
Multilayer Feedforward
Networks

Berlin Chen, 2002



2

Introduction

• The single-layer perceptron classifiers 
discussed previously can only deal with linearly 
separable sets of patterns

• The multilayer networks to be introduced here 
are the most widespread neural network 
architecture
– Made useful until the 1980s, because of lack of 

efficient training algorithms  (McClelland and 
Rumelhart 1986)
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Introduction

• Supervised Error Back-propagation Training
– The mechanism of backward error transmission 

(delta learning rule) is used to modify the synaptic 
weights of the internal (hidden) and output layers

• The mapping error can be propagated into hidden layers

– Can implement arbitrary complex/output mappings or 
decision surfaces for to separate pattern classes

• For which, the explicit derivation of mappings and discovery 
of relationships is almost impossible 

– Produce surprising results and generalizations
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Linearly Non-separable
Pattern Classification

• Linearly non-separable dichotomization
– For two training sets C1 and C2 of the augmented 

patterns, if no weight vector w exists such that

• Then the patterns set C1 and C2 are linearly non-separable
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Linearly Non-separable
Pattern Classification

• Map the patterns in the original pattern space
into the so-called image space such that a two-
layer network can classify them 
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Linearly Non-separable
Pattern Classification

• Patterns mapped into the three-dimensional cube
– Produce linearly separable images in the image space
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Linearly Non-separable
Pattern Classification

• Example 4.1: the XOR function using a simple 
layered classifier (with parameters produced by 
inspection)
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Linearly Non-separable
Pattern Classification

• Example 4.1
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Linearly Non-separable
Pattern Classification

• Another example: classification of planner patterns
For class 1, only one set of 
them will be both activated at 
the same time
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Linearly Non-separable
Pattern Classification

• The layered networks with discrete perceptrons
described here are also called “committee”
network
– Committee → Voting 

Input pattern space Image space Class membership
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Error Back-propagation Training
for Multi-layer Feed-forward Networks

• The error back-propagation training algorithm 
has reawaked the scientific and engineering 
community to the modeling of many quantitative 
phenomena using neural networks

• The Delta Learning Rule is applied
– Each neuron has a nonlinear and differentiable 

activation function (sigmoid function)
– Neurons’ (synaptic) weights are adjusted based on 

the least mean square (LMS) criterion
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Error Back-propagation Training
for Multi-layer Feed-forward Networks

• Training: experiential acquisition of input/output 
mapping knowledge within multilayer networks

– Input patterns submitted sequentially during training

– Synaptic weights and thresholds adjusted to 
reduce the mean square classification error

• The weight adjustments enforce backward from the “output 
layer” through the “hidden layers” toward the “input layer”

– Continued until the network are within an acceptable 
overall error for the whole training set 
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Error Back-propagation Training
for Multi-layer Feed-forward Networks

• Revisit the Delta Learning Rule for the single-
layer network
– Continuous activation functions
– Gradient descent search 
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Error Back-propagation Training
for Multi-layer Feed-forward Networks

• Revisit the Delta Learning Rule for the single-
layer network
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Error Back-propagation Training
for Multi-layer Feed-forward Networks

• Revisit the Delta Learning Rule for the single-
layer network
– Unipolar continuous activation function

– Bipolar continuous activation function
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Error Back-propagation Training
for Multi-layer Feed-forward Networks

• Revisit the Delta Learning Rule for the single-
layer network

– are local error signals dependent only on          
and
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Error Back-propagation Training
for Multi-layer Feed-forward Networks

• Generalized Delta learning rule for hidden Layers
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Error Back-propagation Training
for Multi-layer Feed-forward Networks

• Apply the negative gradient decent formula for 
the hidden layer
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Error Back-propagation Training
for Multi-layer Feed-forward Networks

• Apply the negative gradient decent formula for 
the hidden layer
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Error Back-propagation Training
for Multi-layer Feed-forward Networks

• Generalized Delta learning rule for hidden Layers
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Error Back-propagation Training
for Multi-layer Feed-forward Networks

• Generalized Delta learning rule for hidden Layers
– Bipolar continuous activation function

– Unipolar continuous activation function
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Error Back-propagation Training
for Multi-layer Feed-forward Networks

Bipolar continuous
activation function
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Error Back-propagation Training
for Multi-layer Feed-forward Networks
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Error Back-propagation Training
for Multi-layer Feed-forward Networks

• The incremental learning of the weight matrix in 
the output and hidden layers is obtained by the 
outer product rule as

– Where       is the error signal vector of a layer and     
is the input signal to that layer

• The network is nonlinear in the feedforward
mode, while the error back-propagation is 
computed using the linearized activation
– The slope of each neuron’s activation function

tδyW η=∆

δ y
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Examples of Error Back-Propagation 
Training

• Example 4.2:  XOR function 
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Examples of Error Back-Propagation 
Training

• Example 4.2:  XOR function
– The first sample run with random initial weight values

• 1244 steps (η=0.1)
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Examples of Error Back-Propagation 
Training

• Example 4.2:  XOR function
– The second sample run with random initial weight 

values
• 2128 steps (η=0.1) [ ]
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Training Errors

• For the purpose of assessing the quality and 
success of training, the joint error (cumulative 
error) must be computed for the entire batch of 
training patterns

– It is not very useful for comparison of networks with 
different numbers of training patterns and having 
different number of output neurons

• Root-mean-square normalized error
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Training Errors

• For some classification applications
– The desired outputs below a threshold will be set to 0, 

while the desired outputs higher than an other threshold 
will be set to 1

– In such cases, the decision error will more adequately 
reflects the accuracy of neural network classifiers

– The networks in classification applications may exhibit 
zero decision errors while still yielding substantial E and 
Erms
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Multilayer Feedforward Networks
as Function Approximators

• Example: a function h(x) approximated by H(w,x)
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Multilayer Feedforward Networks
as Function Approximators

• There are P samples                           , which are 
examples of function values in the interval (a, b)

– Each subinterval with length         is  
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Multilayer Feedforward Networks
as Function Approximators

• Define a unit step function

• Use a staircase approximation H(w,x) of the 
continuous-valued function h(x)

• The network will have 2P binary (nonlinear) perceptrons with TLUs in 
the input layer 
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Multilayer Feedforward Networks
as Function Approximators

• If  we replace the TLUs with continuous 
activation functions bump function (may not the 

best case for a particular 
problem)



34

Multilayer Feedforward Networks
as Function Approximators

• The output layer in the above example also can 
be replaced with a preceptron with nonlinear 
activation function

• Such a network architecture can approximate 
virtually any multivariable function, if provided 
sufficiently many hidden neurons are available
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Learning Factors

• Error Curve
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Learning Factors

• Initial Weights
– The weights of the network are typically initialized at 

small random values
• The initialization strongly affects the ultimate solution
• Equal initial weights ?

– Select another set of initial weights, and then restart !

• Incremental Updating versus Cumulative Weight 
Adjustment
– Incremental Updating:

• Weight adjustments do not need to be stored
• May skewed toward the most recent patterns in the training 

cycle
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Learning Factors

• Incremental Updating versus Cumulative Weight 
Adjustment
– Cumulative Weight Adjustment :

• Provided that the learning constant is small enough, the 
cumulative weight adjustment procedure can still implement 
the algorithm close to the gradient decent minimization 

– We may present the training examples in random in 
each training cycle
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Learning Factors

• Steepness of the activation function

– Have a maximum value of              at net=0
– The large      may yield results similar to that of large 

learning constant 
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Learning Factors

• Momentum Method
– Supplement the current weight adjustments with a 

fraction of the most recent weight adjustment

• After a total of N steps with the momentum method
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Learning Factors

• Momentum Method
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Summary of Error Back-propagation Network

• A set of P training pairs (zp,dp)

• Minimize the vector of total error 
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Network Architecture vs. Data Representation
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Necessary Number of Hidden Neurons 

• For two-layer feedforward network
– if the n-dimensional nonargumented input space is 

linear separable into M disjoint regions, the necessary 
number of hidden neuons would be J 

JM 2= Mirchandini and Cao (1989)
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Character Recognition Application

• Project a point of the character into its three closest 
vertical, horizontal, and diagonal bars
– Then normalized the bar values to be between 0 and 1
– Input vector is 13-dimensional and the activation function is 

unipolar continuous function
90~95% accuracy
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Character Recognition Application

• Example 4.5
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Digit Recognition Application

96~98% accuracy
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Expert System Applications

Explanation function: Neural network expert systems are typically
unable to provide the user with the reasons for the decisions made. 
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Learning Time Sequences
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Functional Link Network

• Enhance the representation of the input data

Any two elements

Any three elements


