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Outline

• Foundations of trainable decision-making 
networks to be formulated
– Input space to output space (classification space)

• Focus on the classification of linearly separable 
classes of patterns
– Linear discriminating functions and simple correction 

function 
– Continuous error function minimization

• Explanation and justification of perceptron and 
delta training rules
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Classification Model, Features,
and Decision Regions

• A pattern is the quantitative description of an 
object, event, or phenomenon
– Spatial patterns: weather maps, fingerprints …
– Temporal patterns: speech signals …

• Pattern classification/recognition
– Assign the input data (a physical object, event, or 

phenomenon) to one of the pre-specified classes 
(categories)

– Discriminate the input data within object population 
via the search for invariant attributes among 
members of  the population
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Classification Model, Features,
and Decision Regions (cont.)

• The block diagram of the recognition and 
classification system

Dimension 
reduction

A neural network 
for classification 
and for feature 

extraction
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Classification Model, Features,
and Decision Regions (cont.)

• More about Feature Extraction
– The compressed data from the input patterns while 

poses salient information
– E.g.

• Speech vowel sounds analyzed in 16-channel filterbanks can 
provide 16 spectral vectors, which can be further transformed 
into two dimensions 

– Tone height (high-low) and retraction (front-back)

• Input patterns to be projected and reduced to lower 
dimensions  
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Classification Model, Features,
and Decision Regions (cont.)

• More about Feature Extraction
y

x

x’

y’
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Classification Model, Features,
and Decision Regions (cont.)

• Two simple ways to generate the pattern vectors for 
cases of spatial and temporal objects to be classified

• A pattern classifier maps input patterns (vectors) in En

space into numbers (E1) which specify the membership
( ) Rjij  ,...,2 ,1  ,0 == x
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Classification Model, Features,
and Decision Regions (cont.)

• Classification described in geometric terms

– Decision regions
– Decision surfaces: generally, the decision surfaces for n-

dimensional patterns may be (n-1)-dimensional hyper-surfaces

( ) ,..., R, jji jo 21   ,Χ allfor   , =∈= xx

The decision surfaces here
are curved lines
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Discriminant Functions
• Determine the membership in a category by the 

classifier based on the comparison of R 
discriminant functions g1(x), g2(x),…, gR(x)
– When x is within the region Xk if gk(x) has the largest 

value ( ) ( ) ( ) j,..., R, k, jk,ggki jk ≠=>= 21 for    if 0 xxx

x1, x2,…., xp, ….,xP

P>>n
Assume the classifier 
Has been designed

x1

x2

xn

g1

g2

gR

g1(x)

gR(x)

g2(x)
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Discriminant Functions (cont.)

• Example 3.1 ( ) ( ) ( )

( )
( ) 2 class :  0

1 class :  0
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The decision surface does 
not uniquely specify the 
discriminant functions

The classifier that classifies patterns
into two classes or categories is called
“dichotomizer”

Decision surface Equation:

“two” “cut”
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Discriminant Functions (cont.)



12

Discriminant Functions (cont.)

[2,-1,0]

[-2,1,0]

(0,-2,0)

(1,0,0)
[0,0,1]

[2,-1,1]

(0,-2,1)

(x-0,y+2, g1 -1)(2,-1,1)=0
2x-y-2+ g1 -1=0
g1=-2x+y+3
(x-0,y+2, g2 -1)(-2,1,1)=0
-2x+y+2+ g2 -1=0
g2=2x-y-1
g=g1 -g2=0
-4x+2y+4=0
-2x+y+2=0

An infinite number of 
discriminant functions will yield 

correct classification

(x-0,y+2, g1 -1)(2,-1,2)=0
2x-y-2+2g1 -2=0
g1=-x+1/2y+2

(x-0,y+2, g2 -1)(-2,1,2)=0
-2x+y+2+ 2g2 -2=0
g2=x-1/2y
g=g1 -g2=0
-2x+y+2=0

Solution 1

Solution 2
x
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Discriminant Functions (cont.)

( ) ( ) ( )xxx 21 ggg −=

Multi-class

Two-class

( )
( ) 2 class :  0

1 class :  0
<
>

x
x

g
g

subtraction Sign examination
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Discriminant Functions (cont.)

The design of discriminator 
for this case is not 
straightforward.
The discriminant functions 
may result as nonlinear
functions of x1 and x2
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Bayes’ Decision Theory

• A decision-making based on both the posterior 
knowledge obtained from specific observation 
data and prior knowledge of the categories 
– Prior class probabilities 
– Class-conditioned probabilities 

( ) iP i  class    , ∀ω

( ) ixP i  class    , ∀ω
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Bayes’ Decision Theory (cont.)

• Bayes’ decision rule designed to minimize the 
overall risk involved in making decision
– The expected loss (conditional risk) when making 

decision

• The overall risk  (Bayes’ risk) 

– Minimize the overall risk (classification error) by 
computing  the conditional risks and select the decision     

for which the conditional risk             is minimum, i.e.,    
is maximum (minimum-error-rate decision rule)
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Bayes’ Decision Theory (cont.)

• Two-class pattern classification

Likelihood ratio or log-likelihood ratio:
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Bayes’ Decision Theory (cont.)

• When the environment is multivariate Gaussian, 
the Bayes’ classifier reduces to a linear classifier
– The same form taken by the perceptron
– But the linear nature of the perceptron is not 

contingent on the assumption of Gaussianity
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Bayes’ Decision Theory (cont.)

• When the environment is Gaussian, the Bayes’
classifier reduces to a linear classifier (cont.)
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Bayes’ Decision Theory (cont.)

• Multi-class pattern classification
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Linear Machine and Minimum Distance 
Classification

• Find the linear-form discriminant function for two-
class classification when the class prototypes are 
known

• Example 3.1: Select the decision hyperplane that 
contains the midpoint of the line segment 
connecting center point of two classes
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Linear Machine and Minimum Distance 
Classification (cont.)
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Linear Machine and Minimum Distance 
Classification (cont.)

• The linear-form discriminant functions for multi-
class classification 
– There are up to R(R-1)/2 decision hyperplanes for R

pairwise separable classes
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Linear Machine and Minimum Distance 
Classification (cont.)

• Linear machine or minimum-distance classifier
– Assume the class prototypes are known for all classes

• Euclidean distance between input pattern x and the center of 
class i, xi :

• Minimizing                                                is equal to 

maximizing

– Set the discriminant function for each class i to be:
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Linear Machine and Minimum Distance 
Classification (cont.)

This approach is also called 
correlation classification

An 1 as the n+1’th component 
of the input pattern
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Linear Machine and Minimum Distance 
Classification (cont.)

• Example 3.2
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Linear Machine and Minimum Distance 
Classification (cont.)

• If R linear discriminant functions exist for a set of 
patterns such that

– The classes are linearly separable

( ) ( )
j i,..., R, ,..., R,j, i
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Linear Machine and Minimum Distance 
Classification (cont.)
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Linear Machine and Minimum Distance 
Classification (cont.)

(a) 2x1-x2+2=0, decision surface is a line
(b) 2x1-x2+2=0, decision surface is a plane
(c) x1=[2,5], x2=[-1,-3]
=>The decision surface for minimum distance classifier

(x1-x2)t x+1/2 (||x2||2-||x1||2)t=0
3x1+ 8x2-19/2=0

(d)

x1

x2

(0,0)
(-1,0) (0,2)

x1

x2

(0,0)
(-1,0) (0,2)

x3

x1

x2

(0,0)
(-1,0) (0,2)

(19/6,0)

(19/16,0)
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Linear Machine and Minimum Distance 
Classification (cont.)

• Examples 3.1 and 3.2 have shown that the 
coefficients (weights) of the linear 
discriminant functions can be determined if 
the a priori information about the sets of 
patterns and their class membership is 
known
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Linear Machine and Minimum Distance 
Classification (cont.)

• The example of linearly non-separable patterns  
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Linear Machine and Minimum Distance 
Classification (cont.)

x1+x2+1=0

-x1-x2+1=0
TLU#2

TLU#1x1

x2

-1

-1

1

1

-1

-1
-1

TLU#2
1
1

1

(1,1)

(-1,-1)

(-1, 1)

(1, -1)

o1

o2

(1,1)(-1, 1)

(1, -1) o1+o2-1=0

o1

o2
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Discrete Perceptron Training Algorithm
- Geometrical Representations

• Examine the neural network classifiers that 
derive/training their weights based on the error-
correction scheme

( ) ywy tg =

Vector Representations
in the Weight Space

Class 1: 

Class 2: 

0>yw t

0<yw t

Augmented
input pattern
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Discrete Perceptron Training Algorithm
- Geometrical Representations (count.)

• Devise an analytic approach based on the 
geometrical representations 
– E.g. the decision surface for the training pattern y1

If y1 in Class 1:

y1 in Class 2

( ) 11 yyww =∇ t

1
1 yww c+=′

y1 in Class 1

If y1 in Class 2:

1
1 yww c−=′

c (>0) is the correction increment (is 
two times of the learning constant 
introduced before)

Weight Space

Weight Space

c controls the 
size of adjustment

Gradient
(the direction of
steep increase)
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Discrete Perceptron Training Algorithm
- Geometrical Representations (count.)

Weight adjustments of three 
augmented training pattern y1, 
y2, y3 , shown in the weight 
space

- Weights in the shaded region  
are the solutions

- The three lines labeled are  
fixed during training

Weight Space

23
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C
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∈
∈
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y
y
y



36

Discrete Perceptron Training Algorithm
- Geometrical Representations (count.)

• More about the correction increment c
– If it is not merely a constant, but related to the current 

training pattern
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How to select the correction increment 
based on the dislocates of w1 and the 
corrected weight vector w
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Discrete Perceptron Training Algorithm
- Geometrical Representations (count.)

• For fixed correction rule with c=constant, the 
correction of weights is always the same fixed 
portion of the current training vector
– The weight can be initialized at any value

• For dynamic correction rule with c dependent 
on the distance from the weight (i.e. the weight 
vector) to the decision surface in the weight 
space
– The initial weight should be different from 0

yww c±=′ or ( )[ ]yyww
www
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y
y

yw
y 2
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Discrete Perceptron Training Algorithm
- Geometrical Representations (count.)

• Dynamic correction rule with c dependent 
on the distance from the weight 
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Discrete Perceptron Training Algorithm
- Geometrical Representations (count.)

• Example 3.3
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Continuous Perceptron
Training Algorithm

• Replace the TLU (Threshold Logic Unit) with the 
sigmoid activation function for two reasons:
– Gain finer control over the training procedure
– Facilitate the differential characteristics to enable 

computation of the error gradient 

( )www E∇−= ηˆ

learning constant error gradient
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Continuous Perceptron
Training Algorithm (cont.)

• The new weights is obtained by moving in the 
direction of the negative gradient along the 
multidimensional error surface
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Continuous Perceptron
Training Algorithm (cont.)

• Define the error as the squared difference 
between the desired output and the actual 
output 
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Continuous Perceptron
Training Algorithm (cont.)

• Bipolar Continuous Activation Function

• Unipolar Continuous Activation Function
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Continuous Perceptron
Training Algorithm (cont.)

• Example 3.3 ( ) ( ) 1
exp1
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Continuous Perceptron
Training Algorithm (cont.)

• Example 3.3 Trajectories started from four
arbitrary initial weights

Total error surface



46

Continuous Perceptron
Training Algorithm (cont.)

• Treat the last fixed component of input pattern 
vector as the neuron activation threshold
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Continuous Perceptron
Training Algorithm (cont.)

• R-category linear classifier using R discrete 
bipolar perceptrons
– Goal: The i-th TLU response of +1 is indicative of 

class i and all other TLU respond with -1

( )yww iiii odc −⋅+=
2
1ˆ

ij,..,R,jdd ji ≠=−==  ,21for  ,1 ,1

For “local representation”
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Continuous Perceptron
Training Algorithm (cont.)

• Example 3.5
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Continuous Perceptron
Training Algorithm (cont.)

• R-category linear classifier using R continuous 
bipolar perceptrons
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Continuous Perceptron
Training Algorithm (cont.)

• Error function dependent on the difference 
vector d-o
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Bayes’ Classifier vs. Percepron

• Perceptron operates on the promise that the patterns to 
be classified are linear separable (otherwise the training 
algorithm will oscillate), while Bayes’ classifier assumes 
the (Gaussian) distribution of two classes certainly do 
overlap each other

• The perceptron is nonparametric while the Bayes’
classifier is parametric (its derivation is contingent on the 
assumption of the underlying distributions)

• The perceptron is simple and adaptive, and needs small 
storage, while the Bayes’ classifier could be made 
adaptive but at the expanse of increased storage and 
more complex computations 
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Homework

• P3.5, P3.7, P3.9, P3.22


