
Multilayer Feedforward
Networks

Berlin Chen, 2002

2

Introduction

• The single-layer perceptron classifiers
discussed previously can only deal with linearly
separable sets of patterns

• The multilayer networks to be introduced here
are the most widespread neural network
architecture
– Made useful until the 1980s, because of lack of

efficient training algorithms (McClelland and
Rumelhart 1986)

3

Introduction

• Supervised Error Back-propagation Training
– The mechanism of backward error transmission

(delta learning rule) is used to modify the synaptic
weights of the internal (hidden) and output layers

• The mapping error can be propagated into hidden layers

– Can implement arbitrary complex/output mappings or
decision surfaces for to separate pattern classes

• For which, the explicit derivation of mappings and discovery
of relationships is almost impossible

– Produce surprising results and generalizations

4

Linearly Non-separable
Pattern Classification

• Linearly non-separable dichotomization
– For two training sets C1 and C2 of the augmented

patterns, if no weight vector w exists such that

• Then the patterns set C1 and C2 are linearly non-separable

2

1

each for 0

each for 0

C
C

t

t

∈<

∈>

yyw
yyw

Two-dimensional
Input pattern space

Three-dimensional
Input pattern space

5

Linearly Non-separable
Pattern Classification

• Map the patterns in the original pattern space
into the so-called image space such that a two-
layer network can classify them

2-dimensional pattern space 3-dimensional image space

(1,-1,1)

(1, 1,-1)

(-1,-1,1)

(-1,1,-1)

(-1,1,1)

()
()

<++
>++

=
2 class :0sgn
1 class :0sgn

321

321
4 ooo

ooo
o

6

Linearly Non-separable
Pattern Classification

• Patterns mapped into the three-dimensional cube
– Produce linearly separable images in the image space

()
()

<++
>++

=
2 class :0sgn
1 class :0sgn

321

321
4 ooo

ooo
o

7

Linearly Non-separable
Pattern Classification

• Example 4.1: the XOR function using a simple
layered classifier (with parameters produced by
inspection)

1
-1
-1
1

0
1
0
1

0
0
1
1

Outputx2x1

 −+−=

2
12sgn 211 xxo

 −−=

2
1sgn 212 xxo

0
2
12 21 =−+− xx

0
2
1

21 =−− xx bipolar discrete perceptron

8

Linearly Non-separable
Pattern Classification

• Example 4.1

 −−=

2
1sgn 212 xxo

 −+−=

2
12sgn 211 xxo

The mapping using
discrete perceptrons

The mapping using
continuous perceptrons

Contour map o3(x1,x2)

9

Linearly Non-separable
Pattern Classification

• Another example: classification of planner patterns
For class 1, only one set of
them will be both activated at
the same time

10

Linearly Non-separable
Pattern Classification

• The layered networks with discrete perceptrons
described here are also called “committee”
network
– Committee → Voting

Input pattern space Image space Class membership

[1, -1]N

A vertex of cube

11

Error Back-propagation Training
for Multi-layer Feed-forward Networks

• The error back-propagation training algorithm
has reawaked the scientific and engineering
community to the modeling of many quantitative
phenomena using neural networks

• The Delta Learning Rule is applied
– Each neuron has a nonlinear and differentiable

activation function (sigmoid function)
– Neurons’ (synaptic) weights are adjusted based on

the least mean square (LMS) criterion

12

Error Back-propagation Training
for Multi-layer Feed-forward Networks

• Training: experiential acquisition of input/output
mapping knowledge within multilayer networks

– Input patterns submitted sequentially during training

– Synaptic weights and thresholds adjusted to
reduce the mean square classification error

• The weight adjustments enforce backward from the “output
layer” through the “hidden layers” toward the “input layer”

– Continued until the network are within an acceptable
overall error for the whole training set

13

Error Back-propagation Training
for Multi-layer Feed-forward Networks

• Revisit the Delta Learning Rule for the single-
layer network
– Continuous activation functions
– Gradient descent search

kjkjkj www ∆+=

[] WynetWyo =Γ= ,

1−=Jy

() ()

==−= ∑∑

==

J

j
jkjkk

K

k
kk ywfnetfoodE

11

2 ,
2
1

() () jkkk

kj
kj

ynetfod
w
Ew

′−=

∂
∂

−=∆

η

η

The Derivation for A Specific Neuron k

negative gradient
decent formula

14

Error Back-propagation Training
for Multi-layer Feed-forward Networks

• Revisit the Delta Learning Rule for the single-
layer network

jok
kj

kj y
w
Ew ηδη =

∂
∂

−=∆

()kok net
E

ktermsignalerror

∂
∂

−=
∆

δ

δ neuron specific afor theof definition The

jokkjkj yww ηδ+=

()
()

k

k

k
ok net

netf
netf
E ∂

∂
∂

−=
∆

δ

()
()

jok
kj

k

kkj

y
w
net

net
E

w
E δ−=

∂
∂

∂
∂

=
∂
∂

()
j

kj

J

j
jkj

kj

k y
w

yw

w
net

=
∂

∂

=
∂

∂
∑
=1 () ()kk

k

od
netf
E

−−=
∂

∂

() ()k
k

k netf
net
netf ′=

∂
∂

15

Error Back-propagation Training
for Multi-layer Feed-forward Networks

• Revisit the Delta Learning Rule for the single-
layer network
– Unipolar continuous activation function

– Bipolar continuous activation function

() () () ()kkk
k

k oonetf
net

netf −=′⇒
−+

= 1
exp1

1

() () jkkkkkj yooodw −−=∆ 1η

() () () ()21
2
11

exp1
2

kk
k

k onetf
net

netf −=′⇒−
−+

=

()() jkkkkj yoodw 21
2
1

−−⋅=∆ η

okδ

okδ

16

Error Back-propagation Training
for Multi-layer Feed-forward Networks

• Revisit the Delta Learning Rule for the single-
layer network

– are local error signals dependent only on
and

tδyWW η+=′

=

KJKK

J

J

www

www
www

........
. . .
. . .

........
........

21

22221

11211

W

=

oK

o

o

δ

δ
δ

.

.
2

1

δ []Jt yyy ..21=y

okδ
ko kd

17

Error Back-propagation Training
for Multi-layer Feed-forward Networks

• Generalized Delta learning rule for hidden Layers

18

Error Back-propagation Training
for Multi-layer Feed-forward Networks

• Apply the negative gradient decent formula for
the hidden layer

iyjji

j
yj

ji

j

j
ji

ji
ji

zv
net
E

v
net

net
Ev

v
Ev

ηδ

δ

η

η

=∆

∂
∂

−

∂

∂
⋅

∂
∂

−=∆

∆∂
∂

−==∆

=
∆

The error signal term of the hidden layer
having output yj

∑
=

=
I

i
ijij zvnet

1

19

Error Back-propagation Training
for Multi-layer Feed-forward Networks

• Apply the negative gradient decent formula for
the hidden layer

j

j

j
yj net

y
y
E

∂

∂
⋅

∂
∂

−=δ [] ()[]

∑

∑∑

=

==

=

−=−==

J

j
jkjk

K

k
kk

K

k
kk

ywnet

netfdodEE

1

1

2

1

2

2
1

2
1

okδ

()[]()

()[] (){ }∑

∑

=

=

′−−=

∂
∂

∂
−∂

=
∂
∂

⋅
∂
∂

∂
∂

⋅
∂
∂

=
∂
∂

K

k
kjkkk

K

k j

k

k

kk

j

k

k

j

k

kj

wnetfnetfd

y
net

net
netfd

y
net

net
E

y
net

net
E

y
E

1

1

2

2
1

20

Error Back-propagation Training
for Multi-layer Feed-forward Networks

• Generalized Delta learning rule for hidden Layers

() () ()[]
()

() ∑

∑

∑

=

=

=

′+=

∆+=

=∆

′=

′−′=

K

k
kjokijji

jijiji

iyjji

K

k
kjokj

K

k
kjkkkjyj

wznetfv

vvv
zv

wnetf

wnetfodnetf

1

1

1

δη

ηδ

δ

δ

() ()j
j

j
jj netf

net
y

netfy ′=
∂

∂
⇒=

21

Error Back-propagation Training
for Multi-layer Feed-forward Networks

• Generalized Delta learning rule for hidden Layers
– Bipolar continuous activation function

– Unipolar continuous activation function

() () ()[]

() ()()∑

∑

=

=

 −−−+=

′−′+=

K

k
kjkkkijji

K

k
kjkkkijjiji

woodzyv

wnetfodznetfvv

1

22

1

1
2
11

2
1

η

η

() () ()[]
() () ()[]∑

∑

=

=

−−−+=

′−′+=

K

k
kjkkkkijjji

K

k
kjkkkijjiji

wooodzyyv

wnetfodznetfvv

1

1

11

η

η

The adjustment of weights leading to neuron j in the hidden layer
is proportional to the weighted sum of all δvalues at the adjacent
following layer of nodes connecting neuron j with the output

22

Error Back-propagation Training
for Multi-layer Feed-forward Networks

Bipolar continuous
activation function

23

Error Back-propagation Training
for Multi-layer Feed-forward Networks

[][]zWo VΓΓ=

24

Error Back-propagation Training
for Multi-layer Feed-forward Networks

• The incremental learning of the weight matrix in
the output and hidden layers is obtained by the
outer product rule as

– Where is the error signal vector of a layer and
is the input signal to that layer

• The network is nonlinear in the feedforward
mode, while the error back-propagation is
computed using the linearized activation
– The slope of each neuron’s activation function

tδyW η=∆

δ y

25

Examples of Error Back-Propagation
Training

• Example 4.2: XOR function
-1
1
1
-1

0
1
0
1

0
0
1
1

Outputo2o1

[]

=

=

∆

∆

42 4140

32 3130

54 5350

www
www

V

wwwW

26

Examples of Error Back-Propagation
Training

• Example 4.2: XOR function
– The first sample run with random initial weight values

• 1244 steps (η=0.1)
[]

−

−

−−

=

=

∆

∆

3.178 746.5 0.739
6.094 545.5 3.116
6.584 898.6 3.328

V

W

Though continuous neurons
are used for training, we replace
them with bipolar binary neurons

27

Examples of Error Back-Propagation
Training

• Example 4.2: XOR function
– The second sample run with random initial weight

values
• 2128 steps (η=0.1) []

−−−

−−−

=

=

∆

∆

4.578 746.4 1.269
4.281 854.3 6.169
5.376 160.8 3.967

V

W

If the network has failed to learn
the training set successfully, the
training should be restarted with
Different initial weights

28

Training Errors

• For the purpose of assessing the quality and
success of training, the joint error (cumulative
error) must be computed for the entire batch of
training patterns

– It is not very useful for comparison of networks with
different numbers of training patterns and having
different number of output neurons

• Root-mean-square normalized error

()∑ ∑
= =

−=
P

p

K

k
pkpk odE

1 1

2

2
1

()∑ ∑
= =

−=
P

p

K

k
pkpk od

PK
E

1 1

2
rms

1

29

Training Errors

• For some classification applications
– The desired outputs below a threshold will be set to 0,

while the desired outputs higher than an other threshold
will be set to 1

– In such cases, the decision error will more adequately
reflects the accuracy of neural network classifiers

– The networks in classification applications may exhibit
zero decision errors while still yielding substantial E and
Erms

PK
NE err

d =

19.0

01.0

=⇒>

=⇒<

pkpk

pkpk

oo
oo

Average number of bit errors

30

Multilayer Feedforward Networks
as Function Approximators

• Example: a function h(x) approximated by H(w,x)

31

Multilayer Feedforward Networks
as Function Approximators

• There are P samples , which are
examples of function values in the interval (a, b)

– Each subinterval with length is

{ }pxxx ,....,, 21

Pi
P
abxxx ii 1,....,for ,1 =

−
=∆=−+

x∆

Pixxxx ii 1,2,..., ,
2

 ,
2

=

 ∆

+
∆

−

bxxaxx P =
∆

+=
∆

−
2

 ,
21

32

Multilayer Feedforward Networks
as Function Approximators

• Define a unit step function

• Use a staircase approximation H(w,x) of the
continuous-valued function h(x)

• The network will have 2P binary (nonlinear) perceptrons with TLUs in
the input layer

()

>
=
<

=+=
0for 1
0for undefined
0for 0

2
1)sgn(

2
1

x
x
x

xxζ

()

 ∆

−−−

 ∆

−−+

+

 ∆

−−−

 ∆

−−=

22

............

22
, 1

xxxxxxh

xxxxxxhxH

PPP

ii

ζζ

ζζw

33

Multilayer Feedforward Networks
as Function Approximators

• If we replace the TLUs with continuous
activation functions bump function (may not the

best case for a particular
problem)

34

Multilayer Feedforward Networks
as Function Approximators

• The output layer in the above example also can
be replaced with a preceptron with nonlinear
activation function

• Such a network architecture can approximate
virtually any multivariable function, if provided
sufficiently many hidden neurons are available

35

Learning Factors

• Error Curve

36

Learning Factors

• Initial Weights
– The weights of the network are typically initialized at

small random values
• The initialization strongly affects the ultimate solution
• Equal initial weights ?

– Select another set of initial weights, and then restart !

• Incremental Updating versus Cumulative Weight
Adjustment
– Incremental Updating:

• Weight adjustments do not need to be stored
• May skewed toward the most recent patterns in the training

cycle

37

Learning Factors

• Incremental Updating versus Cumulative Weight
Adjustment
– Cumulative Weight Adjustment :

• Provided that the learning constant is small enough, the
cumulative weight adjustment procedure can still implement
the algorithm close to the gradient decent minimization

– We may present the training examples in random in
each training cycle

∑
=
∆=∆

P

p
pww

1

38

Learning Factors

• Steepness of the activation function

– Have a maximum value of at net=0
– The large may yield results similar to that of large

learning constant

() ()
()[]2exp1

exp2
net
netnetf

λ
λλ

−+
−

=′

() () 1
exp1

2
−

−+
=
∆

net
netf

λ Bipolar continuous
activation function

λ
λ2

1

η

39

Learning Factors

• Momentum Method
– Supplement the current weight adjustments with a

fraction of the most recent weight adjustment

• After a total of N steps with the momentum method

() () ()twtEtw ∆+∇−=∆ αη

() ()ntEtw
N

n

n −∇−=∆ ∑
= 0
αη

40

Learning Factors

• Momentum Method

41

Summary of Error Back-propagation Network

• A set of P training pairs (zp,dp)

• Minimize the vector of total error

(){ }Pppp ,...,2,1 ,, =dz

() 2

1
,,∑

=
−=

P

p
ppE dzVWo

42

Network Architecture vs. Data Representation

[]
[]

[] TI,C, class:3 3

.......
TI,C, class:2 1

TC, class:1 1

9

2

1

t

t

t

=

=

=

x

x

x

43

Necessary Number of Hidden Neurons

• For two-layer feedforward network
– if the n-dimensional nonargumented input space is

linear separable into M disjoint regions, the necessary
number of hidden neuons would be J

JM 2= Mirchandini and Cao (1989)

44

Character Recognition Application

• Project a point of the character into its three closest
vertical, horizontal, and diagonal bars
– Then normalized the bar values to be between 0 and 1
– Input vector is 13-dimensional and the activation function is

unipolar continuous function
90~95% accuracy

I J K
14 12 26

16
20
24

45

Character Recognition Application

• Example 4.5

46

Digit Recognition Application

96~98% accuracy

47

Expert System Applications

Explanation function: Neural network expert systems are typically
unable to provide the user with the reasons for the decisions made.

48

Learning Time Sequences

49

Functional Link Network

• Enhance the representation of the input data

Any two elements

Any three elements

