The sample mean will be $\overline{\boldsymbol{y}}=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{W}^{T} \boldsymbol{x}_{i}=\boldsymbol{W}^{T}\left(\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i}\right)=\boldsymbol{W}^{T} \overline{\boldsymbol{x}}$
- The class sample means will be $\overline{\boldsymbol{y}}_{j}=\frac{1}{N_{j}} \sum_{g\left(\boldsymbol{x}_{i}\right)=j} \boldsymbol{W}^{T} \boldsymbol{x}_{i}=\boldsymbol{W}^{T} \overline{\boldsymbol{x}}_{j}$
- The average within-class variation will be
$\widetilde{\boldsymbol{S}}_{w}=\frac{1}{N} \sum_{j} N_{j}\left\{\frac{1}{N_{j}} \cdot \sum_{g\left(x_{i}\right)=j}\left(\boldsymbol{W}^{T} \boldsymbol{x}_{i}-\frac{1}{N_{j}} \sum_{g\left(\boldsymbol{x}_{i}\right)=j}\left(\boldsymbol{W}^{T} \boldsymbol{x}_{i}\right)\right)\left(\boldsymbol{W}^{T} \boldsymbol{x}_{i}-\frac{1}{N_{j}} \sum_{g\left(x_{i}\right)=j}\left(\boldsymbol{W}^{T} \boldsymbol{x}_{i}\right)\right)^{T}\right\}$
$=\boldsymbol{W}^{T}\left\{\frac{1}{N} \sum_{j} N_{j} \boldsymbol{\Sigma}_{j}\right\} \boldsymbol{W}$
$=\boldsymbol{W}^{T} \boldsymbol{S}_{w} \boldsymbol{W}$

Linear Discriminant Analysis (LDA)

- If the transform $\boldsymbol{W}=\left[\boldsymbol{w}_{1} \boldsymbol{w}_{2} \ldots \boldsymbol{w}_{m}\right]$ is applied
- The average between-class variation will be

$$
\widetilde{\boldsymbol{S}}_{b}=\boldsymbol{W}^{T} \boldsymbol{S}_{b} \boldsymbol{W}
$$

- Try to find optimal \boldsymbol{W} such that the following criterion function is maximized

$$
J(\boldsymbol{W})=\frac{\left|\widetilde{\boldsymbol{S}}_{b}\right|}{\left|\widetilde{\boldsymbol{S}}_{w}\right|}=\frac{\left|\boldsymbol{W}^{T} \boldsymbol{S}_{b} \boldsymbol{W}\right|}{\left|\boldsymbol{W}^{T} \boldsymbol{S}_{w} \boldsymbol{W}\right|}
$$

- A close form solution: the column vectors of an optimal matrix are the generalized eigenvectors corresponding to the largest eigenvalues in \boldsymbol{W}

$$
\boldsymbol{S}_{b} \boldsymbol{w}_{i}=\lambda_{i} \boldsymbol{S}_{w} \boldsymbol{w}_{i}
$$

- That is, $\boldsymbol{w}_{i}{ }^{\prime} \mathrm{S}$ are the eigenvectors corresponding to the largest eigenvalues of

$$
\boldsymbol{S}_{w}^{-1} \boldsymbol{S}_{b} \boldsymbol{w}_{i}=\lambda_{i} \boldsymbol{w}_{i}
$$

Linear Discriminant Analysis (LDA)

- Proof: $\because \hat{\boldsymbol{W}}=\underset{\hat{w}}{\arg \max } J(\boldsymbol{W})=\underset{\hat{w}}{\arg \max } \frac{\left|\tilde{\boldsymbol{S}}_{b}\right|}{\left|\tilde{\boldsymbol{S}}_{w}\right|}=\underset{\hat{w}}{\arg \max } \frac{\left|\boldsymbol{W}^{T} \boldsymbol{S}_{b} \boldsymbol{W}\right|}{\left|\boldsymbol{W}^{\tau} \boldsymbol{S}_{w} \boldsymbol{W}\right|}$

Or, for each column vector \boldsymbol{w}_{i} of \boldsymbol{W}, we want to find that:
The qradtic form has optimal solution : $\lambda_{i}=\frac{\boldsymbol{w}_{i}^{T} \boldsymbol{S}_{b} \boldsymbol{w}_{i}}{\boldsymbol{w}_{i}^{T} \boldsymbol{S}_{w} \boldsymbol{w}_{i}}$
$\Rightarrow \frac{\partial \lambda_{i}}{\partial \boldsymbol{w}_{i}}=\frac{2 \boldsymbol{S}_{b} \boldsymbol{w}_{i}\left(\boldsymbol{w}_{i}^{T} \boldsymbol{S}_{w} \boldsymbol{w}_{i}\right)-2 \boldsymbol{S}_{w} \boldsymbol{w}_{i}\left(\boldsymbol{w}_{i}^{T} \boldsymbol{S}_{b} \boldsymbol{w}_{i}\right)}{\left(\boldsymbol{w}_{i}^{T} \boldsymbol{S}_{w} \boldsymbol{w}_{i}\right)^{2}}=0$
$\Rightarrow \frac{\boldsymbol{S}_{b} \boldsymbol{w}_{i}\left(\boldsymbol{w}_{i}^{T} \boldsymbol{S}_{w} \boldsymbol{w}_{i}\right)}{\left(\boldsymbol{w}_{i}^{T} \boldsymbol{S}_{w} \boldsymbol{w}_{i}\right)^{2}}-\frac{\boldsymbol{S}_{w} \boldsymbol{w}_{i}\left(\boldsymbol{w}_{i}^{T} \boldsymbol{S}_{b} \boldsymbol{w}_{i}\right)}{\left(\boldsymbol{w}_{i}^{T} \boldsymbol{S}_{w} \boldsymbol{w}_{i}\right)^{2}}=0$
$\frac{\boldsymbol{S}_{b} \boldsymbol{w}_{i}}{\boldsymbol{w}_{i}^{T} \boldsymbol{S}_{w} \boldsymbol{w}_{i}}-\frac{\boldsymbol{S}_{w} \boldsymbol{w}_{i}}{\boldsymbol{w}_{i}^{T} \boldsymbol{S}_{w} \boldsymbol{w}_{i}} \lambda_{i}=0 \quad\left(\because \lambda_{i}=\frac{\boldsymbol{w}_{i}^{T} \boldsymbol{S}_{b} \boldsymbol{w}_{i}}{\boldsymbol{w}_{i}^{T} \boldsymbol{S}_{w} \boldsymbol{w}_{i}}\right)$
$\Rightarrow \boldsymbol{S}_{b} \boldsymbol{w}_{i}-\lambda_{i} \boldsymbol{S}_{w} \boldsymbol{w}_{i}=0 \Rightarrow \boldsymbol{S}_{b} \boldsymbol{w}_{i}=\lambda_{i} \boldsymbol{S}_{w} \boldsymbol{w}_{i}$
$\Rightarrow \boldsymbol{S}_{w}^{-1} \boldsymbol{S}_{b} \boldsymbol{w}_{i}=\lambda_{i} \boldsymbol{w}_{i}$

Heteroscedastic Discriminant Analysis (HDA)
 IBM, 2000

- Heteroscedastic: A set of statistical distributions having different variances
- LDA does not consider individual class covariances and may therefore generate suboptimal results
- Modified the LDA objective function

$$
H(\boldsymbol{W})=\prod_{j=1}^{J}\left(\frac{\left|\boldsymbol{W}^{T} \boldsymbol{S}_{b} \boldsymbol{W}\right|}{\left|\boldsymbol{W}^{T} \boldsymbol{\Sigma}_{j} \boldsymbol{W}\right|}\right)^{N j}=\frac{\left|\boldsymbol{W}^{T} \boldsymbol{S}_{b} \boldsymbol{W}\right|}{\prod_{j=1}^{J}\left|\boldsymbol{W}^{T} \boldsymbol{\Sigma}_{j} \boldsymbol{W}\right|^{N j}}
$$

- Take the log and rearrange terms

$$
\log H(\boldsymbol{W})=-\left(\sum_{j=1}^{J} N_{j} \log \left|\boldsymbol{W}^{T} \boldsymbol{\Sigma}_{j} \boldsymbol{W}\right|\right)+N \log \left|\boldsymbol{W}^{T} \boldsymbol{S}_{b} \boldsymbol{W}\right|
$$

- However the dimensions of the HDA projection can often be highly correlated
- An other transform can be further composed into HDA

Heteroscedastic Discriminant Analysis (HDA)

- The difference in the projections obtained from LDA and HDA for 2-class case

Fig. 1. Difference between LDA and HDA.

- Clearly, the HDA provides a much lower classification error than LDA theoretically
- However, most statistical modeling assume data samples are Gaussian and have diagonal covariance matrices

